Seminars in Immunopathology

, Volume 35, Issue 2, pp 123–137

Multifaceted roles of PGE2 in inflammation and cancer

Review

Abstract

Prostaglandin E2 (PGE2) is a bioactive lipid that elicits a wide range of biological effects associated with inflammation and cancer. PGE2 exerts diverse effects on cell proliferation, apoptosis, angiogenesis, inflammation, and immune surveillance. This review concentrates primarily on gastrointestinal cancers, where the actions of PGE2 are most prominent, most likely due to the constant exposure to dietary and environmental insults and the intrinsic role of PGE2 in tissue homeostasis. A discussion of recent efforts to elucidate the complex and interconnected pathways that link PGE2 signaling with inflammation and cancer is provided, supported by the abundant literature showing a protective effect of NSAIDs and the therapeutic efficacy of targeting mPGES-1 or EP receptors for cancer prevention. However, suppressing PGE2 formation as a means of providing chemoprotection against all cancers may not ultimately be tenable, undoubtedly the situation for patients with inflammatory bowel disease. Future studies to fully understand the complex role of PGE2 in both inflammation and cancer will be required to develop novel strategies for cancer prevention that are both effective and safe.

Keywords

PGE2 Inflammation Gastrointestinal cancer NSAIDs COX-2 mPGES-1 

References

  1. 1.
    Dong M, Guda K, Nambiar PR, Rezaie A, Belinsky GS et al (2003) Inverse association between phospholipase A2 and COX-2 expression during mouse colon tumorigenesis. Carcinogenesis 24(2):307–315PubMedCrossRefGoogle Scholar
  2. 2.
    Dong M, Johnson M, Rezaie A, Ilsley JN, Nakanishi M, et al. (2005) Cytoplasmic phospholipase A2 levels correlate with apoptosis in human colon tumorigenesis. Clin Cancer Res 11(6):2265–71Google Scholar
  3. 3.
    Ilsley JN, Nakanishi M, Flynn C, Belinsky GS, De Guise S et al (2005) Cytoplasmic phospholipase A2 deletion enhances colon tumorigenesis. Cancer Res 65(7):2636–2643PubMedCrossRefGoogle Scholar
  4. 4.
    Wang D, Dubois RN (2006) Prostaglandins and cancer. Gut 55(1):115–122PubMedCrossRefGoogle Scholar
  5. 5.
    Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294(5548):1871–1875PubMedCrossRefGoogle Scholar
  6. 6.
    Smith WL (1989) The eicosanoids and their biochemical mechanisms of action. Biochem J 259(2):315–324PubMedGoogle Scholar
  7. 7.
    Wang D, Mann JR, DuBois RN (2005) The role of prostaglandins and other eicosanoids in the gastrointestinal tract. Gastroenterology 128(5):1445–1461PubMedCrossRefGoogle Scholar
  8. 8.
    Jakobsson PJ, Thoren S, Morgenstern R, Samuelsson B (1999) Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc Natl Acad Sci U S A 96(13):7220–7225PubMedCrossRefGoogle Scholar
  9. 9.
    Murakami M, Naraba H, Tanioka T, Semmyo N, Nakatani Y et al (2000) Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. J Biol Chem 275(42):32783–32792PubMedCrossRefGoogle Scholar
  10. 10.
    Tai HH, Cho H, Tong M, Ding Y (2006) NAD+-linked 15-hydroxyprostaglandin dehydrogenase: structure and biological functions. Curr Pharm Des 12(8):955–962PubMedCrossRefGoogle Scholar
  11. 11.
    Yan M, Rerko RM, Platzer P, Dawson D, Willis J et al (2004) 15-Hydroxyprostaglandin dehydrogenase, a COX-2 oncogene antagonist, is a TGF-beta-induced suppressor of human gastrointestinal cancers. Proc Natl Acad Sci U S A 101(50):17468–17473PubMedCrossRefGoogle Scholar
  12. 12.
    Backlund MG, Mann JR, Holla VR, Buchanan FG, Tai HH et al (2005) 15-Hydroxyprostaglandin dehydrogenase is down-regulated in colorectal cancer. J Biol Chem 280(5):3217–3223PubMedCrossRefGoogle Scholar
  13. 13.
    Ding Y, Tong M, Liu S, Moscow JA, Tai HH (2005) NAD+-linked 15-hydroxyprostaglandin dehydrogenase (15-PGDH) behaves as a tumor suppressor in lung cancer. Carcinogenesis 26(1):65–72PubMedCrossRefGoogle Scholar
  14. 14.
    Yan M, Myung SJ, Fink SP, Lawrence E, Lutterbaugh J et al (2009) 15-Hydroxyprostaglandin dehydrogenase inactivation as a mechanism of resistance to celecoxib chemoprevention of colon tumors. Proc Natl Acad Sci U S A 106(23):9409–9413PubMedCrossRefGoogle Scholar
  15. 15.
    Myung SJ, Rerko RM, Yan M, Platzer P, Guda K et al (2006) 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proc Natl Acad Sci U S A 103(32):12098–12102PubMedCrossRefGoogle Scholar
  16. 16.
    Backlund MG, Mann JR, Holla VR, Shi Q, Daikoku T et al (2008) Repression of 15-hydroxyprostaglandin dehydrogenase involves histone deacetylase 2 and snail in colorectal cancer. Cancer Res 68(22):9331–9337PubMedCrossRefGoogle Scholar
  17. 17.
    Coleman RA, Smith WL, Narumiya S (1994) International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 46(2):205–229PubMedGoogle Scholar
  18. 18.
    Sugimoto Y, Narumiya S (2007) Prostaglandin E receptors. J Biol Chem 282(16):11613–11617PubMedCrossRefGoogle Scholar
  19. 19.
    Breyer RM, Bagdassarian CK, Myers SA, Breyer MD (2001) Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol 41:661–690PubMedCrossRefGoogle Scholar
  20. 20.
    Samuelsson B, Morgenstern R, Jakobsson PJ (2007) Membrane prostaglandin E synthase-1: a novel therapeutic target. Pharmacol Rev 59(3):207–224PubMedCrossRefGoogle Scholar
  21. 21.
    Kalinski P (2012) Regulation of immune responses by prostaglandin e2. J Immunol 188(1):21–28PubMedCrossRefGoogle Scholar
  22. 22.
    Sakata D, Yao C, Narumiya S (2010) Prostaglandin E2, an immunoactivator. J Pharmacol Sci 112(1):1–5PubMedCrossRefGoogle Scholar
  23. 23.
    Wallace JL (2001) Prostaglandin biology in inflammatory bowel disease. Gastroenterol Clin N Am 30(4):971–980CrossRefGoogle Scholar
  24. 24.
    Uematsu S, Matsumoto M, Takeda K, Akira S (2002) Lipopolysaccharide-dependent prostaglandin E(2) production is regulated by the glutathione-dependent prostaglandin E(2) synthase gene induced by the Toll-like receptor 4/MyD88/NF-IL6 pathway. J Immunol 168(11):5811–5816PubMedGoogle Scholar
  25. 25.
    Hara S, Kamei D, Sasaki Y, Tanemoto A, Nakatani Y et al (2010) Prostaglandin E synthases: understanding their pathophysiological roles through mouse genetic models. Biochimie 92(6):651–659PubMedCrossRefGoogle Scholar
  26. 26.
    Kojima F, Kapoor M, Yang L, Fleishaker EL, Ward MR et al (2008) Defective generation of a humoral immune response is associated with a reduced incidence and severity of collagen-induced arthritis in microsomal prostaglandin E synthase-1 null mice. J Immunol 180(12):8361–8368PubMedGoogle Scholar
  27. 27.
    Wang M, Song WL, Cheng Y, Fitzgerald GA (2008) Microsomal prostaglandin E synthase-1 inhibition in cardiovascular inflammatory disease. J Intern Med 263(5):500–505PubMedCrossRefGoogle Scholar
  28. 28.
    Iwakura Y, Ishigame H, Saijo S, Nakae S (2011) Functional specialization of interleukin-17 family members. Immunity 34(2):149–162PubMedCrossRefGoogle Scholar
  29. 29.
    Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM et al (2007) Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8(9):950–957PubMedCrossRefGoogle Scholar
  30. 30.
    Boniface K, Bak-Jensen KS, Li Y, Blumenschein WM, McGeachy MJ et al (2009) Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. J Exp Med 206(3):535–548PubMedCrossRefGoogle Scholar
  31. 31.
    Sheibanie AF, Khayrullina T, Safadi FF, Ganea D (2007) Prostaglandin E2 exacerbates collagen-induced arthritis in mice through the inflammatory interleukin-23/interleukin-17 axis. Arthritis Rheum 56(8):2608–2619PubMedCrossRefGoogle Scholar
  32. 32.
    Sheibanie AF, Yen JH, Khayrullina T, Emig F, Zhang M et al (2007) The proinflammatory effect of prostaglandin E2 in experimental inflammatory bowel disease is mediated through the IL-23– > IL-17 axis. J Immunol 178(12):8138–8147PubMedGoogle Scholar
  33. 33.
    Fukunaga K, Kohli P, Bonnans C, Fredenburgh LE, Levy BD (2005) Cyclooxygenase 2 plays a pivotal role in the resolution of acute lung injury. J Immunol 174(8):5033–5039PubMedGoogle Scholar
  34. 34.
    Gilroy DW, Colville-Nash PR, Willis D, Chivers J, Paul-Clark MJ et al (1999) Inducible cyclooxygenase may have anti-inflammatory properties. Nat Med 5(6):698–701PubMedCrossRefGoogle Scholar
  35. 35.
    Wallace JL (2006) COX-2: a pivotal enzyme in mucosal protection and resolution of inflammation. Sci World J 6:577–588CrossRefGoogle Scholar
  36. 36.
    Yin H, Cheng L, Langenbach R, Ju C (2007) Prostaglandin I(2) and E(2) mediate the protective effects of cyclooxygenase-2 in a mouse model of immune-mediated liver injury. Hepatology 45(1):159–169PubMedCrossRefGoogle Scholar
  37. 37.
    Scher JU, Pillinger MH (2009) The anti-inflammatory effects of prostaglandins. J Investig Med 57(6):703–708PubMedGoogle Scholar
  38. 38.
    Joshi PC, Zhou X, Cuchens M, Jones Q (2001) Prostaglandin E2 suppressed IL-15-mediated human NK cell function through down-regulation of common gamma-chain. J Immunol 166(2):885–891PubMedGoogle Scholar
  39. 39.
    Linnemeyer PA, Pollack SB (1993) Prostaglandin E2-induced changes in the phenotype, morphology, and lytic activity of IL-2-activated natural killer cells. J Immunol 150(9):3747–3754PubMedGoogle Scholar
  40. 40.
    Martinet L, Jean C, Dietrich G, Fournie JJ, Poupot R (2010) PGE2 inhibits natural killer and gamma delta T cell cytotoxicity triggered by NKR and TCR through a cAMP-mediated PKA type I-dependent signaling. Biochem Pharmacol 80(6):838–845PubMedCrossRefGoogle Scholar
  41. 41.
    Yakar I, Melamed R, Shakhar G, Shakhar K, Rosenne E et al (2003) Prostaglandin e(2) suppresses NK activity in vivo and promotes postoperative tumor metastasis in rats. Ann Surg Oncol 10(4):469–479PubMedCrossRefGoogle Scholar
  42. 42.
    Muthuswamy R, Mueller-Berghaus J, Haberkorn U, Reinhart TA, Schadendorf D et al (2010) PGE(2) transiently enhances DC expression of CCR7 but inhibits the ability of DCs to produce CCL19 and attract naive T cells. Blood 116(9):1454–1459PubMedCrossRefGoogle Scholar
  43. 43.
    Betz M, Fox BS (1991) Prostaglandin E2 inhibits production of Th1 lymphokines but not of Th2 lymphokines. J Immunol 146(1):108–113PubMedGoogle Scholar
  44. 44.
    Snijdewint FG, Kalinski P, Wierenga EA, Bos JD, Kapsenberg ML (1993) Prostaglandin E2 differentially modulates cytokine secretion profiles of human T helper lymphocytes. J Immunol 150(12):5321–5329PubMedGoogle Scholar
  45. 45.
    Allen JE, Wynn TA (2011) Evolution of Th2 immunity: a rapid repair response to tissue destructive pathogens. PLoS Pathog 7(5):e1002003PubMedCrossRefGoogle Scholar
  46. 46.
    Ae T, Ohno T, Hattori Y, Suzuki T, Hosono K et al (2010) Role of microsomal prostaglandin E synthase-1 in the facilitation of angiogenesis and the healing of gastric ulcers. Am J Physiol Gastrointest Liver Physiol 299(5):G1139–G1146PubMedCrossRefGoogle Scholar
  47. 47.
    Kabashima K, Saji T, Murata T, Nagamachi M, Matsuoka T et al (2002) The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut. J Clin Invest 109(7):883–893PubMedGoogle Scholar
  48. 48.
    Nakanishi M, Menoret A, Tanaka T, Miyamoto S, Montrose DC et al (2011) Selective PGE(2) suppression inhibits colon carcinogenesis and modifies local mucosal immunity. Cancer Prev Res (Phila) 4(8):1198–1208CrossRefGoogle Scholar
  49. 49.
    Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321PubMedCrossRefGoogle Scholar
  50. 50.
    Montrose DC, Kadaveru K, Ilsley JN, Root SH, Rajan TV et al (2010) cPLA2 is protective against COX inhibitor-induced intestinal damage. Toxicol Sci 117(1):122–132PubMedCrossRefGoogle Scholar
  51. 51.
    Iizuka M, Konno S (2011) Wound healing of intestinal epithelial cells. World J Gastroenterol: WJG 17(17):2161–2171PubMedCrossRefGoogle Scholar
  52. 52.
    Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS (2005) Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science 310(5753):1504–1510PubMedCrossRefGoogle Scholar
  53. 53.
    Buchanan FG, Wang D, Bargiacchi F, DuBois RN (2003) Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. J Biol Chem 278(37):35451–35457PubMedCrossRefGoogle Scholar
  54. 54.
    Nakanishi M, Sato T, Li Y, Nelson AJ, Farid M et al (2012) Prostaglandin E2 stimulates the production of vascular endothelial growth factor through the E-prostanoid-2 receptor in cultured human lung fibroblasts. Am J Respir Cell Mol Biol 46(2):217–223PubMedCrossRefGoogle Scholar
  55. 55.
    Guo X, Oshima H, Kitmura T, Taketo MM, Oshima M (2008) Stromal fibroblasts activated by tumor cells promote angiogenesis in mouse gastric cancer. J Biol Chem 283(28):19864–19871PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang Y, Daaka Y (2011) PGE2 promotes angiogenesis through EP4 and PKA Cgamma pathway. Blood 118(19):5355–5364PubMedCrossRefGoogle Scholar
  57. 57.
    Zhu Z, Fu C, Li X, Song Y, Li C et al (2011) Prostaglandin E2 promotes endothelial differentiation from bone marrow-derived cells through AMPK activation. PLoS One 6(8):e23554PubMedCrossRefGoogle Scholar
  58. 58.
    Rao R, Redha R, Macias-Perez I, Su Y, Hao C et al (2007) Prostaglandin E2-EP4 receptor promotes endothelial cell migration via ERK activation and angiogenesis in vivo. J Biol Chem 282(23):16959–16968PubMedCrossRefGoogle Scholar
  59. 59.
    Sipos F, Valcz G, Molnar B (2012) Physiological and pathological role of local and immigrating colonic stem cells. World J Gastroenterol: WJG 18(4):295–301PubMedCrossRefGoogle Scholar
  60. 60.
    Kolodsick JE, Peters-Golden M, Larios J, Toews GB, Thannickal VJ et al (2003) Prostaglandin E2 inhibits fibroblast to myofibroblast transition via E. prostanoid receptor 2 signaling and cyclic adenosine monophosphate elevation. Am J Respir Cell Mol Biol 29(5):537–544PubMedCrossRefGoogle Scholar
  61. 61.
    Walker NM, Badri LN, Wadhwa A, Wettlaufer S, Peters-Golden M et al (2012) Prostaglandin E2 as an inhibitory modulator of fibrogenesis in human lung allografts. Am J Respir Crit Care Med 185(1):77–84PubMedCrossRefGoogle Scholar
  62. 62.
    McCann MR, Monemdjou R, Ghassemi-Kakroodi P, Fahmi H, Perez G et al (2011) mPGES-1 null mice are resistant to bleomycin-induced skin fibrosis. Arthritis Res Ther 13(1):R6PubMedCrossRefGoogle Scholar
  63. 63.
    Iwanaga K, Okada M, Murata T, Hori M, Ozaki H (2012) Prostaglandin E2 promotes wound-induced migration of intestinal subepithelial myofibroblasts via EP2, EP3, and EP4 prostanoid receptor activation. J Pharmacol Exp Ther 340(3):604–611PubMedCrossRefGoogle Scholar
  64. 64.
    Harding P, LaPointe MC (2011) Prostaglandin E2 increases cardiac fibroblast proliferation and increases cyclin D expression via EP1 receptor. Prostaglandins Leukot Essent Fat Acids 84(5–6):147–152CrossRefGoogle Scholar
  65. 65.
    Ayabe S, Murata T, Maruyama T, Hori M, Ozaki H (2009) Prostaglandin E2 induces contraction of liver myofibroblasts by activating EP3 and FP prostanoid receptors. Br J Pharmacol 156(5):835–845PubMedCrossRefGoogle Scholar
  66. 66.
    Fischer SM, Hawk ET, Lubet RA (2011) Coxibs and other nonsteroidal anti-inflammatory drugs in animal models of cancer chemoprevention. Cancer Prev Res 4(11):1728–1735CrossRefGoogle Scholar
  67. 67.
    Waddell WR, Ganser GF, Cerise EJ, Loughry RW (1989) Sulindac for polyposis of the colon. Am J Surg 157(1):175–179PubMedCrossRefGoogle Scholar
  68. 68.
    Waddell WR, Loughry RW (1983) Sulindac for polyposis of the colon. J Surg Oncol 24(1):83–87PubMedCrossRefGoogle Scholar
  69. 69.
    Rosenberg L, Palmer JR, Zauber AG, Warshauer ME, Stolley PD et al (1991) A hypothesis: nonsteroidal anti-inflammatory drugs reduce the incidence of large-bowel cancer. J Natl Cancer Inst 83(5):355–358PubMedCrossRefGoogle Scholar
  70. 70.
    Thun MJ, Namboodiri MM, Heath CW Jr (1991) Aspirin use and reduced risk of fatal colon cancer. N Engl J Med 325(23):1593–1596PubMedCrossRefGoogle Scholar
  71. 71.
    Kawamori T, Uchiya N, Sugimura T, Wakabayashi K (2003) Enhancement of colon carcinogenesis by prostaglandin E2 administration. Carcinogenesis 24(5):985–990PubMedCrossRefGoogle Scholar
  72. 72.
    Wang D, Buchanan FG, Wang H, Dey SK, DuBois RN (2005) Prostaglandin E2 enhances intestinal adenoma growth via activation of the Ras-mitogen-activated protein kinase cascade. Cancer Res 65(5):1822–1829PubMedCrossRefGoogle Scholar
  73. 73.
    Wilson JW, Potten CS (2000) The effect of exogenous prostaglandin administration on tumor size and yield in Min/+ mice. Cancer Res 60(16):4645–4653PubMedGoogle Scholar
  74. 74.
    Nakanishi M, Montrose DC, Clark P, Nambiar PR, Belinsky GS et al (2008) Genetic deletion of mPGES-1 suppresses intestinal tumorigenesis. Cancer Res 68(9):3251–3259PubMedCrossRefGoogle Scholar
  75. 75.
    Cianchi F, Cortesini C, Bechi P, Fantappie O, Messerini L et al (2001) Up-regulation of cyclooxygenase 2 gene expression correlates with tumor angiogenesis in human colorectal cancer. Gastroenterology 121(6):1339–1347PubMedCrossRefGoogle Scholar
  76. 76.
    Guda K, Upender MB, Belinsky G, Flynn C, Nakanishi M et al (2004) Carcinogen-induced colon tumors in mice are chromosomally stable and are characterized by low-level microsatellite instability. Oncogene 23(21):3813–3821PubMedCrossRefGoogle Scholar
  77. 77.
    Nambiar PR, Nakanishi M, Gupta R, Cheung E, Firouzi A et al (2004) Genetic signatures of high- and low-risk aberrant crypt foci in a mouse model of sporadic colon cancer. Cancer Res 64(18):6394–6401PubMedCrossRefGoogle Scholar
  78. 78.
    Papanikolaou A, Wang QS, Papanikolaou D, Whiteley HE, Rosenberg DW (2000) Sequential and morphological analyses of aberrant crypt foci formation in mice of differing susceptibility to azoxymethane-induced colon carcinogenesis. Carcinogenesis 21(8):1567–1572PubMedCrossRefGoogle Scholar
  79. 79.
    Chen EP, Smyth EM (2011) COX-2 and PGE2-dependent immunomodulation in breast cancer. Prostaglandins Other Lipid Mediat 96(1–4):14–20PubMedCrossRefGoogle Scholar
  80. 80.
    Markosyan N, Chen EP, Ndong VN, Yao Y, Sterner CJ et al (2011) Deletion of cyclooxygenase 2 in mouse mammary epithelial cells delays breast cancer onset through augmentation of type 1 immune responses in tumors. Carcinogenesis 32(10):1441–1449PubMedCrossRefGoogle Scholar
  81. 81.
    Oshima H, Oshima M, Inaba K, Taketo MM (2004) Hyperplastic gastric tumors induced by activated macrophages in COX-2/mPGES-1 transgenic mice. EMBO J 23(7):1669–1678PubMedCrossRefGoogle Scholar
  82. 82.
    Itadani H, Oshima H, Oshima M, Kotani H (2009) Mouse gastric tumor models with prostaglandin E2 pathway activation show similar gene expression profiles to intestinal-type human gastric cancer. BMC Genomics 10:615PubMedCrossRefGoogle Scholar
  83. 83.
    Oshima H, Matsunaga A, Fujimura T, Tsukamoto T, Taketo MM et al (2006) Carcinogenesis in mouse stomach by simultaneous activation of the Wnt signaling and prostaglandin E2 pathway. Gastroenterology 131(4):1086–1095PubMedCrossRefGoogle Scholar
  84. 84.
    Oshima H, Oguma K, Du YC, Oshima M (2009) Prostaglandin E2, Wnt, and BMP in gastric tumor mouse models. Cancer Sci 100(10):1779–1785PubMedCrossRefGoogle Scholar
  85. 85.
    Mutoh M, Watanabe K, Kitamura T, Shoji Y, Takahashi M et al (2002) Involvement of prostaglandin E receptor subtype EP(4) in colon carcinogenesis. Cancer Res 62(1):28–32PubMedGoogle Scholar
  86. 86.
    Chell SD, Witherden IR, Dobson RR, Moorghen M, Herman AA et al (2006) Increased EP4 receptor expression in colorectal cancer progression promotes cell growth and anchorage independence. Cancer Res 66(6):3106–3113PubMedCrossRefGoogle Scholar
  87. 87.
    Doherty GA, Byrne SM, Molloy ES, Malhotra V, Austin SC et al (2009) Proneoplastic effects of PGE2 mediated by EP4 receptor in colorectal cancer. BMC Cancer 9:207PubMedCrossRefGoogle Scholar
  88. 88.
    Chandramouli A, Onyeagucha BC, Mercado-Pimentel ME, Stankova L, Shahin NA et al (2012) MicroRNA-101 (miR-101) post-transcriptionally regulates the expression of EP4 receptor in colon cancers. Cancer Biol Ther 13(3):175–183PubMedCrossRefGoogle Scholar
  89. 89.
    Watanabe K, Kawamori T, Nakatsugi S, Ohta T, Ohuchida S et al (1999) Role of the prostaglandin E receptor subtype EP1 in colon carcinogenesis. Cancer Res 59(20):5093–5096PubMedGoogle Scholar
  90. 90.
    Shoji Y, Takahashi M, Kitamura T, Watanabe K, Kawamori T et al (2004) Downregulation of prostaglandin E receptor subtype EP3 during colon cancer development. Gut 53(8):1151–1158PubMedCrossRefGoogle Scholar
  91. 91.
    Xia D, Wang D, Kim SH, Katoh H, DuBois RN (2012) Prostaglandin E2 promotes intestinal tumor growth via DNA methylation. Nat Med 18(2):224–226PubMedCrossRefGoogle Scholar
  92. 92.
    Sonoshita M, Takaku K, Sasaki N, Sugimoto Y, Ushikubi F et al (2001) Acceleration of intestinal polyposis through prostaglandin receptor EP2 in Apc(Delta 716) knockout mice. Nat Med 7(9):1048–1051PubMedCrossRefGoogle Scholar
  93. 93.
    Jimenez P, Piazuelo E, Cebrian C, Ortego J, Strunk M et al (2010) Prostaglandin EP2 receptor expression is increased in Barrett's oesophagus and oesophageal adenocarcinoma. Aliment Pharmacol Ther 31(3):440–451PubMedCrossRefGoogle Scholar
  94. 94.
    Jin J, Chang Y, Wei W, He YF, Hu SS et al (2012) Prostanoid EP1 receptor as the target of (−)-epigallocatechin-3-gallate in suppressing hepatocellular carcinoma cells in vitro. Acta Pharmacol Sin 33(5):701–709PubMedCrossRefGoogle Scholar
  95. 95.
    Amano H, Ito Y, Suzuki T, Kato S, Matsui Y et al (2009) Roles of a prostaglandin E-type receptor, EP3, in upregulation of matrix metalloproteinase-9 and vascular endothelial growth factor during enhancement of tumor metastasis. Cancer Sci 100(12):2318–2324PubMedCrossRefGoogle Scholar
  96. 96.
    Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401PubMedCrossRefGoogle Scholar
  97. 97.
    Holt DM, Ma X, Kundu N, Collin PD, Fulton AM (2012) Modulation of host natural killer cell functions in breast cancer via prostaglandin E2 receptors EP2 and EP4. J Immunother 35(2):179–188PubMedCrossRefGoogle Scholar
  98. 98.
    Liu L, Ge D, Ma L, Mei J, Liu S et al (2012) Interleukin-17 and prostaglandin E2 are involved in formation of an M2 macrophage-dominant microenvironment in lung cancer. J Thorac Oncol 7(7):1091–1100PubMedCrossRefGoogle Scholar
  99. 99.
    Betts GJ, Clarke SL, Richards HE, Godkin AJ, Gallimore AM (2006) Regulating the immune response to tumours. Adv Drug Deliv Rev 58(8):948–961PubMedCrossRefGoogle Scholar
  100. 100.
    Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182(8):4499–4506PubMedCrossRefGoogle Scholar
  101. 101.
    Izcue A, Coombes JL, Powrie F (2009) Regulatory lymphocytes and intestinal inflammation. Annu Rev Immunol 27:313–338PubMedCrossRefGoogle Scholar
  102. 102.
    Fehervari Z, Sakaguchi S (2004) CD4+ Tregs and immune control. J Clin Investig 114(9):1209–1217PubMedGoogle Scholar
  103. 103.
    Baratelli F, Lin Y, Zhu L, Yang SC, Heuze-Vourc'h N et al (2005) Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. J Immunol 175(3):1483–1490PubMedGoogle Scholar
  104. 104.
    Sharma S, Yang SC, Zhu L, Reckamp K, Gardner B et al (2005) Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res 65(12):5211–5220PubMedCrossRefGoogle Scholar
  105. 105.
    Yuan XL, Chen L, Li MX, Dong P, Xue J et al (2010) Elevated expression of Foxp3 in tumor-infiltrating Treg cells suppresses T-cell proliferation and contributes to gastric cancer progression in a COX-2-dependent manner. Clin Immunol 134(3):277–288PubMedCrossRefGoogle Scholar
  106. 106.
    Yokokawa J, Cereda V, Remondo C, Gulley JL, Arlen PM et al (2008) Enhanced functionality of CD4 + CD25(high)FoxP3+ regulatory T cells in the peripheral blood of patients with prostate cancer. Clin Cancer Res Off J Am Assoc Cancer Res 14(4):1032–1040CrossRefGoogle Scholar
  107. 107.
    Lee SY, Choi HK, Lee KJ, Jung JY, Hur GY et al (2009) The immune tolerance of cancer is mediated by IDO that is inhibited by COX-2 inhibitors through regulatory T cells. J Immunother 32(1):22–28PubMedCrossRefGoogle Scholar
  108. 108.
    Mandapathil M, Szczepanski MJ, Szajnik M, Ren J, Jackson EK et al (2010) Adenosine and prostaglandin E2 cooperate in the suppression of immune responses mediated by adaptive regulatory T cells. J Biol Chem 285(36):27571–27580PubMedCrossRefGoogle Scholar
  109. 109.
    Soontrapa K, Honda T, Sakata D, Yao C, Hirata T et al (2011) Prostaglandin E2-prostaglandin E receptor subtype 4 (EP4) signaling mediates UV irradiation-induced systemic immunosuppression. Proc Natl Acad Sci U S A 108(16):6668–6673PubMedCrossRefGoogle Scholar
  110. 110.
    Pinchuk IV, Beswick EJ, Saada JI, Boya G, Schmitt D et al (2011) Human colonic myofibroblasts promote expansion of CD4+ CD25high Foxp3+ regulatory T cells. Gastroenterology 140(7):2019–2030PubMedCrossRefGoogle Scholar
  111. 111.
    Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174PubMedCrossRefGoogle Scholar
  112. 112.
    Lu T, Gabrilovich DI. (2012) Molecular Pathways : Tumor Infiltrating Myeloid Cells and Reactive Oxygen Species in Regulation of Tumor Microenvironment. Clin Cancer Res Off J Am Assoc Cancer Res 18(18):1–6Google Scholar
  113. 113.
    Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268PubMedCrossRefGoogle Scholar
  114. 114.
    Obermajer N, Muthuswamy R, Lesnock J, Edwards RP, Kalinski P (2011) Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood 118(20):5498–5505PubMedCrossRefGoogle Scholar
  115. 115.
    Obermajer N, Muthuswamy R, Odunsi K, Edwards RP, Kalinski P (2011) PGE(2)-induced CXCL12 production and CXCR4 expression controls the accumulation of human MDSCs in ovarian cancer environment. Cancer Res 71(24):7463–7470PubMedCrossRefGoogle Scholar
  116. 116.
    Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67(9):4507–4513PubMedCrossRefGoogle Scholar
  117. 117.
    Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J et al (2009) Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res 69(4):1553–1560PubMedCrossRefGoogle Scholar
  118. 118.
    Li Y, Yin S, Nie D, Xie S, Ma L et al (2011) MK886 inhibits the proliferation of HL-60 leukemia cells by suppressing the expression of mPGES-1 and reducing prostaglandin E2 synthesis. Int J Hematol 94(5):472–478PubMedCrossRefGoogle Scholar
  119. 119.
    Deckmann K, Rorsch F, Geisslinger G, Grosch S (2012) Dimethylcelecoxib induces an inhibitory complex consisting of HDAC1/NF-kappaB(p65)RelA leading to transcriptional downregulation of mPGES-1 and EGR1. Cell Signal 24(2):460–467PubMedCrossRefGoogle Scholar
  120. 120.
    Deckmann K, Rorsch F, Steri R, Schubert-Zsilavecz M, Geisslinger G et al (2010) Dimethylcelecoxib inhibits mPGES-1 promoter activity by influencing EGR1 and NF-kappaB. Biochem Pharmacol 80(9):1365–1372PubMedCrossRefGoogle Scholar
  121. 121.
    Koeberle A, Siemoneit U, Buhring U, Northoff H, Laufer S et al (2008) Licofelone suppresses prostaglandin E2 formation by interference with the inducible microsomal prostaglandin E2 synthase-1. J Pharmacol Exp Ther 326(3):975–982PubMedCrossRefGoogle Scholar
  122. 122.
    Cote B, Boulet L, Brideau C, Claveau D, Ethier D et al (2007) Substituted phenanthrene imidazoles as potent, selective, and orally active mPGES-1 inhibitors. Bioorg Med Chem Lett 17(24):6816–6820PubMedCrossRefGoogle Scholar
  123. 123.
    Giroux A, Boulet L, Brideau C, Chau A, Claveau D et al (2009) Discovery of disubstituted phenanthrene imidazoles as potent, selective and orally active mPGES-1 inhibitors. Bioorg Med Chem Lett 19(20):5837–5841PubMedCrossRefGoogle Scholar
  124. 124.
    Chini MG, De Simone R, Bruno I, Riccio R, Dehm F et al (2012) Design and synthesis of a second series of triazole-based compounds as potent dual mPGES-1 and 5-lipoxygenase inhibitors. Eur J Med Chem 54:311–323PubMedCrossRefGoogle Scholar
  125. 125.
    Beales IL, Ogunwobi OO (2010) Microsomal prostaglandin E synthase-1 inhibition blocks proliferation and enhances apoptosis in oesophageal adenocarcinoma cells without affecting endothelial prostacyclin production. Int J Cancer J Int Cancer 126(9):2247–2255Google Scholar
  126. 126.
    Chang HH, Meuillet EJ (2011) Identification and development of mPGES-1 inhibitors: where we are at? Future Med Chem 3(15):1909–1934PubMedCrossRefGoogle Scholar
  127. 127.
    Moon Y, Glasgow WC, Eling TE (2005) Curcumin suppresses interleukin 1beta-mediated microsomal prostaglandin E synthase 1 by altering early growth response gene 1 and other signaling pathways. J Pharmacol Exp Ther 315(2):788–795PubMedCrossRefGoogle Scholar
  128. 128.
    Koeberle A, Northoff H, Werz O (2009) Curcumin blocks prostaglandin E2 biosynthesis through direct inhibition of the microsomal prostaglandin E2 synthase-1. Mol Cancer Ther 8(8):2348–2355PubMedCrossRefGoogle Scholar
  129. 129.
    Koeberle A, Bauer J, Verhoff M, Hoffmann M, Northoff H et al (2009) Green tea epigallocatechin-3-gallate inhibits microsomal prostaglandin E(2) synthase-1. Biochem Biophys Res Commun 388(2):350–354PubMedCrossRefGoogle Scholar
  130. 130.
    Koeberle A, Pollastro F, Northoff H, Werz O (2009) Myrtucommulone, a natural acylphloroglucinol, inhibits microsomal prostaglandin E(2) synthase-1. Br J Pharmacol 156(6):952–961PubMedCrossRefGoogle Scholar
  131. 131.
    Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545PubMedCrossRefGoogle Scholar
  132. 132.
    Aggarwal BB, Gehlot P (2009) Inflammation and cancer: how friendly is the relationship for cancer patients? Curr Opin Pharmacol 9(4):351–369PubMedCrossRefGoogle Scholar
  133. 133.
    Waldner MJ, Neurath MF (2009) Colitis-associated cancer: the role of T cells in tumor development. Semin Immunopathol 31(2):249–256PubMedCrossRefGoogle Scholar
  134. 134.
    Lewis JD, Deren JJ, Lichtenstein GR (1999) Cancer risk in patients with inflammatory bowel disease. Gastroenterol Clin N Am 28(2):459–477, xCrossRefGoogle Scholar
  135. 135.
    Herrinton LJ, Liu L, Levin TR, Allison JE, Lewis JD et al (2012) Incidence and mortality of colorectal adenocarcinoma in persons with inflammatory bowel disease from 1998 to 2010. Gastroenterology 143(2):382–389PubMedCrossRefGoogle Scholar
  136. 136.
    Ullman TA, Itzkowitz SH (2011) Intestinal inflammation and cancer. Gastroenterology 140(6):1807–1816PubMedCrossRefGoogle Scholar
  137. 137.
    Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315(26):1650–1659PubMedCrossRefGoogle Scholar
  138. 138.
    Schafer M, Werner S (2008) Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol 9(8):628–638PubMedCrossRefGoogle Scholar
  139. 139.
    Hong KH, Bonventre JC, O'Leary E, Bonventre JV, Lander ES (2001) Deletion of cytosolic phospholipase A(2) suppresses Apc(Min)-induced tumorigenesis. Proc Natl Acad Sci U S A 98(7):3935–3939PubMedCrossRefGoogle Scholar
  140. 140.
    Chulada PC, Thompson MB, Mahler JF, Doyle CM, Gaul BW et al (2000) Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice. Cancer Res 60(17):4705–4708PubMedGoogle Scholar
  141. 141.
    Ishikawa TO, Herschman HR (2010) Tumor formation in a mouse model of colitis-associated colon cancer does not require COX-1 or COX-2 expression. Carcinogenesis 31(4):729–736PubMedCrossRefGoogle Scholar
  142. 142.
    Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B et al (1996) Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87(5):803–809PubMedCrossRefGoogle Scholar
  143. 143.
    Elander N, Ungerback J, Olsson H, Uematsu S, Akira S et al (2008) Genetic deletion of mPGES-1 accelerates intestinal tumorigenesis in APC(Min/+) mice. Biochem Biophys Res Commun 372(1):249–253PubMedCrossRefGoogle Scholar
  144. 144.
    Sasaki Y, Kamei D, Ishikawa Y, Ishii T, Uematsu S et al (2012) Microsomal prostaglandin E synthase-1 is involved in multiple steps of colon carcinogenesis. Oncogene 31(24):2943–2952PubMedCrossRefGoogle Scholar
  145. 145.
    Okuyama T, Ishihara S, Sato H, Rumi MA, Kawashima K et al (2002) Activation of prostaglandin E2-receptor EP2 and EP4 pathways induces growth inhibition in human gastric carcinoma cell lines. J Lab Clin Med 140(2):92–102PubMedGoogle Scholar
  146. 146.
    Liu CH, Chang SH, Narko K, Trifan OC, Wu MT et al (2001) Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J Biol Chem 276(21):18563–18569PubMedCrossRefGoogle Scholar
  147. 147.
    Howe LR, Chang SH, Tolle KC, Dillon R, Young LJ et al (2005) HER2/neu-induced mammary tumorigenesis and angiogenesis are reduced in cyclooxygenase-2 knockout mice. Cancer Res 65(21):10113–10119PubMedCrossRefGoogle Scholar
  148. 148.
    Sung YM, He G, Fischer SM (2005) Lack of expression of the EP2 but not EP3 receptor for prostaglandin E2 results in suppression of skin tumor development. Cancer Res 65(20):9304–9311PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Center for Molecular MedicineUniversity of Connecticut Health CenterFarmingtonUSA

Personalised recommendations