Seminars in Immunopathology

, Volume 35, Issue 2, pp 203–227 | Cite as

Involvement of inflammatory factors in pancreatic carcinogenesis and preventive effects of anti-inflammatory agents

  • Mami TakahashiEmail author
  • Michihiro Mutoh
  • Rikako Ishigamori
  • Gen Fujii
  • Toshio Imai


Chronic inflammation is known to be a risk for many cancers, including pancreatic cancer. Heavy alcohol drinking and cigarette smoking are major causes of pancreatitis, and epidemiological studies have shown that smoking and chronic pancreatitis are risk factors for pancreatic cancer. Meanwhile, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) are elevated in pancreatitis and pancreatic cancer tissues in humans and in animal models. Selective inhibitors of iNOS and COX-2 suppress pancreatic cancer development in a chemical carcinogenesis model of hamsters treated with N-nitrosobis(2-oxopropyl)amine (BOP). In addition, hyperlipidemia, obesity, and type II diabetes are also suggested to be associated with chronic inflammation in the pancreas and involved in pancreatic cancer development. We have shown that a high-fat diet increased pancreatic cancer development in BOP-treated hamsters, along with aggravation of hyperlipidemia, severe fatty infiltration, and increased expression of adipokines and inflammatory factors in the pancreas. Of note, fatty pancreas has been observed in obese and/or diabetic cases in humans. Preventive effects of anti-hyperlipidemic/anti-diabetic agents on pancreatic cancer have also been shown in humans and animals. Taking this evidence into consideration, modulation of inflammatory factors by anti-inflammatory agents will provide useful data for prevention of pancreatic cancer.


Pancreatic cancer Pancreatitis Hyperlipidemia Anti-inflammatory agents Prevention 


  1. 1.
    Matsuda T, Marugame T, Kamo K, Katanoda K, Ajiki W, Sobue T (2012) Cancer incidence and incidence rates in Japan in 2006: based on data from 15 population-based cancer registries in the Monitoring of Cancer Incidence in Japan (MCIJ) project. Jpn J Clin Oncol 42:139–147PubMedCrossRefGoogle Scholar
  2. 2.
    Matsuno S, Egawa S, Shibuya K, Shimamura H, Sunamura M, Takeda K, Katoh H, Okada S, Suda K, Nakao A, Isaji S, Hiraoka T, Hosotani R, Imaizumi T (2000) Pancreatic cancer: current status of treatment and survival of 16 071 patients diagnosed from 1981–1996, using the Japanese National Pancreatic Cancer Database. Int J Clin Oncol 5:153–157CrossRefGoogle Scholar
  3. 3.
    Statistics Bureau, Ministry of Internal Affairs and Communications (2011) Statistical handbook of Japan 2011. Chapter 2, PopulationGoogle Scholar
  4. 4.
    Lowenfels AB, Maisonneuve P (2004) Epidemiology and prevention of pancreatic cancer. Jpn J Clin Oncol 34:238–244PubMedCrossRefGoogle Scholar
  5. 5.
    Everhart J, Wright D (1995) Diabetes mellitus as a risk factor for pancreatic cancer. A meta-analysis. JAMA 273:1605–1609PubMedCrossRefGoogle Scholar
  6. 6.
    Fuchs CS, Colditz GA, Stampfer MJ, Giovannucci EL, Hunter DJ, Rimm EB, Willett WC, Speizer FE (1996) A prospective study of cigarette smoking and the risk of pancreatic cancer. Arch Intern Med 156:2255–2260PubMedCrossRefGoogle Scholar
  7. 7.
    Michaud DS (2004) Epidemiology of pancreatic cancer. Minerva Chir 59:99–111PubMedGoogle Scholar
  8. 8.
    Patel AV, Rodriguez C, Bernstein L, Chao A, Thun MJ, Calle EE (2005) Obesity, recreational physical activity, and risk of pancreatic cancer in a large U.S. cohort. Cancer Epidemiol Biomarkers Prev 14:459–466PubMedCrossRefGoogle Scholar
  9. 9.
    Huxley R, Ansary-Moghaddam A, Berrington de González A, Barzi F, Woodward M (2005) Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. Br J Cancer 92:2076–2083PubMedCrossRefGoogle Scholar
  10. 10.
    Raimondi S, Lowenfels AB, Morselli-Labate AM, Maisonneuve P, Pezzilli R (2010) Pancreatic cancer in chronic pancreatitis; aetiology, incidence, and early detection. Best Pract Res Clin Gastroenterol 24:349–358PubMedCrossRefGoogle Scholar
  11. 11.
    Cancer Control and Health Promotion Division, Health Service Bureau, Ministry of Health, Labour and Welfare, Japan (2011) The National Health and Nutrition Survey in JapanGoogle Scholar
  12. 12.
  13. 13.
    Yoshiike N, Matsumura Y, Iwaya M, Sugiyama M, Yamaguchi M (1996) National Nutrition Survey in Japan. J Epidemiol 6:S189–S200PubMedCrossRefGoogle Scholar
  14. 14.
    Otsuki M, Tashiro M (2007) Chronic pancreatitis and pancreatic cancer, lifestyle-related diseases. Intern Med 46:109–113PubMedCrossRefGoogle Scholar
  15. 15.
    Farrow B, Evers BM (2002) Inflammation and the development of pancreatic cancer. Surg Oncol 10:153–169PubMedCrossRefGoogle Scholar
  16. 16.
    Bhanot UK, Moller P (2009) Mechanisms of parenchymal injury and signaling pathways in ectatic ducts of chronic pancreatitis: implications for pancreatic carcinogenesis. Lab Invest 89:489–497PubMedCrossRefGoogle Scholar
  17. 17.
    Lowenfels AB, Maisonneuve P, Cavallini G, Ammann RW, Lankisch PG, Andersen JR, Dimagno EP, Andrén-Sandberg A, Domellöf L (1993) Pancreatitis and the risk of pancreatic cancer. International Pancreatitis Study Group. N Engl J Med 328:1433–1437PubMedCrossRefGoogle Scholar
  18. 18.
    Chari ST, Mohan V, Pitchumoni CS, Viswanathan M, Madanagopalan N, Lowenfels AB (1994) Risk of pancreatic carcinoma in tropical calcifying pancreatitis: an epidemiologic study. Pancreas 9:62–66PubMedCrossRefGoogle Scholar
  19. 19.
    Lowenfels AB, Maisonneuve P, DiMagno EP, Elitsur Y, Gates LK Jr, Perrault J, Whitcomb DC (1997) Hereditary pancreatitis and the risk of pancreatic cancer. International Hereditary Pancreatitis Study Group. J Natl Cancer Inst 89:442–446PubMedCrossRefGoogle Scholar
  20. 20.
    Malka D, Hammel P, Maire F, Rufat P, Madeira I, Pessione F, Lévy P, Ruszniewski P (2002) Risk of pancreatic adenocarcinoma in chronic pancreatitis. Gut 51:849–852PubMedCrossRefGoogle Scholar
  21. 21.
    Tulinius H, Sigfússon N, Sigvaldason H, Bjarnadóttir K, Tryggvadóttir L (1997) Risk factors for malignant diseases: a cohort study on a population of 22,946 Icelanders. Cancer Epidemiol Biomarkers Prev 6:863–873PubMedGoogle Scholar
  22. 22.
    Greer JB, Whitcomb DC (2009) Inflammation and pancreatic cancer: an evidence-based review. Curr Opin Pharmacol 9:411–418PubMedCrossRefGoogle Scholar
  23. 23.
    Apte MV, Pirola RC, Wilson JS (2009) Pancreas: alcoholic pancreatitis—it's the alcohol, stupid. Nat Rev Gastroenterol Hepatol 6:321–322PubMedCrossRefGoogle Scholar
  24. 24.
    Yadav D, Hawes RH, Brand RE, Anderson MA, Money ME, Banks PA, Bishop MD, Baillie J, Sherman S, DiSario J, Burton FR, Gardner TB, Amann ST, Gelrud A, Lawrence C, Elinoff B, Greer JB, O'Connell M, Barmada MM, Slivka A, Whitcomb DC (2009) Alcohol consumption, cigarette smoking, and the risk of recurrent acute and chronic pancreatitis. Arch Intern Med 169:1035–1045PubMedCrossRefGoogle Scholar
  25. 25.
    Wilson JS, Apte MV, Thomas MC, Haber PS, Pirola RC (1992) Effects of ethanol, acetaldehyde and cholesteryl esters on pancreatic lysosomes. Gut 33:1099–1104PubMedCrossRefGoogle Scholar
  26. 26.
    Haber PS, Wilson JS, Apte MV, Pirola RC (1993) Fatty acid ethyl esters increase rat pancreatic lysosomal fragility. J Lab Clin Med 121:759–764PubMedGoogle Scholar
  27. 27.
    Apte MV, Haber PS, Norton ID, Wilson JS (1998) Alcohol and the pancreas. Addict Biol 3:137–150CrossRefGoogle Scholar
  28. 28.
    Haber PS, Wilson JS, Apte MV, Korsten MA, Pirola RC (1994) Chronic ethanol consumption increases the fragility of rat pancreatic zymogen granules. Gut 35:1474–1478PubMedCrossRefGoogle Scholar
  29. 29.
    Apte MV, Wilson JS, Korsten MA, McCaughan GW, Haber PS, Pirola RC (1995) Effects of ethanol and protein deficiency on pancreatic digestive and lysosomal enzymes. Gut 36:287–293PubMedCrossRefGoogle Scholar
  30. 30.
    Gukovskaya AS, Mouria M, Gukovsky I, Reyes CN, Kasho VN, Faller LD, Pandol SJ (2002) Ethanol metabolism and transcription factor activation in pancreatic acinar cells in rats. Gastroenterology 122:106–118PubMedCrossRefGoogle Scholar
  31. 31.
    Criddle DN, Murphy J, Fistetto G, Barrow S, Tepikin AV, Neoptolemos JP, Sutton R, Petersen OH (2006) Fatty acid ethyl esters cause pancreatic calcium toxicity via inositol trisphosphate receptors and loss of ATP synthesis. Gastroenterology 130:781–793PubMedCrossRefGoogle Scholar
  32. 32.
    Heinen MM, Verhage BA, Ambergen TA, Goldbohm RA, van den Brandt PA (2009) Alcohol consumption and risk of pancreatic cancer in the Netherlands cohort study. Am J Epidemiol 169:1233–1242PubMedCrossRefGoogle Scholar
  33. 33.
    Jiao L, Silverman DT, Schairer C, Thiebaut AC, Hollenbeck AR, Leitzmann MF, Schatzkin A, Stolzenberg-Solomon RZ (2009) Alcohol use and risk of pancreatic cancer: the NIH-AARP Diet and Health Study. Am J Epidemiol 169:1043–1051PubMedCrossRefGoogle Scholar
  34. 34.
    Gapstur SM, Jacobs EJ, Deka A, McCullough ML, Patel AV, Thun MJ (2011) Association of alcohol intake with pancreatic cancer mortality in never smokers. Arch Intern Med 171:444–451PubMedCrossRefGoogle Scholar
  35. 35.
    McCoy GD, Wynder EL (1979) Etiological and preventive implications in alcohol carcinogenesis. Cancer Res 39:2844–2850PubMedGoogle Scholar
  36. 36.
    Tuyns AJ (1979) Epidemiology of alcohol and cancer. Cancer Res 39:2840–2843PubMedGoogle Scholar
  37. 37.
    Driver HE, Swann PF (1987) Alcohol and human cancer (review). Anticancer Res 7:309–320PubMedGoogle Scholar
  38. 38.
    Rohrmann S, Linseisen J, Vrieling A, Boffetta P, Stolzenberg-Solomon RZ, Lowenfels AB, Jensen MK, Overvad K, Olsen A, Tjonneland A, Boutron-Ruault MC, Clavel-Chapelon F, Fagherazzi G, Misirli G, Lagiou P, Trichopoulou A, Kaaks R, Bergmann MM, Boeing H, Bingham S, Khaw KT, Allen N, Roddam A, Palli D, Pala V, Panico S, Tumino R, Vineis P, Peeters PH, Hjartaker A, Lund E, Redondo Cornejo ML, Agudo A, Arriola L, Sanchez MJ, Tormo MJ, Barricarte Gurrea A, Lindkvist B, Manjer J, Johansson I, Ye W, Slimani N, Duell EJ, Jenab M, Michaud DS, Mouw T, Riboli E, Bueno-de-Mesquita HB (2009) Ethanol intake and the risk of pancreatic cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). Cancer Causes Control 20:785–794PubMedCrossRefGoogle Scholar
  39. 39.
    Michaud DS, Vrieling A, Jiao L, Mendelsohn JB, Steplowski E, Lynch SM, Wactawski-Wende J, Arslan AA, Bas Bueno-de-Mesquita H, Fuchs CS, Gross M, Helzlsouer K, Jacobs EJ, Lacroix A, Petersen G, Zheng W, Allen N, Ammundadottir L, Bergmann MM, Boffetta P, Buring JE, Canzian F, Chanock SJ, Clavel-Chapelon F, Clipp S, Freiberg MS, Michael Gaziano J, Giovannucci EL, Hankinson S, Hartge P, Hoover RN, Allan Hubbell F, Hunter DJ, Hutchinson A, Jacobs K, Kooperberg C, Kraft P, Manjer J, Navarro C, Peeters PH, Shu XO, Stevens V, Thomas G, Tjønneland A, Tobias GS, Trichopoulos D, Tumino R, Vineis P, Virtamo J, Wallace R, Wolpin BM, Yu K, Zeleniuch-Jacquotte A, Stolzenberg-Solomon RZ (2010) Alcohol intake and pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium (PanScan). Cancer Causes Control 21:1213–1225PubMedCrossRefGoogle Scholar
  40. 40.
    Lin Y, Tamakoshi A, Hayakawa T, Ogawa M, Ohno Y (2000) Cigarette smoking as a risk factor for chronic pancreatitis: a case–control study in Japan. Research Committee on Intractable Pancreatic Diseases. Pancreas 21:109–114PubMedCrossRefGoogle Scholar
  41. 41.
    Maisonneuve P, Lowenfels AB, Müllhaupt B, Cavallini G, Lankisch PG, Andersen JR, Dimagno EP, Andrén-Sandberg A, Domellöf L, Frulloni L, Ammann RW (2005) Cigarette smoking accelerates progression of alcoholic chronic pancreatitis. Gut 54:510–514PubMedCrossRefGoogle Scholar
  42. 42.
    Maisonneuve P, Frulloni L, Mullhaupt B, Faitini K, Cavallini G, Lowenfels AB, Ammann RW (2006) Impact of smoking on patients with idiopathic chronic pancreatitis. Pancreas 33:163–168PubMedCrossRefGoogle Scholar
  43. 43.
    Qiu D, Kurosawa M, Lin Y, Inaba Y, Matsuba T, Kikuchi S, Yagyu K, Motohashi Y, Tamakoshi A (2005) Overview of the epidemiology of pancreatic cancer focusing on the JACC Study. J Epidemiol 15(Suppl 2):S157–S167PubMedCrossRefGoogle Scholar
  44. 44.
    Yun JE, Jo I, Park J, Kim MT, Ryu HG, Odongua N, Kim E, Jee SH (2006) Cigarette smoking, elevated fasting serum glucose, and risk of pancreatic cancer in Korean men. Int J Cancer 119:208–212PubMedCrossRefGoogle Scholar
  45. 45.
    Maisonneuve P, Lowenfels AB (2002) Chronic pancreatitis and pancreatic cancer. Dig Dis 20:32–37PubMedCrossRefGoogle Scholar
  46. 46.
    IARC (2004) Tobacco smoke and involuntary smoking. IARC Monogr Eval Carcinog Risks Hum 83:1–1438Google Scholar
  47. 47.
    Apte MV, Pirola RC, Wilson JS (2005) Where there's smoke there's not necessarily fire. Gut 54:446–447PubMedCrossRefGoogle Scholar
  48. 48.
    Bockman DE, Black O Jr, Mills LR, Webster PD (1978) Origin of tubular complexes developing during induction of pancreatic adenocarcinoma by 7,12-dimethylbenz(a)anthracene. Am J Pathol 90:645–658PubMedGoogle Scholar
  49. 49.
    Rao MS, Reddy JK (1980) Histogenesis of pseudo-ductular changes induced in the pancreas of guinea pigs treated with N-methyl-N-nitrosourea. Carcinogenesis 1:1027–1037PubMedCrossRefGoogle Scholar
  50. 50.
    Bockman DE, Guo J, Buchler P, Muller MW, Bergmann F, Friess H (2003) Origin and development of the precursor lesions in experimental pancreatic cancer in rats. Lab Invest 83:853–859PubMedGoogle Scholar
  51. 51.
    Habbe N, Shi G, Meguid RA, Fendrich V, Esni F, Chen H, Feldmann G, Stoffers DA, Konieczny SF, Leach SD, Maitra A (2008) Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice. Proc Natl Acad Sci U S A 105:18913–18918PubMedCrossRefGoogle Scholar
  52. 52.
    Yadav D, O'Connell M, Papachristou GI (2012) Natural history following the first attack of acute pancreatitis. Am J Gastroenterol 107:1096–1103PubMedCrossRefGoogle Scholar
  53. 53.
    Li L, Zhang SN (2008) Management of pancreatic duct stone. Hepatobiliary Pancreat Dis Int 7:9–10PubMedGoogle Scholar
  54. 54.
    Dufour MC, Adamson MD (2003) The epidemiology of alcohol-induced pancreatitis. Pancreas 27:286–290PubMedCrossRefGoogle Scholar
  55. 55.
    Banim PJ, Luben RN, Bulluck H, Sharp SJ, Wareham NJ, Khaw KT, Hart AR (2011) The aetiology of symptomatic gallstones quantification of the effects of obesity, alcohol and serum lipids on risk. Epidemiological and biomarker data from a UK prospective cohort study (EPIC-Norfolk). Eur J Gastroenterol Hepatol 23:733–740PubMedCrossRefGoogle Scholar
  56. 56.
    Sakorafas GH, Tsiotou AG (2000) Etiology and pathogenesis of acute pancreatitis: current concepts. J Clin Gastroenterol 30:343–356PubMedCrossRefGoogle Scholar
  57. 57.
    Venneman NG, Renooij W, Rehfeld JF, VanBerge-Henegouwen GP, Go PM, Broeders IA, van Erpecum KJ (2005) Small gallstones, preserved gallbladder motility, and fast crystallization are associated with pancreatitis. Hepatology 41:738–746PubMedCrossRefGoogle Scholar
  58. 58.
    Perides G, Laukkarinen JM, Vassileva G, Steer ML (2010) Biliary acute pancreatitis in mice is mediated by the G-protein-coupled cell surface bile acid receptor Gpbar1. Gastroenterology 138:715–725PubMedCrossRefGoogle Scholar
  59. 59.
    Inagaki T, Hoshino M, Hayakawa T, Ohara H, Yamada T, Yamada H, Iida M, Nakazawa T, Ogasawara T, Uchida A, Hasegawa C, Miyaji M, Takeuchi T (1997) Interleukin-6 is a useful marker for early prediction of the severity of acute pancreatitis. Pancreas 14:1–8PubMedCrossRefGoogle Scholar
  60. 60.
    Berney T, Gasche Y, Robert J, Jenny A, Mensi N, Grau G, Vermeulen B, Morel P (1999) Serum profiles of interleukin-6, interleukin-8, and interleukin-10 in patients with severe and mild acute pancreatitis. Pancreas 18:371–377PubMedCrossRefGoogle Scholar
  61. 61.
    Ueda T, Takeyama Y, Yasuda T, Matsumura N, Sawa H, Nakajima T, Ajiki T, Fujino Y, Suzuki Y, Kuroda Y (2006) Significant elevation of serum interleukin-18 levels in patients with acute pancreatitis. J Gastroenterol 41:158–165PubMedCrossRefGoogle Scholar
  62. 62.
    Papachristou GI, Clermont G, Sharma A, Yadav D, Whitcomb DC (2007) Risk and markers of severe acute pancreatitis. Gastroenterol Clin North Am 36:277–296, viiiPubMedCrossRefGoogle Scholar
  63. 63.
    Yuan BS, Zhu RM, Braddock M, Zhang XH, Shi W, Zheng MH (2007) Interleukin-18: a pro-inflammatory cytokine that plays an important role in acute pancreatitis. Expert Opin Ther Targets 11:1261–1271PubMedCrossRefGoogle Scholar
  64. 64.
    Shimizu K (2008) Pancreatic stellate cells: molecular mechanism of pancreatic fibrosis. J Gastroenterol Hepatol 23(Suppl 1):S119–S121PubMedCrossRefGoogle Scholar
  65. 65.
    Nebiker CA, Frey DM, Hamel CT, Oertli D, Kettelhack C (2009) Early versus delayed cholecystectomy in patients with biliary acute pancreatitis. Surgery 145:260–264PubMedCrossRefGoogle Scholar
  66. 66.
    Toskes PP (1990) Hyperlipidemic pancreatitis. Gastroenterol Clin North Am 19:783–791PubMedGoogle Scholar
  67. 67.
    Fortson MR, Freedman SN, Webster PD 3rd (1995) Clinical assessment of hyperlipidemic pancreatitis. Am J Gastroenterol 90:2134–2139PubMedGoogle Scholar
  68. 68.
    Anderson F, Thomson SR, Clarke DL, Buccimazza I (2009) Dyslipidaemic pancreatitis clinical assessment and analysis of disease severity and outcomes. Pancreatology 9:252–257PubMedCrossRefGoogle Scholar
  69. 69.
    Havel RJ (1969) Pathogenesis, differentiation and management of hypertriglyceridemia. Adv Intern Med 15:117–154PubMedGoogle Scholar
  70. 70.
    Lo TW, Westwood ME, McLellan AC, Selwood T, Thornalley PJ (1994) Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin. J Biol Chem 269:32299–32305PubMedGoogle Scholar
  71. 71.
    Frischmann M, Bidmon C, Angerer J, Pischetsrieder M (2005) Identification of DNA adducts of methylglyoxal. Chem Res Toxicol 18:1586–1592PubMedCrossRefGoogle Scholar
  72. 72.
    Kalea AZ, Schmidt AM, Hudson BI (2009) RAGE: a novel biological and genetic marker for vascular disease. Clin Sci (Lond) 116:621–637CrossRefGoogle Scholar
  73. 73.
    Lindström O, Tukiainen E, Kylänpää L, Mentula P, Rouhiainen A, Puolakkainen P, Rauvala H, Repo H (2009) Circulating levels of a soluble form of receptor for advanced glycation end products and high-mobility group box chromosomal protein 1 in patients with acute pancreatitis. Pancreas 38:e215–e220PubMedCrossRefGoogle Scholar
  74. 74.
    Murata-Kamiya N, Kamiya H, Kaji H, Kasai H (2000) Methylglyoxal induces G:C to C:G and G:C to T:A transversions in the supF gene on a shuttle vector plasmid replicated in mammalian cells. Mutat Res 468:173–182PubMedCrossRefGoogle Scholar
  75. 75.
    Sen CK, Packer L (1996) Antioxidant and redox regulation of gene transcription. FASEB J 10:709–720PubMedGoogle Scholar
  76. 76.
    Niki E (2009) Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med 47:469–484PubMedCrossRefGoogle Scholar
  77. 77.
    Li D, Tang H, Hassan MM, Holly EA, Bracci PM, Silverman DT (2011) Diabetes and risk of pancreatic cancer: a pooled analysis of three large case–control studies. Cancer Causes Control 22:189–197PubMedCrossRefGoogle Scholar
  78. 78.
    Frossard JL, Lescuyer P, Pastor CM (2009) Experimental evidence of obesity as a risk factor for severe acute pancreatitis. World J Gastroenterol 15:5260–5265PubMedCrossRefGoogle Scholar
  79. 79.
    Shin KY, Lee WS, Chung DW, Heo J, Jung MK, Tak WY, Kweon YO, Cho CM (2011) Influence of obesity on the severity and clinical outcome of acute pancreatitis. Gut Liver 5:335–339PubMedCrossRefGoogle Scholar
  80. 80.
    Papachristou GI, Papachristou DJ, Avula H, Slivka A, Whitcomb DC (2006) Obesity increases the severity of acute pancreatitis: performance of APACHE-O score and correlation with the inflammatory response. Pancreatology 6:279–285PubMedCrossRefGoogle Scholar
  81. 81.
    Abu Hilal M, Armstrong T (2008) The impact of obesity on the course and outcome of acute pancreatitis. Obes Surg 18:326–328PubMedCrossRefGoogle Scholar
  82. 82.
    Segersvärd R, Sylván M, Herrington M, Larsson J, Permert J (2001) Obesity increases the severity of acute experimental pancreatitis in the rat. Scand J Gastroenterol 36:658–663PubMedCrossRefGoogle Scholar
  83. 83.
    Sennello JA, Fayad R, Pini M, Gove ME, Ponemone V, Cabay RJ, Siegmund B, Dinarello CA, Fantuzzi G (2008) Interleukin-18, together with interleukin-12, induces severe acute pancreatitis in obese but not in nonobese leptin-deficient mice. Proc Natl Acad Sci U S A 105:8085–8090PubMedCrossRefGoogle Scholar
  84. 84.
    World Cancer Research Fund/American Institute for Cancer Research (2007) Food, nutrition, physical activity, and the prevention of cancer: a global perspective. AICR, Washington, DCGoogle Scholar
  85. 85.
    Ghadirian P, Boyle P, Simard A, Baillargeon J, Maisonneuve P, Perret C (1991) Reported family aggregation of pancreatic cancer within a population-based case–control study in the Francophone community in Montreal, Canada. Int J Pancreatol 10:183–196PubMedGoogle Scholar
  86. 86.
    Lin Y, Tamakoshi A, Hayakawa T, Naruse S, Kitagawa M, Ohno Y (2005) Nutritional factors and risk of pancreatic cancer: a population-based case–control study based on direct interview in Japan. J Gastroenterol 40:297–301PubMedCrossRefGoogle Scholar
  87. 87.
    Gorry MC, Gabbaizedeh D, Furey W, Gates LK Jr, Preston RA, Aston CE, Zhang Y, Ulrich C, Ehrlich GD, Whitcomb DC (1997) Mutations in the cationic trypsinogen gene are associated with recurrent acute and chronic pancreatitis. Gastroenterology 113:1063–1068PubMedCrossRefGoogle Scholar
  88. 88.
    Whitcomb DC (1999) Hereditary pancreatitis: new insights into acute and chronic pancreatitis. Gut 45:317–322PubMedCrossRefGoogle Scholar
  89. 89.
    Ferec C, Raguenes O, Salomon R, Roche C, Bernard JP, Guillot M, Quere I, Faure C, Mercier B, Audrezet MP, Guillausseau PJ, Dupont C, Munnich A, Bignon JD, Le Bodic L (1999) Mutations in the cationic trypsinogen gene and evidence for genetic heterogeneity in hereditary pancreatitis. J Med Genet 36:228–232PubMedGoogle Scholar
  90. 90.
    Charnley RM (2003) Hereditary pancreatitis. World J Gastroenterol 9:1–4PubMedGoogle Scholar
  91. 91.
    Comfort MW, Steinberg AG (1952) Pedigree of a family with hereditary chronic relapsing pancreatitis. Gastroenterology 21:54–63PubMedGoogle Scholar
  92. 92.
    Whitcomb DC, Preston RA, Aston CE, Sossenheimer MJ, Barua PS, Zhang Y, Wong-Chong A, White GJ, Wood PG, Gates LK Jr, Ulrich C, Martin SP, Post JC, Ehrlich GD (1996) A gene for hereditary pancreatitis maps to chromosome 7q35. Gastroenterology 110:1975–1980PubMedCrossRefGoogle Scholar
  93. 93.
    Pandya A, Blanton SH, Landa B, Javaheri R, Melvin E, Nance WE, Markello T (1996) Linkage studies in a large kindred with hereditary pancreatitis confirms mapping of the gene to a 16-cM region on 7q. Genomics 38:227–230PubMedCrossRefGoogle Scholar
  94. 94.
    Whitcomb DC, Gorry MC, Preston RA, Furey W, Sossenheimer MJ, Ulrich CD, Martin SP, Gates LK Jr, Amann ST, Toskes PP, Liddle R, McGrath K, Uomo G, Post JC, Ehrlich GD (1996) Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet 14:141–145PubMedCrossRefGoogle Scholar
  95. 95.
    Teich N, Mossner J, Keim V (1999) Screening for mutations of the cationic trypsinogen gene: are they of relevance in chronic alcoholic pancreatitis? Gut 44:413–416PubMedCrossRefGoogle Scholar
  96. 96.
    Scheele G, Kern H (1986) The exocrine pancreas. In: Desnuelle P, Sjöström H, Norén O (eds) Molecular and cellular basis of digestion. Elsevier, Amsterdam, pp 173–194Google Scholar
  97. 97.
    Whitcomb DC, Applebaum S, Martin SP (1999) Hereditary pancreatitis and pancreatic carcinoma. Ann N Y Acad Sci 880:201–209PubMedCrossRefGoogle Scholar
  98. 98.
    Hengstler JG, Bauer A, Wolf HK, Bulitta CJ, Tanner B, Oesch F, Gebhard S, Boettger T (2000) Mutation analysis of the cationic trypsinogen gene in patients with pancreatic cancer. Anticancer Res 20:2967–2974PubMedGoogle Scholar
  99. 99.
    Miszczuk-Jamska B, Merten M, Guy-Crotte O, Amouric M, Clemente F, Schoumacher RA, Figarella C (1991) Characterization of trypsinogens 1 and 2 in two human pancreatic adenocarcinoma cell lines; CFPAC-1 and CAPAN-1. FEBS Lett 294:175–178PubMedCrossRefGoogle Scholar
  100. 100.
    Ohta T, Terada T, Nagakawa T, Tajima H, Itoh H, Fonseca L, Miyazaki I (1994) Pancreatic trypsinogen and cathepsin B in human pancreatic carcinomas and associated metastatic lesions. Br J Cancer 69:152–156PubMedCrossRefGoogle Scholar
  101. 101.
    Tajima H, Ohta T, Elnemr A, Yasui T, Kitagawa H, Fushida S, Kayahara M, Miwa K, Wakayama T, Iseki S, Yokoyama S (2001) Enhanced invasiveness of pancreatic adenocarcinoma cells stably transfected with cationic trypsinogen cDNA. Int J Cancer 94:699–704PubMedCrossRefGoogle Scholar
  102. 102.
    Gao J, Zhu F, Lv S, Li Z, Ling Z, Gong Y, Jie C, Ma L (2010) Identification of pancreatic juice proteins as biomarkers of pancreatic cancer. Oncol Rep 23:1683–1692PubMedGoogle Scholar
  103. 103.
    Witt H, Luck W, Hennies HC, Classen M, Kage A, Lass U, Landt O, Becker M (2000) Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis. Nat Genet 25:213–216PubMedCrossRefGoogle Scholar
  104. 104.
    Király O, Wartmann T, Sahin-Tóth M (2007) Missense mutations in pancreatic secretory trypsin inhibitor (SPINK1) cause intracellular retention and degradation. Gut 56:1433–1438PubMedCrossRefGoogle Scholar
  105. 105.
    Kuwata K, Hirota M, Shimizu H, Nakae M, Nishihara S, Takimoto A, Mitsushima K, Kikuchi N, Endo K, Inoue M, Ogawa M (2002) Functional analysis of recombinant pancreatic secretory trypsin inhibitor protein with amino-acid substitution. J Gastroenterol 37:928–934PubMedCrossRefGoogle Scholar
  106. 106.
    Ohmuraya M, Hirota M, Araki M, Mizushima N, Matsui M, Mizumoto T, Haruna K, Kume S, Takeya M, Ogawa M, Araki K, Yamamura K (2005) Autophagic cell death of pancreatic acinar cells in serine protease inhibitor Kazal type 3-deficient mice. Gastroenterology 129:696–705PubMedGoogle Scholar
  107. 107.
    Ohmuraya M, Hirota M, Araki K, Baba H, Yamamura K (2006) Enhanced trypsin activity in pancreatic acinar cells deficient for serine protease inhibitor kazal type 3. Pancreas 33:104–106PubMedCrossRefGoogle Scholar
  108. 108.
    Pfützer RH, Barmada MM, Brunskill AP, Finch R, Hart PS, Neoptolemos J, Furey WF, Whitcomb DC (2000) SPINK1/PSTI polymorphisms act as disease modifiers in familial and idiopathic chronic pancreatitis. Gastroenterology 119:615–623PubMedCrossRefGoogle Scholar
  109. 109.
    Threadgold J, Greenhalf W, Ellis I, Howes N, Lerch MM, Simon P, Jansen J, Charnley R, Laugier R, Frulloni L, Oláh A, Delhaye M, Ihse I, Schaffalitzky de Muckadell OB, Andrén-Sandberg A, Imrie CW, Martinek J, Gress TM, Mountford R, Whitcomb D, Neoptolemos JP (2002) The N34S mutation of SPINK1 (PSTI) is associated with a familial pattern of idiopathic chronic pancreatitis but does not cause the disease. Gut 50:675–681PubMedCrossRefGoogle Scholar
  110. 110.
    Novis BH, Young GO, Bank S, Marks IN (1975) Chronic pancreatitis and alpha-1-antitrypsin. Lancet 2:748–749PubMedCrossRefGoogle Scholar
  111. 111.
    Sharer N, Schwarz M, Malone G, Howarth A, Painter J, Super M, Braganza J (1998) Mutations of the cystic fibrosis gene in patients with chronic pancreatitis. N Engl J Med 339:645–652PubMedCrossRefGoogle Scholar
  112. 112.
    Cohn JA (2003) Motion—genetic testing is useful in the diagnosis of nonhereditary pancreatic conditions: arguments against the motion. Can J Gastroenterol 17:53–55PubMedGoogle Scholar
  113. 113.
    Kamp DW, Shacter E, Weitzman SA (2011) Chronic inflammation and cancer: the role of the mitochondria. Oncology (Williston Park) 25:400–410, 413Google Scholar
  114. 114.
    Ronai ZA, Gradia S, Peterson LA, Hecht SS (1993) G to A transitions and G to T transversions in codon 12 of the Ki-ras oncogene isolated from mouse lung tumors induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and related DNA methylating and pyridyloxobutylating agents. Carcinogenesis 14:2419–2422PubMedCrossRefGoogle Scholar
  115. 115.
    Popović Hadzija M, Korolija M, Jakić Razumović J, Pavković P, Hadzija M, Kapitanović S (2007) K-ras and Dpc4 mutations in chronic pancreatitis: case series. Croat Med J 48:218–224PubMedGoogle Scholar
  116. 116.
    Löhr M, Klöppel G, Maisonneuve P, Lowenfels AB, Lüttges J (2005) Frequency of K-ras mutations in pancreatic intraductal neoplasias associated with pancreatic ductal adenocarcinoma and chronic pancreatitis: a meta-analysis. Neoplasia 7:17–23PubMedCrossRefGoogle Scholar
  117. 117.
    Arvanitakis M, Van Laethem JL, Parma J, De Maertelaer V, Delhaye M, Devière J (2004) Predictive factors for pancreatic cancer in patients with chronic pancreatitis in association with K-ras gene mutation. Endoscopy 36:535–542PubMedCrossRefGoogle Scholar
  118. 118.
    Kamisawa T, Takuma K, Tabata T, Egawa N, Yamaguchi T (2011) Long-term follow-up of chronic pancreatitis patients with K-ras mutation in the pancreatic juice. Hepatogastroenterology 58:174–176PubMedGoogle Scholar
  119. 119.
    Liu K, Qin CK, Wang ZY, Liu SX, Cui XP, Zhang DY (2012) Expression of tumor necrosis factor-alpha-induced protein 8 in pancreas tissues and its correlation with epithelial growth factor receptor levels. Asian Pac J Cancer Prev 13:847–850PubMedCrossRefGoogle Scholar
  120. 120.
    Korc M, Friess H, Yamanaka Y, Kobrin MS, Buchler M, Beger HG (1994) Chronic pancreatitis is associated with increased concentrations of epidermal growth factor receptor, transforming growth factor alpha, and phospholipase C gamma. Gut 35:1468–1473PubMedCrossRefGoogle Scholar
  121. 121.
    Lakshmikesari A, Radhakrishna R, Bhanumathi A, Ravi D, Srinivas G, Nair M, Pillai M (1996) Expression of epidermal and transforming growth factors in pancreatic cancer. Oncol Rep 3:963–966PubMedGoogle Scholar
  122. 122.
    Konturek PC, Dembínski A, Warzecha Z, Ceranowicz P, Konturek SJ, Stachura J, Hahn EG (1997) Expression of transforming growth factor-beta 1 and epidermal growth factor in caerulein-induced pancreatitis in rat. J Physiol Pharmacol 48:59–72PubMedGoogle Scholar
  123. 123.
    Zhu Z, Kleeff J, Friess H, Wang L, Zimmermann A, Yarden Y, Büchler MW, Korc M (2000) Epiregulin is up-regulated in pancreatic cancer and stimulates pancreatic cancer cell growth. Biochem Biophys Res Commun 273:1019–1024PubMedCrossRefGoogle Scholar
  124. 124.
    Wang F, Xu L, Guo C, Ke A, Hu G, Xu X, Mo W, Yang L, Huang Y, He S, Wang X (2011) Identification of RegIV as a novel GLI1 target gene in human pancreatic cancer. PLoS One 6:e18434PubMedCrossRefGoogle Scholar
  125. 125.
    Jin CX, Hayakawa T, Ko SB, Ishiguro H, Kitagawa M (2011) Pancreatic stone protein/regenerating protein family in pancreatic and gastrointestinal diseases. Intern Med 50:1507–1516PubMedCrossRefGoogle Scholar
  126. 126.
    Zhou L, Zhang R, Wang L, Shen S, Okamoto H, Sugawara A, Xia L, Wang X, Noguchi N, Yoshikawa T, Uruno A, Yao W, Yuan Y (2010) Upregulation of REG Ialpha accelerates tumor progression in pancreatic cancer with diabetes. Int J Cancer 127:1795–1803PubMedCrossRefGoogle Scholar
  127. 127.
    Rosty C, Christa L, Kuzdzal S, Baldwin WM, Zahurak ML, Carnot F, Chan DW, Canto M, Lillemoe KD, Cameron JL, Yeo CJ, Hruban RH, Goggins M (2002) Identification of hepatocarcinoma–intestine–pancreas/pancreatitis-associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res 62:1868–1875PubMedGoogle Scholar
  128. 128.
    Parikh A, Stephan AF, Tzanakakis ES (2012) Regenerating proteins and their expression, regulation and signaling. Biomol Concepts 3:57–70PubMedCrossRefGoogle Scholar
  129. 129.
    Menke A, Yamaguchi H, Giehl K, Adler G (1999) Hepatocyte growth factor and fibroblast growth factor 2 are overexpressed after cerulein-induced acute pancreatitis. Pancreas 18:28–33PubMedCrossRefGoogle Scholar
  130. 130.
    Banerjee SK, Zoubine MN, Mullick M, Weston AP, Cherian R, Campbell DR (2000) Tumor angiogenesis in chronic pancreatitis and pancreatic adenocarcinoma: impact of K-ras mutations. Pancreas 20:248–255PubMedCrossRefGoogle Scholar
  131. 131.
    Yamazaki K, Nagao T, Yamaguchi T, Saisho H, Kondo Y (1997) Expression of basic fibroblast growth factor (FGF-2)-associated with tumour proliferation in human pancreatic carcinoma. Virchows Arch 431:95–101PubMedCrossRefGoogle Scholar
  132. 132.
    Kuehn R, Lelkes PI, Bloechle C, Niendorf A, Izbicki JR (1999) Angiogenesis, angiogenic growth factors, and cell adhesion molecules are upregulated in chronic pancreatic diseases: angiogenesis in chronic pancreatitis and in pancreatic cancer. Pancreas 18:96–103PubMedCrossRefGoogle Scholar
  133. 133.
    Berindan-Neagoe I, Burz C, Balacescu O, Balacescu L, Seicean A, Cristea V, Irimie A (2011) Molecular angiogenesis profile as a tool to discriminate chronic pancreatitis (CP) from pancreatic cancer (PC). Pancreas 40:482–483PubMedCrossRefGoogle Scholar
  134. 134.
    Arafat HA, Gong Q, Chipitsyna G, Rizvi A, Saa CT, Yeo CJ (2007) Antihypertensives as novel antineoplastics: angiotensin-I-converting enzyme inhibitors and angiotensin II type 1 receptor blockers in pancreatic ductal adenocarcinoma. J Am Coll Surg 204:996–1005, discussion 1005-1006PubMedCrossRefGoogle Scholar
  135. 135.
    Blaine SA, Ray KC, Branch KM, Robinson PS, Whitehead RH, Means AL (2009) Epidermal growth factor receptor regulates pancreatic fibrosis. Am J Physiol Gastrointest Liver Physiol 297:G434–G441PubMedCrossRefGoogle Scholar
  136. 136.
    Masamune A, Kikuta K, Watanabe T, Satoh K, Hirota M, Shimosegawa T (2008) Hypoxia stimulates pancreatic stellate cells to induce fibrosis and angiogenesis in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol 295:G709–G717PubMedCrossRefGoogle Scholar
  137. 137.
    Hotz B, Arndt M, Dullat S, Bhargava S, Buhr HJ, Hotz HG (2007) Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res 13:4769–4776PubMedCrossRefGoogle Scholar
  138. 138.
    Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F, Reichert M, Beatty GL, Rustgi AK, Vonderheide RH, Leach SD, Stanger BZ (2012) EMT and dissemination precede pancreatic tumor formation. Cell 148:349–361PubMedCrossRefGoogle Scholar
  139. 139.
    Armstrong AW, Armstrong EJ, Fuller EN, Sockolov ME, Voyles SV (2011) Smoking and pathogenesis of psoriasis: a review of oxidative, inflammatory and genetic mechanisms. Br J Dermatol 165:1162–1168PubMedCrossRefGoogle Scholar
  140. 140.
    Becker S, Dossus L, Kaaks R (2009) Obesity related hyperinsulinaemia and hyperglycaemia and cancer development. Arch Physiol Biochem 115:86–96PubMedCrossRefGoogle Scholar
  141. 141.
    Gago-Dominguez M, Castelao JE, Pike MC, Sevanian A, Haile RW (2005) Role of lipid peroxidation in the epidemiology and prevention of breast cancer. Cancer Epidemiol Biomarkers Prev 14:2829–2839PubMedCrossRefGoogle Scholar
  142. 142.
    Milaeva ER (2011) Metal-based antioxidants—potential therapeutic candidates for prevention the oxidative stress-related carcinogenesis: mini-review. Curr Top Med Chem 11:2703–2713PubMedCrossRefGoogle Scholar
  143. 143.
    Katiyar SK, Meeran SM (2007) Obesity increases the risk of UV radiation-induced oxidative stress and activation of MAPK and NF-kappaB signaling. Free Radic Biol Med 42:299–310PubMedCrossRefGoogle Scholar
  144. 144.
    Dabrowski A, Gabryelewicz A, Wereszczyńska-Siemiatkowska U, Chyczewski L (1988) Oxygen-derived free radicals in cerulein-induced acute pancreatitis. Scand J Gastroenterol 23:1245–1249PubMedCrossRefGoogle Scholar
  145. 145.
    Nonaka A, Manabe T, Tamura K, Asano N, Imanishi K, Tobe T (1989) Changes of xanthine oxidase, lipid peroxide and superoxide dismutase in mouse acute pancreatitis. Digestion 43:41–46PubMedCrossRefGoogle Scholar
  146. 146.
    Schoenberg MH, Büchler M, Gaspar M, Stinner A, Younes M, Melzner I, Bültmann B, Beger HG (1990) Oxygen free radicals in acute pancreatitis of the rat. Gut 31:1138–1143PubMedCrossRefGoogle Scholar
  147. 147.
    Schoenberg MH, Büchler M, Pietrzyk C, Uhl W, Birk D, Eisele S, Marzinzig M, Beger HG (1995) Lipid peroxidation and glutathione metabolism in chronic pancreatitis. Pancreas 10:36–43PubMedCrossRefGoogle Scholar
  148. 148.
    Ganesh Pai C, Sreejayan RMN (1999) Evidence for oxidant stress in chronic pancreatitis. Indian J Gastroenterol 18:156–157PubMedGoogle Scholar
  149. 149.
    Basso D, Panozzo MP, Fabris C, del Favero G, Meggiato T, Fogar P, Meani A, Faggian D, Plebani M, Burlina A, Naccarato R (1990) Oxygen derived free radicals in patients with chronic pancreatic and other digestive diseases. J Clin Pathol 43:403–405PubMedCrossRefGoogle Scholar
  150. 150.
    Baumgart S, Ellenrieder V, Fernandez-Zapico ME (2011) Oncogenic transcription factors: cornerstones of inflammation-linked pancreatic carcinogenesis. GutGoogle Scholar
  151. 151.
    Curti ML, Jacob P, Borges MC, Rogero MM, Ferreira SR (2011) Studies of gene variants related to inflammation, oxidative stress, dyslipidemia, and obesity: implications for a nutrigenetic approach. J Obes 2011:497401PubMedGoogle Scholar
  152. 152.
    Miron N, Miron MM, Milea VG, Cristea V (2010) Proinflammatory cytokines: an insight into pancreatic oncogenesis. Roum Arch Microbiol Immunol 69:183–189PubMedGoogle Scholar
  153. 153.
    Nieto-Vazquez I, Fernández-Veledo S, Krämer DK, Vila-Bedmar R, Garcia-Guerra L, Lorenzo M (2008) Insulin resistance associated to obesity: the link TNF-alpha. Arch Physiol Biochem 114:183–194PubMedCrossRefGoogle Scholar
  154. 154.
    Yang YM, Ramadani M, Huang YT (2003) Overexpression of caspase-1 in adenocarcinoma of pancreas and chronic pancreatitis. World J Gastroenterol 9:2828–2831PubMedGoogle Scholar
  155. 155.
    Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30:1073–1081PubMedCrossRefGoogle Scholar
  156. 156.
    Burke SJ, Collier JJ (2011) The gene encoding cyclooxygenase-2 is regulated by IL-1beta and prostaglandins in 832/13 rat insulinoma cells. Cell Immunol 271:379–384PubMedCrossRefGoogle Scholar
  157. 157.
    Verma G, Bhatia H, Datta M (2012) Gene expression profiling and pathway analysis identify the integrin signaling pathway to be altered by IL-1beta in human pancreatic cancer cells: role of JNK. Cancer Lett 320:86–95PubMedCrossRefGoogle Scholar
  158. 158.
    Pini M, Rhodes DH, Castellanos KJ, Hall AR, Cabay RJ, Chennuri R, Grady EF, Fantuzzi G (2012) Role of IL-6 in the resolution of pancreatitis in obese mice. J Leukoc Biol 91:957–966PubMedCrossRefGoogle Scholar
  159. 159.
    Achyut BR, Yang L (2011) Transforming growth factor-beta in the gastrointestinal and hepatic tumor microenvironment. Gastroenterology 141:1167–1178PubMedCrossRefGoogle Scholar
  160. 160.
    Bierie B, Moses HL (2010) Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev 21:49–59PubMedCrossRefGoogle Scholar
  161. 161.
    Schmidt HH, Walter U (1994) NO at work. Cell 78:919–925PubMedCrossRefGoogle Scholar
  162. 162.
    Jaiswal M, LaRusso NF, Gores GJ (2001) Nitric oxide in gastrointestinal epithelial cell carcinogenesis: linking inflammation to oncogenesis. Am J Physiol Gastrointest Liver Physiol 281:G626–G634PubMedGoogle Scholar
  163. 163.
    Yang GY, Taboada S, Liao J (2009) Induced nitric oxide synthase as a major player in the oncogenic transformation of inflamed tissue. Methods Mol Biol 512:119–156PubMedCrossRefGoogle Scholar
  164. 164.
    Kasper HU, Wolf H, Drebber U, Wolf HK, Kern MA (2004) Expression of inducible nitric oxide synthase and cyclooxygenase-2 in pancreatic adenocarcinoma: correlation with microvessel density. World J Gastroenterol 10:1918–1922PubMedGoogle Scholar
  165. 165.
    Tanjoh K, Tomita R, Izumi T, Kinoshita K, Kawahara Y, Moriya T, Utagawa A (2007) The expression of the inducible nitric oxide synthase messenger RNA on monocytes in severe acute pancreatitis. Hepatogastroenterology 54:927–931PubMedGoogle Scholar
  166. 166.
    Mikawa K, Kodama SI, Nishina K, Obara H (2001) ONO-1714, a new inducible nitric oxide synthase inhibitor, attenuates diaphragmatic dysfunction associated with cerulein-induced pancreatitis in rats. Crit Care Med 29:1215–1221PubMedCrossRefGoogle Scholar
  167. 167.
    Takahashi M, Kitahashi T, Ishigamori R, Mutoh M, Komiya M, Sato H, Kamanaka Y, Naka M, Maruyama T, Sugimura T, Wakabayashi K (2008) Increased expression of inducible nitric oxide synthase (iNOS) in N-nitrosobis(2-oxopropyl)amine-induced hamster pancreatic carcinogenesis and prevention of cancer development by ONO-1714, an iNOS inhibitor. Carcinogenesis 29:1608–1613PubMedCrossRefGoogle Scholar
  168. 168.
    Takahashi M, Mutoh M, Shoji Y, Kamanaka Y, Naka M, Maruyama T, Sugimura T, Wakabayashi K (2003) Transfection of K-rasAsp12 cDNA markedly elevates IL-1beta- and lipopolysaccharide-mediated inducible nitric oxide synthase expression in rat intestinal epithelial cells. Oncogene 22:7667–7676PubMedCrossRefGoogle Scholar
  169. 169.
    Welsch T, Kleeff J, Friess H (2007) Molecular pathogenesis of pancreatic cancer: advances and challenges. Curr Mol Med 7:504–521PubMedCrossRefGoogle Scholar
  170. 170.
    Cerny WL, Mangold KA, Scarpelli DG (1992) K-ras mutation is an early event in pancreatic duct carcinogenesis in the Syrian golden hamster. Cancer Res 52:4507–4513PubMedGoogle Scholar
  171. 171.
    Agarwal S, Reddy GV, Reddanna P (2009) Eicosanoids in inflammation and cancer: the role of COX-2. Expert Rev Clin Immunol 5:145–165PubMedCrossRefGoogle Scholar
  172. 172.
    Sheng H, Shao J, Dubois RN (2001) K-Ras-mediated increase in cyclooxygenase 2 mRNA stability involves activation of the protein kinase B1. Cancer Res 61:2670–2675PubMedGoogle Scholar
  173. 173.
    Araki Y, Okamura S, Hussain SP, Nagashima M, He P, Shiseki M, Miura K, Harris CC (2003) Regulation of cyclooxygenase-2 expression by the Wnt and ras pathways. Cancer Res 63:728–734PubMedGoogle Scholar
  174. 174.
    Song AM, Bhagat L, Singh VP, Van Acker GG, Steer ML, Saluja AK (2002) Inhibition of cyclooxygenase-2 ameliorates the severity of pancreatitis and associated lung injury. Am J Physiol Gastrointest Liver Physiol 283:G1166–G1174PubMedGoogle Scholar
  175. 175.
    Seo SW, Jung WS, Piao TG, Hong SH, Yun KJ, Park RK, Shin MK, Song HJ, Park SJ (2007) Selective cyclooxygenase-2 inhibitor ameliorates cholecystokinin-octapeptide-induced acute pancreatitis in rats. World J Gastroenterol 13:2298–2304PubMedGoogle Scholar
  176. 176.
    Koliopanos A, Friess H, Kleeff J, Roggo A, Zimmermann A, Büchler MW (2001) Cyclooxygenase 2 expression in chronic pancreatitis: correlation with stage of the disease and diabetes mellitus. Digestion 64:240–247PubMedCrossRefGoogle Scholar
  177. 177.
    Schlosser W, Schlosser S, Ramadani M, Gansauge F, Gansauge S, Beger HG (2002) Cyclooxygenase-2 is overexpressed in chronic pancreatitis. Pancreas 25:26–30PubMedCrossRefGoogle Scholar
  178. 178.
    Foitzik T, Hotz HG, Hotz B, Wittig F, Buhr HJ (2003) Selective inhibition of cyclooxygenase-2 (COX-2) reduces prostaglandin E2 production and attenuates systemic disease sequelae in experimental pancreatitis. Hepatogastroenterology 50:1159–1162PubMedGoogle Scholar
  179. 179.
    Crowell PL, Schmidt CM, Yip-Schneider MT, Savage JJ, Hertzler DA 2nd, Cummings WO (2006) Cyclooxygenase-2 expression in hamster and human pancreatic neoplasia. Neoplasia 8:437–445PubMedCrossRefGoogle Scholar
  180. 180.
    Nunẽz C, Cansino JR, Bethencourt F, Pérez-Utrilla M, Fraile B, Martínez-Onsurbe P, Olmedilla G, Paniagua R, Royuela M (2008) TNF/IL-1/NIK/NF-kappa B transduction pathway: a comparative study in normal and pathological human prostate (benign hyperplasia and carcinoma). Histopathology 53:166–176PubMedCrossRefGoogle Scholar
  181. 181.
    Fukuda A, Wang SC, Morris JP, Folias AE, Liou A, Kim GE, Akira S, Boucher KM, Firpo MA, Mulvihill SJ, Hebrok M (2011) Stat3 and MMP7 contribute to pancreatic ductal adenocarcinoma initiation and progression. Cancer Cell 19:441–455PubMedCrossRefGoogle Scholar
  182. 182.
    Yamamoto H, Itoh F, Iku S, Adachi Y, Fukushima H, Sasaki S, Mukaiya M, Hirata K, Imai K (2001) Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human pancreatic adenocarcinomas: clinicopathologic and prognostic significance of matrilysin expression. J Clin Oncol 19:1118–1127PubMedGoogle Scholar
  183. 183.
    Crawford HC, Scoggins CR, Washington MK, Matrisian LM, Leach SD (2002) Matrix metalloproteinase-7 is expressed by pancreatic cancer precursors and regulates acinar-to-ductal metaplasia in exocrine pancreas. J Clin Invest 109:1437–1444PubMedGoogle Scholar
  184. 184.
    Fukushima H, Yamamoto H, Itoh F, Nakamura H, Min Y, Horiuchi S, Iku S, Sasaki S, Imai K (2001) Association of matrilysin mRNA expression with K-ras mutations and progression in pancreatic ductal adenocarcinomas. Carcinogenesis 22:1049–1052PubMedCrossRefGoogle Scholar
  185. 185.
    Jones LE, Humphreys MJ, Campbell F, Neoptolemos JP, Boyd MT (2004) Comprehensive analysis of matrix metalloproteinase and tissue inhibitor expression in pancreatic cancer: increased expression of matrix metalloproteinase-7 predicts poor survival. Clin Cancer Res 10:2832–2845PubMedCrossRefGoogle Scholar
  186. 186.
    Apte MV, Wilson JS (2003) Alcohol-induced pancreatic injury. Best Pract Res Clin Gastroenterol 17:593–612PubMedCrossRefGoogle Scholar
  187. 187.
    Haber PS, Apte MV, Moran C, Applegate TL, Pirola RC, Korsten MA, McCaughan GW, Wilson JS (2004) Non-oxidative metabolism of ethanol by rat pancreatic acini. Pancreatology 4:82–89PubMedCrossRefGoogle Scholar
  188. 188.
    Norton ID, Apte MV, Lux O, Haber PS, Pirola RC, Wilson JS (1998) Chronic ethanol administration causes oxidative stress in the rat pancreas. J Lab Clin Med 131:442–446PubMedCrossRefGoogle Scholar
  189. 189.
    Tsukamoto H, Towner SJ, Yu GS, French SW (1988) Potentiation of ethanol-induced pancreatic injury by dietary fat. Induction of chronic pancreatitis by alcohol in rats. Am J Pathol 131:246–257PubMedGoogle Scholar
  190. 190.
    Gukovsky I, Lugea A, Shahsahebi M, Cheng JH, Hong PP, Jung YJ, Deng QG, French BA, Lungo W, French SW, Tsukamoto H, Pandol SJ (2008) A rat model reproducing key pathological responses of alcoholic chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol 294:G68–G79PubMedCrossRefGoogle Scholar
  191. 191.
    Willemer S, Elsässer HP, Adler G (1992) Hormone-induced pancreatitis. Eur Surg Res 24(Suppl 1):29–39PubMedCrossRefGoogle Scholar
  192. 192.
    Yoo BM, Oh TY, Kim YB, Yeo M, Lee JS, Surh YJ, Ahn BO, Kim WH, Sohn S, Kim JH, Hahm KB (2005) Novel antioxidant ameliorates the fibrosis and inflammation of cerulein-induced chronic pancreatitis in a mouse model. Pancreatology 5:165–176PubMedCrossRefGoogle Scholar
  193. 193.
    Banerjee AK, Galloway SW, Kingsnorth AN (1994) Experimental models of acute pancreatitis. Br J Surg 81:1096–1103PubMedCrossRefGoogle Scholar
  194. 194.
    Wang J, Ohmuraya M, Suyama K, Hirota M, Ozaki N, Baba H, Nakagata N, Araki K, Yamamura K (2010) Relationship of strain-dependent susceptibility to experimentally induced acute pancreatitis with regulation of Prss1 and Spink3 expression. Lab Invest 90:654–664PubMedCrossRefGoogle Scholar
  195. 195.
    Lee JH, An CS, Yun BS, Kang KS, Lee YA, Won SM, Gwag BJ, Cho SI, Hahm KB (2012) Prevention effects of ND-07, a novel drug candidate with a potent antioxidative action and anti-inflammatory action, in animal models of severe acute pancreatitis. Eur J Pharmacol 687:28–38PubMedCrossRefGoogle Scholar
  196. 196.
    Lombardi B (1971) Effects of choline deficiency on rat hepatocytes. Fed Proc 30:139–142PubMedGoogle Scholar
  197. 197.
    Chen SH, Estes LW, Lombardi B (1972) Lecithin depletion in hepatic microsomal membranes of rats fed on a choline-deficient diet. Exp Mol Pathol 17:176–186PubMedCrossRefGoogle Scholar
  198. 198.
    Leelavathi DE, Katyal SL, Lombardi B (1974) Lecithin depletion in liver mitochondria of rats fed a choline-deficient diet. Effect on beta-hydroxybutyrate dehydrogenase. Life Sci 14:1203–1210PubMedCrossRefGoogle Scholar
  199. 199.
    Gilliland L, Steer ML (1980) Effects of ethionine on digestive enzyme synthesis and discharge by mouse pancreas. Am J Physiol 239:G418–G426PubMedGoogle Scholar
  200. 200.
    Ida S, Ohmuraya M, Hirota M, Ozaki N, Hiramatsu S, Uehara H, Takamori H, Araki K, Baba H, Yamamura K (2010) Chronic pancreatitis in mice by treatment with choline-deficient ethionine-supplemented diet. Exp Anim 59:421–429PubMedCrossRefGoogle Scholar
  201. 201.
    Yan MX, Li YQ, Meng M, Ren HB, Kou Y (2006) Long-term high-fat diet induces pancreatic injuries via pancreatic microcirculatory disturbances and oxidative stress in rats with hyperlipidemia. Biochem Biophys Res Commun 347:192–199PubMedCrossRefGoogle Scholar
  202. 202.
    Pini M, Sennello JA, Cabay RJ, Fantuzzi G (2010) Effect of diet-induced obesity on acute pancreatitis induced by administration of interleukin-12 plus interleukin-18 in mice. Obesity (Silver Spring) 18:476–481CrossRefGoogle Scholar
  203. 203.
    Araki H, Nishihara T, Matsuda M, Fukuhara A, Kihara S, Funahashi T, Kataoka TR, Kamada Y, Kiyohara T, Tamura S, Hayashi N, Shimomura I (2008) Adiponectin plays a protective role in caerulein-induced acute pancreatitis in mice fed a high-fat diet. Gut 57:1431–1440PubMedCrossRefGoogle Scholar
  204. 204.
    Sherwood NE, Jeffery RW, French SA, Hannan PJ, Murray DM (2000) Predictors of weight gain in the Pound of Prevention study. Int J Obes Relat Metab Disord 24:395–403PubMedCrossRefGoogle Scholar
  205. 205.
    Martínez J, Johnson CD, Sánchez-Payá J, de Madaria E, Robles-Diaz G, Pérez-Mateo M (2006) Obesity is a definitive risk factor of severity and mortality in acute pancreatitis: an updated meta-analysis. Pancreatology 6:206–209PubMedCrossRefGoogle Scholar
  206. 206.
    Guerra C, Schuhmacher AJ, Canãmero M, Grippo PJ, Verdaguer L, Pérez-Gallego L, Dubus P, Sandgren EP, Barbacid M (2007) Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11:291–302PubMedCrossRefGoogle Scholar
  207. 207.
    Duan RD, Zheng CF, Guan KL, Williams JA (1995) Activation of MAP kinase kinase (MEK) and Ras by cholecystokinin in rat pancreatic acini. Am J Physiol 268:G1060–G1065PubMedGoogle Scholar
  208. 208.
    Siveke JT, Einwächter H, Sipos B, Lubeseder-Martellato C, Klöppel G, Schmid RM (2007) Concomitant pancreatic activation of Kras (G12D) and Tgfa results in cystic papillary neoplasms reminiscent of human IPMN. Cancer Cell 12:266–279PubMedCrossRefGoogle Scholar
  209. 209.
    Ji B, Tsou L, Wang H, Gaiser S, Chang DZ, Daniluk J, Bi Y, Grote T, Longnecker DS, Logsdon CD (2009) Ras activity levels control the development of pancreatic diseases. Gastroenterology 137:1072–1082PubMedCrossRefGoogle Scholar
  210. 210.
    Collins MA, Bednar F, Zhang Y, Brisset JC, Galbán S, Galbán CJ, Rakshit S, Flannagan KS, Adsay NV, Pasca di Magliano M (2012) Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J Clin Invest 122:639–653PubMedCrossRefGoogle Scholar
  211. 211.
    Takeuchi Y, Takahashi M, Sakano K, Mutoh M, Niho N, Yamamoto M, Sato H, Sugimura T, Wakabayashi K (2007) Suppression of N-nitrosobis(2-oxopropyl)amine-induced pancreatic carcinogenesis in hamsters by pioglitazone, a ligand of peroxisome proliferator-activated receptor gamma. Carcinogenesis 28:1692–1696PubMedCrossRefGoogle Scholar
  212. 212.
    Pour P, Althoff J, Krüger FW, Mohr U (1977) A potent pancreatic carcinogen in Syrian hamsters: N-nitrosobis(2-oxopropyl)amine. J Natl Cancer Inst 58:1449–1453PubMedGoogle Scholar
  213. 213.
    Fujii H, Egami H, Chaney W, Pour P, Pelling J (1990) Pancreatic ductal adenocarcinomas induced in Syrian hamsters by N-nitrosobis(2-oxopropyl)amine contain a c-Ki-ras oncogene with a point-mutated codon 12. Mol Carcinog 3:296–301PubMedCrossRefGoogle Scholar
  214. 214.
    Tsujiuchi T, Sasaki Y, Kubozoe T, Konishi Y, Tsutsumi M (2003) Alterations in the Fhit gene in pancreatic duct adenocarcinomas induced by N-nitrosobis(2-oxopropyl)amine in hamsters. Mol Carcinog 36:60–66PubMedCrossRefGoogle Scholar
  215. 215.
    Grünewald K, Lyons J, Fröhlich A, Feichtinger H, Weger RA, Schwab G, Janssen JW, Bartram CR (1989) High frequency of Ki-ras codon 12 mutations in pancreatic adenocarcinomas. Int J Cancer 43:1037–1041PubMedCrossRefGoogle Scholar
  216. 216.
    Sorio C, Baron A, Orlandini S, Zamboni G, Pederzoli P, Huebner K, Scarpa A (1999) The FHIT gene is expressed in pancreatic ductular cells and is altered in pancreatic cancers. Cancer Res 59:1308–1314PubMedGoogle Scholar
  217. 217.
    Caldas C, Hahn SA, da Costa LT, Redston MS, Schutte M, Seymour AB, Weinstein CL, Hruban RH, Yeo CJ, Kern SE (1994) Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet 8:27–32PubMedCrossRefGoogle Scholar
  218. 218.
    Hanaoka M, Shimizu K, Shigemura M, Kato A, Fujii H, Honoki K, Tsujiuchi T (2005) Cloning of the hamster p16 gene 5′ upstream region and its aberrant methylation patterns in pancreatic cancer. Biochem Biophys Res Commun 333:1249–1253PubMedCrossRefGoogle Scholar
  219. 219.
    Jimenez RE, Z'Graggen K, Hartwig W, Graeme-Cook F, Warshaw AL, Fernandez-del Castillo C (1999) Immunohistochemical characterization of pancreatic tumors induced by dimethylbenzanthracene in rats. Am J Pathol 154:1223–1229PubMedCrossRefGoogle Scholar
  220. 220.
    Osvaldt AB, Wendt LR, Bersch VP, Backes AN, de Cássia ASR, Edelweiss MI, Rohde L (2006) Pancreatic intraepithelial neoplasia and ductal adenocarcinoma induced by DMBA in mice. Surgery 140:803–809PubMedCrossRefGoogle Scholar
  221. 221.
    Z'Graggen K, Warshaw AL, Werner J, Graeme-Cook F, Jimenez RE, Fernandez-Del Castillo C (2001) Promoting effect of a high-fat/high-protein diet in DMBA-induced ductal pancreatic cancer in rats. Ann Surg 233:688–695PubMedCrossRefGoogle Scholar
  222. 222.
    Shimosegawa T, Kume K, Satoh K (2009) Chronic pancreatitis and pancreatic cancer: prediction and mechanism. Clin Gastroenterol Hepatol 7:S23–S28PubMedCrossRefGoogle Scholar
  223. 223.
    Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, Ross S, Conrads TP, Veenstra TD, Hitt BA, Kawaguchi Y, Johann D, Liotta LA, Crawford HC, Putt ME, Jacks T, Wright CV, Hruban RH, Lowy AM, Tuveson DA (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4:437–450PubMedCrossRefGoogle Scholar
  224. 224.
    Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M (1988) Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53:549–554PubMedCrossRefGoogle Scholar
  225. 225.
    Wang X, Gao J, Ren Y, Gu J, Du Y, Chen J, Jin Z, Zhan X, Li Z, Huang H, Lv S, Gong Y (2011) Detection of KRAS gene mutations in endoscopic ultrasound-guided fine-needle aspiration biopsy for improving pancreatic cancer diagnosis. Am J Gastroenterol 106:2104–2111PubMedCrossRefGoogle Scholar
  226. 226.
    Terhune PG, Phifer DM, Tosteson TD, Longnecker DS (1998) K-ras mutation in focal proliferative lesions of human pancreas. Cancer Epidemiol Biomarkers Prev 7:515–521PubMedGoogle Scholar
  227. 227.
    Hruban RH, Adsay NV, Albores-Saavedra J, Anver MR, Biankin AV, Boivin GP, Furth EE, Furukawa T, Klein A, Klimstra DS, Kloppel G, Lauwers GY, Longnecker DS, Luttges J, Maitra A, Offerhaus GJ, Pérez-Gallego L, Redston M, Tuveson DA (2006) Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. Cancer Res 66:95–106PubMedCrossRefGoogle Scholar
  228. 228.
    Aguirre AJ, Bardeesy N, Sinha M, Lopez L, Tuveson DA, Horner J, Redston MS, DePinho RA (2003) Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 17:3112–3126PubMedCrossRefGoogle Scholar
  229. 229.
    Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, Rustgi AK, Chang S, Tuveson DA (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7:469–483PubMedCrossRefGoogle Scholar
  230. 230.
    Kojima K, Vickers SM, Adsay NV, Jhala NC, Kim HG, Schoeb TR, Grizzle WE, Klug CA (2007) Inactivation of Smad4 accelerates Kras(G12D)-mediated pancreatic neoplasia. Cancer Res 67:8121–8130PubMedCrossRefGoogle Scholar
  231. 231.
    Ijichi H, Chytil A, Gorska AE, Aakre ME, Fujitani Y, Fujitani S, Wright CV, Moses HL (2006) Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression. Genes Dev 20:3147–3160PubMedCrossRefGoogle Scholar
  232. 232.
    Schüller HM, Jorquera R, Reichert A, Castonguay A (1993) Transplacental induction of pancreas tumors in hamsters by ethanol and the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Res 53:2498–2501PubMedGoogle Scholar
  233. 233.
    Hoffmann D, Hecht SS (1985) Nicotine-derived N-nitrosamines and tobacco-related cancer: current status and future directions. Cancer Res 45:935–944PubMedGoogle Scholar
  234. 234.
    Correa E, Joshi PA, Castonguay A, Schüller HM (1990) The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone is an active transplacental carcinogen in Syrian golden hamsters. Cancer Res 50:3435–3438PubMedGoogle Scholar
  235. 235.
    Wendt LR, Osvaldt AB, Bersch VP, Schumacher Rde C, Edelweiss MI, Rohde L (2007) Pancreatic intraepithelial neoplasia and ductal adenocarcinoma induced by DMBA in mice: effects of alcohol and caffeine. Acta Cir Bras 22:202–209PubMedCrossRefGoogle Scholar
  236. 236.
    Nishikawa A, Furukawa F, Imazawa T, Yoshimura H, Mitsumori K, Takahashi M (1992) Effects of caffeine, nicotine, ethanol and sodium selenite on pancreatic carcinogenesis in hamsters after initiation with N-nitrosobis(2-oxopropyl)amine. Carcinogenesis 13:1379–1382PubMedCrossRefGoogle Scholar
  237. 237.
    Tweedie JH, Reber HA, Pour PM, Pounder DM (1981) Potective effect of ethanol on the development of pancreatic cancer. Surg Forum 32:222–224Google Scholar
  238. 238.
    Howatson AG, Carter DC (1985) Pancreatic carcinogenesis-enhancement by cholecystokinin in the hamster-nitrosamine model. Br J Cancer 51:107–114PubMedCrossRefGoogle Scholar
  239. 239.
    Carrière C, Young AL, Gunn JR, Longnecker DS, Korc M (2009) Acute pancreatitis markedly accelerates pancreatic cancer progression in mice expressing oncogenic Kras. Biochem Biophys Res Commun 382:561–565PubMedCrossRefGoogle Scholar
  240. 240.
    Guerra C, Collado M, Navas C, Schuhmacher AJ, Hernández-Porras I, Canãmero M, Rodriguez-Justo M, Serrano M, Barbacid M (2011) Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell 19:728–739PubMedCrossRefGoogle Scholar
  241. 241.
    Jensen JN, Cameron E, Garay MV, Starkey TW, Gianani R, Jensen J (2005) Recapitulation of elements of embryonic development in adult mouse pancreatic regeneration. Gastroenterology 128:728–741PubMedCrossRefGoogle Scholar
  242. 242.
    Fendrich V, Esni F, Garay MV, Feldmann G, Habbe N, Jensen JN, Dor Y, Stoffers D, Jensen J, Leach SD, Maitra A (2008) Hedgehog signaling is required for effective regeneration of exocrine pancreas. Gastroenterology 135:621–631PubMedCrossRefGoogle Scholar
  243. 243.
    Siveke JT, Lubeseder-Martellato C, Lee M, Mazur PK, Nakhai H, Radtke F, Schmid RM (2008) Notch signaling is required for exocrine regeneration after acute pancreatitis. Gastroenterology 134:544–555PubMedCrossRefGoogle Scholar
  244. 244.
    De La OJ, Murtaugh LC (2009) Notch and Kras in pancreatic cancer: at the crossroads of mutation, differentiation and signaling. Cell Cycle 8:1860–1864CrossRefGoogle Scholar
  245. 245.
    Morris JP 4th, Cano DA, Sekine S, Wang SC, Hebrok M (2010) Beta-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. J Clin Invest 120:508–520PubMedCrossRefGoogle Scholar
  246. 246.
    Mizumoto K, Tsutsumi M, Denda A, Konishi Y (1988) Rapid production of pancreatic carcinoma by initiation with N-nitroso-bis(2-oxopropyl)amine and repeated augmentation pressure in hamsters. J Natl Cancer Inst 80:1564–1567PubMedCrossRefGoogle Scholar
  247. 247.
    Tsutsumi M, Kondoh S, Noguchi O, Horiguchi K, Kobayashi E, Okita S, Ohashi K, Honoki K, Tsujiuchi T, Konishi Y (1993) K-ras gene mutation in early ductal lesions induced in a rapid production model for pancreatic carcinomas in Syrian hamsters. Jpn J Cancer Res 84:1101–1105PubMedCrossRefGoogle Scholar
  248. 248.
    Hori M, Kitahashi T, Imai T, Ishigamori R, Takasu S, Mutoh M, Sugimura T, Wakabayashi K, Takahashi M (2011) Enhancement of carcinogenesis and fatty infiltration in the pancreas in N-nitrosobis(2-oxopropyl)amine-treated hamsters by high-fat diet. Pancreas 40:1234–1240PubMedCrossRefGoogle Scholar
  249. 249.
    Rosso E, Casnedi S, Pessaux P, Oussoultzoglou E, Panaro F, Mahfud M, Jaeck D, Bachellier P (2009) The role of “fatty pancreas” and of BMI in the occurrence of pancreatic fistula after pancreaticoduodenectomy. J Gastrointest Surg 13:1845–1851PubMedCrossRefGoogle Scholar
  250. 250.
    Lee JS, Kim SH, Jun DW, Han JH, Jang EC, Park JY, Son BK, Kim SH, Jo YJ, Park YS, Kim YS (2009) Clinical implications of fatty pancreas: correlations between fatty pancreas and metabolic syndrome. World J Gastroenterol 15:1869–1875PubMedCrossRefGoogle Scholar
  251. 251.
    Khasawneh J, Schulz MD, Walch A, Rozman J, Hrabe de Angelis M, Klingenspor M, Buck A, Schwaiger M, Saur D, Schmid RM, Klöppel G, Sipos B, Greten FR, Arkan MC (2009) Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion. Proc Natl Acad Sci U S A 106:3354–3359PubMedCrossRefGoogle Scholar
  252. 252.
    Lee KE, Bar-Sagi D (2010) Oncogenic KRas suppresses inflammation-associated senescence of pancreatic ductal cells. Cancer Cell 18:448–458PubMedCrossRefGoogle Scholar
  253. 253.
    Wolff RA (2003) Chemoprevention for pancreatic cancer. Int J Gastrointest Cancer 33:27–41PubMedCrossRefGoogle Scholar
  254. 254.
    Youns M, Efferth T, Hoheisel JD (2011) Transcript profiling identifies novel key players mediating the growth inhibitory effect of NS-398 on human pancreatic cancer cells. Eur J Pharmacol 650:170–177PubMedCrossRefGoogle Scholar
  255. 255.
    Kokawa A, Kondo H, Gotoda T, Ono H, Saito D, Nakadaira S, Kosuge T, Yoshida S (2001) Increased expression of cyclooxygenase-2 in human pancreatic neoplasms and potential for chemoprevention by cyclooxygenase inhibitors. Cancer 91:333–338PubMedCrossRefGoogle Scholar
  256. 256.
    Pino SM, Xiong HQ, McConkey D, Abbruzzese JL (2004) Novel therapies for pancreatic adenocarcinoma. Curr Gastroenterol Rep 6:119–125PubMedCrossRefGoogle Scholar
  257. 257.
    Kotsinas A, Gorgoulis V, Zacharatos P, Zioris H, Triposkiadis F, Donta I, Kyriakidis M, Karayannacos P, Kittas C (1999) Antioxidant agent nimesulid and beta-blocker metoprolol do not exert protective effects against rat mitochondrial DNA alterations in adriamycin-induced cardiotoxicity. Biochem Biophys Res Commun 254:651–656PubMedCrossRefGoogle Scholar
  258. 258.
    Furukawa F, Nishikawa A, Lee IS, Kanki K, Umemura T, Okazaki K, Kawamori T, Wakabayashi K, Hirose M (2003) A cyclooxygenase-2 inhibitor, nimesulide, inhibits postinitiation phase of N-nitrosobis(2-oxopropyl)amine-induced pancreatic carcinogenesis in hamsters. Int J Cancer 104:269–273PubMedCrossRefGoogle Scholar
  259. 259.
    Funahashi H, Satake M, Dawson D, Huynh NA, Reber HA, Hines OJ, Eibl G (2007) Delayed progression of pancreatic intraepithelial neoplasia in a conditional Kras(G12D) mouse model by a selective cyclooxygenase-2 inhibitor. Cancer Res 67:7068–7071PubMedCrossRefGoogle Scholar
  260. 260.
    Bosetti C, Gallus S, La Vecchia C (2009) Aspirin and cancer risk: a summary review to 2007. Recent Results Cancer Res 181:231–251PubMedCrossRefGoogle Scholar
  261. 261.
    Anderson KE, Johnson TW, Lazovich D, Folsom AR (2002) Association between nonsteroidal anti-inflammatory drug use and the incidence of pancreatic cancer. J Natl Cancer Inst 94:1168–1171PubMedCrossRefGoogle Scholar
  262. 262.
    Schernhammer ES, Kang JH, Chan AT, Michaud DS, Skinner HG, Giovannucci E, Colditz GA, Fuchs CS (2004) A prospective study of aspirin use and the risk of pancreatic cancer in women. J Natl Cancer Inst 96:22–28PubMedCrossRefGoogle Scholar
  263. 263.
    Fendrich V, Chen NM, Neef M, Waldmann J, Buchholz M, Feldmann G, Slater EP, Maitra A, Bartsch DK (2010) The angiotensin-I-converting enzyme inhibitor enalapril and aspirin delay progression of pancreatic intraepithelial neoplasia and cancer formation in a genetically engineered mouse model of pancreatic cancer. Gut 59:630–637PubMedCrossRefGoogle Scholar
  264. 264.
    Fujioka S, Sclabas GM, Schmidt C, Frederick WA, Dong QG, Abbruzzese JL, Evans DB, Baker C, Chiao PJ (2003) Function of nuclear factor kappaB in pancreatic cancer metastasis. Clin Cancer Res 9:346–354PubMedGoogle Scholar
  265. 265.
    Sclabas GM, Uwagawa T, Schmidt C, Hess KR, Evans DB, Abbruzzese JL, Chiao PJ (2005) Nuclear factor kappa B activation is a potential target for preventing pancreatic carcinoma by aspirin. Cancer 103:2485–2490PubMedCrossRefGoogle Scholar
  266. 266.
    Zhang Z, Rigas B (2006) NF-kappaB, inflammation and pancreatic carcinogenesis: NF-kappaB as a chemoprevention target (review). Int J Oncol 29:185–192PubMedGoogle Scholar
  267. 267.
    Takahashi M, Furukawa F, Toyoda K, Sato H, Hasegawa R, Imaida K, Hayashi Y (1990) Effects of various prostaglandin synthesis inhibitors on pancreatic carcinogenesis in hamsters after initiation with N-nitrosobis(2-oxopropyl)amine. Carcinogenesis 11:393–395PubMedCrossRefGoogle Scholar
  268. 268.
    Haanen C (2001) Sulindac and its derivatives: a novel class of anticancer agents. Curr Opin Investig Drugs 2:677–683PubMedGoogle Scholar
  269. 269.
    Schuller HM, Zhang L, Weddle DL, Castonguay A, Walker K, Miller MS (2002) The cyclooxygenase inhibitor ibuprofen and the FLAP inhibitor MK886 inhibit pancreatic carcinogenesis induced in hamsters by transplacental exposure to ethanol and the tobacco carcinogen NNK. J Cancer Res Clin Oncol 128:525–532PubMedCrossRefGoogle Scholar
  270. 270.
    Adachi T, Tajima Y, Kuroki T, Mishima T, Kitasato A, Tsuneoka N, Kanematsu T (2008) Chemopreventive effects of a selective cyclooxygenase-2 inhibitor (etodolac) on chemically induced intraductal papillary carcinoma of the pancreas in hamsters. Carcinogenesis 29:830–833PubMedCrossRefGoogle Scholar
  271. 271.
    Xu XF, Xie CG, Wang XP, Liu J, Yu YC, Hu HL, Guo CY (2008) Selective inhibition of cyclooxygenase-2 suppresses the growth of pancreatic cancer cells in vitro and in vivo. Tohoku J Exp Med 215:149–157PubMedCrossRefGoogle Scholar
  272. 272.
    Mukherjee P, Basu GD, Tinder TL, Subramani DB, Bradley JM, Arefayene M, Skaar T, De Petris G (2009) Progression of pancreatic adenocarcinoma is significantly impeded with a combination of vaccine and COX-2 inhibition. J Immunol 182:216–224PubMedCrossRefGoogle Scholar
  273. 273.
    Guerra M (1967) Toxicity of indomethacin. Report of a case of acute pancreatitis. JAMA 200:552–553PubMedCrossRefGoogle Scholar
  274. 274.
    Zygmunt DJ, Williams HJ, Bienz SR (1986) Acute pancreatitis associated with long-term sulindac therapy. West J Med 144:461–462PubMedGoogle Scholar
  275. 275.
    Cobb TK, Pierce JR Jr (1992) Acute pancreatitis associated with ketoprofen. South Med J 85:430–431PubMedCrossRefGoogle Scholar
  276. 276.
    Khan IH, Edward N (1993) Pancreatitis associated with diclofenac. Postgrad Med J 69:486–487PubMedCrossRefGoogle Scholar
  277. 277.
    Du Ville L, Debeuckelaere S, Reynaert H, Devis G (1993) Pancreatitis associated with naproxen. Am J Gastroenterol 88:464PubMedGoogle Scholar
  278. 278.
    Stevenson DD, White AA, Simon RA (2012) Aspirin as a cause of pancreatitis in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 129:1687–1688PubMedCrossRefGoogle Scholar
  279. 279.
    Carvalho KM, Morais TC, de Melo TS, de Castro Brito GA, de Andrade GM, Rao VS, Santos FA (2010) The natural flavonoid quercetin ameliorates cerulein-induced acute pancreatitis in mice. Biol Pharm Bull 33:1534–1539PubMedCrossRefGoogle Scholar
  280. 280.
    Babu BI, Malleo G, Genovese T, Mazzon E, Di Paola R, Crisafulli C, Caminiti R, Siriwardena AK, Cuzzocrea S (2009) Green tea polyphenols ameliorate pancreatic injury in cerulein-induced murine acute pancreatitis. Pancreas 38:954–967PubMedCrossRefGoogle Scholar
  281. 281.
    Durgaprasad S, Pai CG, Vasanthkumar AJF, Namitha S (2005) A pilot study of the antioxidant effect of curcumin in tropical pancreatitis. Indian J Med Res 122:315–318PubMedGoogle Scholar
  282. 282.
    Uden S, Bilton D, Nathan L, Hunt LP, Main C, Braganza JM (1990) Antioxidant therapy for recurrent pancreatitis: placebo-controlled trial. Aliment Pharmacol Ther 4:357–371PubMedCrossRefGoogle Scholar
  283. 283.
    Uden S, Schofield D, Miller PF, Day JP, Bottiglier T, Braganza JM (1992) Antioxidant therapy for recurrent pancreatitis: biochemical profiles in a placebo-controlled trial. Aliment Pharmacol Ther 6:229–240PubMedCrossRefGoogle Scholar
  284. 284.
    Bhardwaj P, Garg PK, Maulik SK, Saraya A, Tandon RK, Acharya SK (2009) A randomized controlled trial of antioxidant supplementation for pain relief in patients with chronic pancreatitis. Gastroenterology 136:149–159PubMedCrossRefGoogle Scholar
  285. 285.
    Mizumoto K, Ito S, Kitazawa S, Tsutsumi M, Denda A, Konishi Y (1989) Inhibitory effect of butylated hydroxyanisole administration on pancreatic carcinogenesis in Syrian hamsters initiated with N-nitrosobis(2-oxopropyl)amine. Carcinogenesis 10:1491–1494PubMedCrossRefGoogle Scholar
  286. 286.
    Hiura A, Tsutsumi M, Satake K (1997) Inhibitory effect of green tea extract on the process of pancreatic carcinogenesis induced by N-nitrosobis-(2-oxypropyl)amine (BOP) and on tumor promotion after transplantation of N-nitrosobis-(2-hydroxypropyl)amine (BHP)-induced pancreatic cancer in Syrian hamsters. Pancreas 15:272–277PubMedCrossRefGoogle Scholar
  287. 287.
    Nakamura H, Nishikawa A, Furukawa F, Kasahara K, Miyauchi M, Son HY, Hirose M (2000) Inhibitory effects of protocatechuic acid on the post-initiation phase of hamster pancreatic carcinogenesis induced by N-nitrosobis(2-oxopropyl)amine. Anticancer Res 20:3423–3427PubMedGoogle Scholar
  288. 288.
    Yokomatsu H, Hiura A, Tsutsumi M, Satake K (1996) Inhibitory effect of sarcophytol A on pancreatic carcinogenesis after initiation by N-nitrosobis(2-oxypropyl)amine in Syrian hamsters. Pancreas 13:154–159PubMedCrossRefGoogle Scholar
  289. 289.
    Furukawa F, Nishikawa A, Lee IS, Son HY, Nakamura H, Miyauchi M, Takahashi M, Hirose M (2000) Inhibition by methionine of pancreatic carcinogenesis in hamsters after initiation with N-nitrosobis(2-oxopropyl) amine. Cancer Lett 152:163–167PubMedCrossRefGoogle Scholar
  290. 290.
    Woutersen RA, Appel MJ, Van Garderen-Hoetmer A (1999) Modulation of pancreatic carcinogenesis by antioxidants. Food Chem Toxicol 37:981–984PubMedCrossRefGoogle Scholar
  291. 291.
    Hillon P, Guiu B, Vincent J, Petit JM (2010) Obesity, type 2 diabetes and risk of digestive cancer. Gastroenterol Clin Biol 34:529–533PubMedCrossRefGoogle Scholar
  292. 292.
    Heikkinen S, Auwerx J, Argmann CA (2007) PPARgamma in human and mouse physiology. Biochim Biophys Acta 1771:999–1013PubMedCrossRefGoogle Scholar
  293. 293.
    Burns KA, Vanden Heuvel JP (2007) Modulation of PPAR activity via phosphorylation. Biochim Biophys Acta 1771:952–960PubMedCrossRefGoogle Scholar
  294. 294.
    Zingarelli B, Sheehan M, Hake PW, O'Connor M, Denenberg A, Cook JA (2003) Peroxisome proliferator activator receptor-gamma ligands, 15-deoxy-Delta(12,14)-prostaglandin J2 and ciglitazone, reduce systemic inflammation in polymicrobial sepsis by modulation of signal transduction pathways. J Immunol 171:6827–6837PubMedGoogle Scholar
  295. 295.
    Mukherjee R, Davies PJ, Crombie DL, Bischoff ED, Cesario RM, Jow L, Hamann LG, Boehm MF, Mondon CE, Nadzan AM, Paterniti JR Jr, Heyman RA (1997) Sensitization of diabetic and obese mice to insulin by retinoid X receptor agonists. Nature 386:407–410PubMedCrossRefGoogle Scholar
  296. 296.
    Leung N, Naples M, Uffelman K, Szeto L, Adeli K, Lewis GF (2004) Rosiglitazone improves intestinal lipoprotein overproduction in the fat-fed Syrian Golden hamster, an animal model of nutritionally-induced insulin resistance. Atherosclerosis 174:235–241PubMedCrossRefGoogle Scholar
  297. 297.
    Schneider MB, Matsuzaki H, Haorah J, Ulrich A, Standop J, Ding XZ, Adrian TE, Pour PM (2001) Prevention of pancreatic cancer induction in hamsters by metformin. Gastroenterology 120:1263–1270PubMedCrossRefGoogle Scholar
  298. 298.
    Kisfalvi K, Eibl G, Sinnett-Smith J, Rozengurt E (2009) Metformin disrupts crosstalk between G protein-coupled receptor and insulin receptor signaling systems and inhibits pancreatic cancer growth. Cancer Res 69:6539–6545PubMedCrossRefGoogle Scholar
  299. 299.
    Li D, Yeung SC, Hassan MM, Konopleva M, Abbruzzese JL (2009) Antidiabetic therapies affect risk of pancreatic cancer. Gastroenterology 137:482–488PubMedCrossRefGoogle Scholar
  300. 300.
    Ersoy C, Kiyici S, Budak F, Oral B, Guclu M, Duran C, Selimoglu H, Erturk E, Tuncel E, Imamoglu S (2008) The effect of metformin treatment on VEGF and PAI-1 levels in obese type 2 diabetic patients. Diabetes Res Clin Pract 81:56–60PubMedCrossRefGoogle Scholar
  301. 301.
    Lund SS, Tarnow L, Stehouwer CD, Schalkwijk CG, Teerlink T, Gram J, Winther K, Frandsen M, Smidt UM, Pedersen O, Parving HH, Vaag AA (2008) Impact of metformin versus repaglinide on non-glycaemic cardiovascular risk markers related to inflammation and endothelial dysfunction in non-obese patients with type 2 diabetes. Eur J Endocrinol 158:631–641PubMedCrossRefGoogle Scholar
  302. 302.
    Huang NL, Chiang SH, Hsueh CH, Liang YJ, Chen YJ, Lai LP (2009) Metformin inhibits TNF-alpha-induced IkappaB kinase phosphorylation, IkappaB-alpha degradation and IL-6 production in endothelial cells through PI3K-dependent AMPK phosphorylation. Int J Cardiol 134:169–175PubMedCrossRefGoogle Scholar
  303. 303.
    Bonnefont-Rousselot D, Raji B, Walrand S, Gardes-Albert M, Jore D, Legrand A, Peynet J, Vasson MP (2003) An intracellular modulation of free radical production could contribute to the beneficial effects of metformin towards oxidative stress. Metabolism 52:586–589PubMedCrossRefGoogle Scholar
  304. 304.
    Ben Sahra I, Laurent K, Loubat A, Giorgetti-Peraldi S, Colosetti P, Auberger P, Tanti JF, Le Marchand-Brustel Y, Bost F (2008) The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 27:3576–3586PubMedCrossRefGoogle Scholar
  305. 305.
    Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, Kirby A, Sourjina T, Peto R, Collins R, Simes R (2005) Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366:1267–1278PubMedCrossRefGoogle Scholar
  306. 306.
    Chan KK, Oza AM, Siu LL (2003) The statins as anticancer agents. Clin Cancer Res 9:10–19PubMedGoogle Scholar
  307. 307.
    Bu DX, Griffin G, Lichtman AH (2011) Mechanisms for the anti-inflammatory effects of statins. Curr Opin Lipidol 22:165–170PubMedCrossRefGoogle Scholar
  308. 308.
    Vaklavas C, Chatzizisis YS, Tsimberidou AM (2011) Common cardiovascular medications in cancer therapeutics. Pharmacol Ther 130:177–190PubMedCrossRefGoogle Scholar
  309. 309.
    Wei L, Yamamoto M, Harada M, Otsuki M (2011) Treatment with pravastatin attenuates progression of chronic pancreatitis in rat. Lab Invest 91:872–884PubMedCrossRefGoogle Scholar
  310. 310.
    Kusama T, Mukai M, Iwasaki T, Tatsuta M, Matsumoto Y, Akedo H, Inoue M, Nakamura H (2002) 3-Hydroxy-3-methylglutaryl-coenzyme a reductase inhibitors reduce human pancreatic cancer cell invasion and metastasis. Gastroenterology 122:308–317PubMedCrossRefGoogle Scholar
  311. 311.
    Gbelcová H, Lenícek M, Zelenka J, Knejzlik Z, Dvoráková G, Zadinová M, Poucková P, Kudla M, Balaz P, Ruml T, Vitek L (2008) Differences in antitumor effects of various statins on human pancreatic cancer. Int J Cancer 122:1214–1221PubMedCrossRefGoogle Scholar
  312. 312.
    Khurana V, Sheth A, Caldito G, Barkin JS (2007) Statins reduce the risk of pancreatic cancer in humans: a case–control study of half a million veterans. Pancreas 34:260–265PubMedCrossRefGoogle Scholar
  313. 313.
    Cui X, Xie Y, Chen M, Li J, Liao X, Shen J, Shi M, Li W, Zheng H, Jiang B (2012) Statin use and risk of pancreatic cancer: a meta-analysis. Cancer Causes Control 23:1099–1111PubMedCrossRefGoogle Scholar
  314. 314.
    Yao CJ, Lai GM, Chan CF, Cheng AL, Yang YY, Chuang SE (2006) Dramatic synergistic anticancer effect of clinically achievable doses of lovastatin and troglitazone. Int J Cancer 118:773–779PubMedCrossRefGoogle Scholar
  315. 315.
    Bocci G, Fioravanti A, Orlandi P, Bernardini N, Collecchi P, Del Tacca M, Danesi R (2005) Fluvastatin synergistically enhances the antiproliferative effect of gemcitabine in human pancreatic cancer MIAPaCa-2 cells. Br J Cancer 93:319–330PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Mami Takahashi
    • 1
    Email author
  • Michihiro Mutoh
    • 2
  • Rikako Ishigamori
    • 2
  • Gen Fujii
    • 2
  • Toshio Imai
    • 1
  1. 1.Central Animal DivisionNational Cancer Center Research InstituteChuo-kuJapan
  2. 2.Division of Cancer Prevention ResearchNational Cancer Center Research InstituteChuo-kuJapan

Personalised recommendations