Seminars in Immunopathology

, Volume 34, Issue 4, pp 551–566

Intraepithelial lymphocytes in celiac disease immunopathology

Research Article

Abstract

Celiac disease is a T cell-mediated immune disorder induced by dietary gluten that is characterized by the development of an inflammatory anti-gluten CD4 T cell response, anti-gluten antibodies, and autoantibodies against tissue transglutaminase 2 and the activation of intraepithelial lymphocytes (IELs) leading to the destruction of the intestinal epithelium. Intraepithelial lymphocytes represent a heterogeneous population of T cells composed mainly of cytotoxic CD8 T cells residing within the epithelial layer, whose main role is to maintain the integrity of the epithelium by eliminating infected cells and promoting epithelial repair. Dysregulated activation of IELs is a hallmark of CD and is critically involved in epithelial cell destruction and the subsequent development of villous atrophy. In this review, we compare and contrast the phenotype and function of human and mouse small intestinal IELs under physiological conditions. Furthermore, we discuss how conditions of epithelial distress associated with overexpression of IL-15 and non-classical MHC class I molecules induce cytotoxic IELs to become licensed killer cells that upregulate activating NKG2D and CD94/NKG2C natural killer receptors, acquiring lymphokine killer activity. Pathways leading to dysregulated IEL activation could eventually be targeted to prevent villous atrophy and treat patients who respond poorly to gluten-free diet.

Keywords

Celiac disease Intraepithelial lymphocytes NKG2D CD94/NKG2C TCRγδ T cells IL-15 

References

  1. 1.
    Beagley KW, Fujihashi K, Lagoo AS, Lagoo-Deenadaylan S, Black CA, Murray AM, Sharmanov AT, Yamamoto M, McGhee JR, Elson CO et al (1995) Differences in intraepithelial lymphocyte T cell subsets isolated from murine small versus large intestine. J Immunol 154:5611–5619PubMedGoogle Scholar
  2. 2.
    Lundqvist C, Baranov V, Hammarstrom S, Athlin L, Hammarstrom ML (1995) Intra-epithelial lymphocytes. Evidence for regional specialization and extrathymic T cell maturation in the human gut epithelium. Int Immunol 7:1473–1487PubMedGoogle Scholar
  3. 3.
    Ebert EC (1998) Interleukin 15 is a potent stimulant of intraepithelial lymphocytes. Gastroenterology 115:1439–1445PubMedGoogle Scholar
  4. 4.
    Guy-Grand D, Cuenod-Jabri B, Malassis-Seris M, Selz F, Vassalli P (1996) Complexity of the mouse gut T cell immune system: identification of two distinct natural killer T cell intraepithelial lineages. Eur J Immunol 26:2248–2256PubMedGoogle Scholar
  5. 5.
    Roberts AI, Lee L, Schwarz E, Groh V, Spies T, Ebert EC, Jabri B (2001) NKG2D receptors induced by IL-15 costimulate CD28-negative effector CTL in the tissue microenvironment. J Immunol 167:5527–5530PubMedGoogle Scholar
  6. 6.
    Jabri B, Ebert E (2007) Human CD8+ intraepithelial lymphocytes: a unique model to study the regulation of effector cytotoxic T lymphocytes in tissue. Immunol Rev 215:202–214PubMedGoogle Scholar
  7. 7.
    Mysorekar IU, Lorenz RG, Gordon JI (2002) A gnotobiotic transgenic mouse model for studying interactions between small intestinal enterocytes and intraepithelial lymphocytes. J Biol Chem 277:37811–37819PubMedGoogle Scholar
  8. 8.
    Ferguson A (1977) Intraepithelial lymphocytes of the small intestine. Gut 18:921–937PubMedGoogle Scholar
  9. 9.
    Wurbel MA, Philippe JM, Nguyen C, Victorero G, Freeman T, Wooding P, Miazek A, Mattei MG, Malissen M, Jordan BR, Malissen B, Carrier A, Naquet P (2000) The chemokine TECK is expressed by thymic and intestinal epithelial cells and attracts double- and single-positive thymocytes expressing the TECK receptor CCR9. Eur J Immunol 30:262–271PubMedGoogle Scholar
  10. 10.
    Zabel BA, Agace WW, Campbell JJ, Heath HM, Parent D, Roberts AI, Ebert EC, Kassam N, Qin S, Zovko M, LaRosa GJ, Yang LL, Soler D, Butcher EC, Ponath PD, Parker CM, Andrew DP (1999) Human G protein-coupled receptor GPR-9-6/CC chemokine receptor 9 is selectively expressed on intestinal homing T lymphocytes, mucosal lymphocytes, and thymocytes and is required for thymus-expressed chemokine-mediated chemotaxis. J Exp Med 190:1241–1256PubMedGoogle Scholar
  11. 11.
    Cepek KL, Shaw SK, Parker CM, Russell GJ, Morrow JS, Rimm DL, Brenner MB (1994) Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin. Nature 372:190–193PubMedGoogle Scholar
  12. 12.
    Cerf-Bensussan N, Jarry A, Brousse N, Lisowska-Grospierre B, Guy-Grand D, Griscelli C (1987) A monoclonal antibody (HML-1) defining a novel membrane molecule present on human intestinal lymphocytes. Eur J Immunol 17:1279–1285PubMedGoogle Scholar
  13. 13.
    Kilshaw PJ, Murant SJ (1990) A new surface antigen on intraepithelial lymphocytes in the intestine. Eur J Immunol 20:2201–2207PubMedGoogle Scholar
  14. 14.
    Schon MP, Arya A, Murphy EA, Adams CM, Strauch UG, Agace WW, Marsal J, Donohue JP, Her H, Beier DR, Olson S, Lefrancois L, Brenner MB, Grusby MJ, Parker CM (1999) Mucosal T lymphocyte numbers are selectively reduced in integrin alpha E (CD103)-deficient mice. J Immunol 162:6641–6649PubMedGoogle Scholar
  15. 15.
    Probert CS, Saubermann LJ, Balk S, Blumberg RS (2007) Repertoire of the alpha beta T-cell receptor in the intestine. Immunol Rev 215:215–225PubMedGoogle Scholar
  16. 16.
    Blumberg RS, Yockey CE, Gross GG, Ebert EC, Balk SP (1993) Human intestinal intraepithelial lymphocytes are derived from a limited number of T cell clones that utilize multiple V beta T cell receptor genes. J Immunol 150:5144–5153PubMedGoogle Scholar
  17. 17.
    Van Kerckhove C, Russell GJ, Deusch K, Reich K, Bhan AK, DerSimonian H, Brenner MB (1992) Oligoclonality of human intestinal intraepithelial T cells. J Exp Med 175:57–63PubMedGoogle Scholar
  18. 18.
    Jabri B, Selby JM, Negulescu H, Lee L, Roberts AI, Beavis A, Lopez-Botet M, Ebert EC, Winchester RJ (2002) TCR specificity dictates CD94/NKG2A expression by human CTL. Immunity 17:487–499PubMedGoogle Scholar
  19. 19.
    Bruce D, Cantorna MT (2011) Intrinsic requirement for the vitamin D receptor in the development of CD8alphaalpha-expressing T cells. J Immunol 186:2819–2825PubMedGoogle Scholar
  20. 20.
    Li Y, Innocentin S, Withers DR, Roberts NA, Gallagher AR, Grigorieva EF, Wilhelm C, Veldhoen M (2011) Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147:629–640PubMedGoogle Scholar
  21. 21.
    Jarry A, Cerf-Bensussan N, Brousse N, Selz F, Guy-Grand D (1990) Subsets of CD3+ (T cell receptor alpha/beta or gamma/delta) and CD3- lymphocytes isolated from normal human gut epithelium display phenotypical features different from their counterparts in peripheral blood. Eur J Immunol 20:1097–1103PubMedGoogle Scholar
  22. 22.
    Guy-Grand D, Cerf-Bensussan N, Malissen B, Malassis-Seris M, Briottet C, Vassalli P (1991) Two gut intraepithelial CD8+ lymphocyte populations with different T cell receptors: a role for the gut epithelium in T cell differentiation. J Exp Med 173:471–481PubMedGoogle Scholar
  23. 23.
    Pereira P, Gerber D, Huang SY, Tonegawa S (1995) Ontogenic development and tissue distribution of V gamma 1-expressing gamma/delta T lymphocytes in normal mice. J Exp Med 182:1921–1930PubMedGoogle Scholar
  24. 24.
    Takagaki Y, DeCloux A, Bonneville M, Tonegawa S (1989) Diversity of gamma delta T-cell receptors on murine intestinal intra-epithelial lymphocytes. Nature 339:712–714PubMedGoogle Scholar
  25. 25.
    Chowers Y, Holtmeier W, Harwood J, Morzycka-Wroblewska E, Kagnoff MF (1994) The V delta 1 T cell receptor repertoire in human small intestine and colon. J Exp Med 180:183–190PubMedGoogle Scholar
  26. 26.
    Deusch K, Luling F, Reich K, Classen M, Wagner H, Pfeffer K (1991) A major fraction of human intraepithelial lymphocytes simultaneously expresses the gamma/delta T cell receptor, the CD8 accessory molecule and preferentially uses the V delta 1 gene segment. Eur J Immunol 21:1053–1059PubMedGoogle Scholar
  27. 27.
    Halstensen TS, Scott H, Brandtzaeg P (1989) Intraepithelial T cells of the TcR gamma/delta + CD8- and V delta 1/J delta 1+ phenotypes are increased in coeliac disease. Scand J Immunol 30:665–672PubMedGoogle Scholar
  28. 28.
    Guy-Grand D, Rocha B, Mintz P, Malassis-Seris M, Selz F, Malissen B, Vassalli P (1994) Different use of T cell receptor transducing modules in two populations of gut intraepithelial lymphocytes are related to distinct pathways of T cell differentiation. J Exp Med 180:673–679PubMedGoogle Scholar
  29. 29.
    Cheroutre H, Lambolez F, Mucida D (2011) The light and dark sides of intestinal intraepithelial lymphocytes. Nat Rev Immunol 11:445–456PubMedGoogle Scholar
  30. 30.
    Leishman AJ, Naidenko OV, Attinger A, Koning F, Lena CJ, Xiong Y, Chang HC, Reinherz E, Kronenberg M, Cheroutre H (2001) T cell responses modulated through interaction between CD8alphaalpha and the nonclassical MHC class I molecule, TL. Science 294:1936–1939PubMedGoogle Scholar
  31. 31.
    Hayday A, Theodoridis E, Ramsburg E, Shires J (2001) Intraepithelial lymphocytes: exploring the Third Way in immunology. Nat Immunol 2:997–1003PubMedGoogle Scholar
  32. 32.
    Das G, Janeway CA Jr (1999) Development of CD8alpha/alpha and CD8alpha/beta T cells in major histocompatibility complex class I-deficient mice. J Exp Med 190:881–884PubMedGoogle Scholar
  33. 33.
    Park SH, Guy-Grand D, Lemonnier FA, Wang CR, Bendelac A, Jabri B (1999) Selection and expansion of CD8alpha/alpha(1) T cell receptor alpha/beta(1) intestinal intraepithelial lymphocytes in the absence of both classical major histocompatibility complex class I and nonclassical CD1 molecules. J Exp Med 190:885–890PubMedGoogle Scholar
  34. 34.
    Regnault A, Cumano A, Vassalli P, Guy-Grand D, Kourilsky P (1994) Oligoclonal repertoire of the CD8 alpha alpha and the CD8 alpha beta TCR-alpha/beta murine intestinal intraepithelial T lymphocytes: evidence for the random emergence of T cells. J Exp Med 180:1345–1358PubMedGoogle Scholar
  35. 35.
    Gapin L, Cheroutre H, Kronenberg M (1999) Cutting edge: TCR alpha beta + CD8 alpha alpha + T cells are found in intestinal intraepithelial lymphocytes of mice that lack classical MHC class I molecules. J Immunol 163:4100–4104PubMedGoogle Scholar
  36. 36.
    Rocha B, Vassalli P, Guy-Grand D (1991) The V beta repertoire of mouse gut homodimeric alpha CD8+ intraepithelial T cell receptor alpha/beta + lymphocytes reveals a major extrathymic pathway of T cell differentiation. J Exp Med 173:483–486PubMedGoogle Scholar
  37. 37.
    Guy-Grand D, DiSanto JP, Henchoz P, Malassis-Seris M, Vassalli P (1998) Small bowel enteropathy: role of intraepithelial lymphocytes and of cytokines (IL-12, IFN-gamma, TNF) in the induction of epithelial cell death and renewal. Eur J Immunol 28:730–744PubMedGoogle Scholar
  38. 38.
    Long EO, Burshtyn DN, Clark WP, Peruzzi M, Rajagopalan S, Rojo S, Wagtmann N, Winter CC (1997) Killer cell inhibitory receptors: diversity, specificity, and function. Immunol Rev 155:135–144PubMedGoogle Scholar
  39. 39.
    Eagle RA, Trowsdale J (2007) Promiscuity and the single receptor: NKG2D. Nat Rev Immunol 7:737–744PubMedGoogle Scholar
  40. 40.
    Vance RE, Kraft JR, Altman JD, Jensen PE, Raulet DH (1998) Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1(b). J Exp Med 188:1841–1848PubMedGoogle Scholar
  41. 41.
    Balk SP, Ebert EC, Blumenthal RL, McDermott FV, Wucherpfennig KW, Landau SB, Blumberg RS (1991) Oligoclonal expansion and CD1 recognition by human intestinal intraepithelial lymphocytes. Science 253:1411–1415PubMedGoogle Scholar
  42. 42.
    Gross GG, Schwartz VL, Stevens C, Ebert EC, Blumberg RS, Balk SP (1994) Distribution of dominant T cell receptor beta chains in human intestinal mucosa. J Exp Med 180:1337–1344PubMedGoogle Scholar
  43. 43.
    Eiras P, Roldan E, Camarero C, Olivares F, Bootello A, Roy G (1998) Flow cytometry description of a novel CD3-/CD7+ intraepithelial lymphocyte subset in human duodenal biopsies: potential diagnostic value in coeliac disease. Cytometry 34:95–102PubMedGoogle Scholar
  44. 44.
    Jabri B, de Serre NP, Cellier C, Evans K, Gache C, Carvalho C, Mougenot JF, Allez M, Jian R, Desreumaux P, Colombel JF, Matuchansky C, Cugnenc H, Lopez-Botet M, Vivier E, Moretta A, Roberts AI, Ebert EC, Guy-Grand D, Brousse N, Schmitz J, Cerf-Bensussan N (2000) Selective expansion of intraepithelial lymphocytes expressing the HLA-E-specific natural killer receptor CD94 in celiac disease. Gastroenterology 118:867–879PubMedGoogle Scholar
  45. 45.
    Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–729PubMedGoogle Scholar
  46. 46.
    Chalupny NJ, Sutherland CL, Lawrence WA, Rein-Weston A, Cosman D (2003) ULBP4 is a novel ligand for human NKG2D. Biochem Biophys Res Commun 305:129–135PubMedGoogle Scholar
  47. 47.
    Cosman D, Mullberg J, Sutherland CL, Chin W, Armitage R, Fanslow W, Kubin M, Chalupny NJ (2001) ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14:123–133PubMedGoogle Scholar
  48. 48.
    Jabri B, Meresse B (2006) NKG2 receptor-mediated regulation of effector CTL functions in the human tissue microenvironment. Curr Top Microbiol Immunol 298:139–156PubMedGoogle Scholar
  49. 49.
    Jamieson AM, Diefenbach A, McMahon CW, Xiong N, Carlyle JR, Raulet DH (2002) The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity 17:19–29PubMedGoogle Scholar
  50. 50.
    Wu J, Song Y, Bakker AB, Bauer S, Spies T, Lanier LL, Phillips JH (1999) An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285:730–732PubMedGoogle Scholar
  51. 51.
    Diefenbach A, Tomasello E, Lucas M, Jamieson AM, Hsia JK, Vivier E, Raulet DH (2002) Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nat Immunol 3:1142–1149PubMedGoogle Scholar
  52. 52.
    Braud VM, Allan DS, O'Callaghan CA, Soderstrom K, D'Andrea A, Ogg GS, Lazetic S, Young NT, Bell JI, Phillips JH, Lanier LL, McMichael AJ (1998) HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391:795–799PubMedGoogle Scholar
  53. 53.
    Lee N, Llano M, Carretero M, Ishitani A, Navarro F, Lopez-Botet M, Geraghty DE (1998) HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc Natl Acad Sci USA 95:5199–5204PubMedGoogle Scholar
  54. 54.
    Lopez-Botet M, Llano M, Navarro F, Bellon T (2000) NK cell recognition of non-classical HLA class I molecules. Semin Immunol 12:109–119PubMedGoogle Scholar
  55. 55.
    Lanier LL, Corliss B, Wu J, Phillips JH (1998) Association of DAP12 with activating CD94/NKG2C NK cell receptors. Immunity 8:693–701PubMedGoogle Scholar
  56. 56.
    Meresse B, Curran SA, Ciszewski C, Orbelyan G, Setty M, Bhagat G, Lee L, Tretiakova M, Semrad C, Kistner E, Winchester RJ, Braud V, Lanier LL, Geraghty DE, Green PH, Guandalini S, Jabri B (2006) Reprogramming of CTLs into natural killer-like cells in celiac disease. J Exp Med 203:1343–1355PubMedGoogle Scholar
  57. 57.
    Aldemir H, Prod'homme V, Dumaurier MJ, Retiere C, Poupon G, Cazareth J, Bihl F, Braud VM (2005) Cutting edge: lectin-like transcript 1 is a ligand for the CD161 receptor. J Immunol 175:7791–7795PubMedGoogle Scholar
  58. 58.
    Rosen DB, Bettadapura J, Alsharifi M, Mathew PA, Warren HS, Lanier LL (2005) Cutting edge: lectin-like transcript-1 is a ligand for the inhibitory human NKR-P1A receptor. J Immunol 175:7796–7799PubMedGoogle Scholar
  59. 59.
    Inagaki-Ohara K, Sakamoto Y, Dohi T, Smith AL (2011) gammadelta T cells play a protective role during infection with Nippostrongylus brasiliensis by promoting goblet cell function in the small intestine. Immunology 134:448–458PubMedGoogle Scholar
  60. 60.
    Roberts SJ, Smith AL, West AB, Wen L, Findly RC, Owen MJ, Hayday AC (1996) T-cell alpha beta + and gamma delta + deficient mice display abnormal but distinct phenotypes toward a natural, widespread infection of the intestinal epithelium. Proc Natl Acad Sci USA 93:11774–11779PubMedGoogle Scholar
  61. 61.
    Lepage AC, Buzoni-Gatel D, Bout DT, Kasper LH (1998) Gut-derived intraepithelial lymphocytes induce long term immunity against Toxoplasma gondii. J Immunol 161:4902–4908PubMedGoogle Scholar
  62. 62.
    Chardes T, Buzoni-Gatel D, Lepage A, Bernard F, Bout D (1994) Toxoplasma gondii oral infection induces specific cytotoxic CD8 alpha/beta + Thy-1+ gut intraepithelial lymphocytes, lytic for parasite-infected enterocytes. J Immunol 153:4596–4603PubMedGoogle Scholar
  63. 63.
    Moretto M, Weiss LM, Khan IA (2004) Induction of a rapid and strong antigen-specific intraepithelial lymphocyte response during oral Encephalitozoon cuniculi infection. J Immunol 172:4402–4409PubMedGoogle Scholar
  64. 64.
    Lefrancois L, Goodman T (1989) In vivo modulation of cytolytic activity and Thy-1 expression in TCR-gamma delta + intraepithelial lymphocytes. Science 243:1716–1718PubMedGoogle Scholar
  65. 65.
    Dalton JE, Cruickshank SM, Egan CE, Mears R, Newton DJ, Andrew EM, Lawrence B, Howell G, Else KJ, Gubbels MJ, Striepen B, Smith JE, White SJ, Carding SR (2006) Intraepithelial gammadelta + lymphocytes maintain the integrity of intestinal epithelial tight junctions in response to infection. Gastroenterology 131:818–829PubMedGoogle Scholar
  66. 66.
    Epple HJ, Allers K, Troger H, Kuhl A, Erben U, Fromm M, Zeitz M, Loddenkemper C, Schulzke JD, Schneider T (2010) Acute HIV infection induces mucosal infiltration with CD4+ and CD8+ T cells, epithelial apoptosis, and a mucosal barrier defect. Gastroenterology 139:1289–1300PubMedGoogle Scholar
  67. 67.
    Raffatellu M, Santos RL, Verhoeven DE, George MD, Wilson RP, Winter SE, Godinez I, Sankaran S, Paixao TA, Gordon MA, Kolls JK, Dandekar S, Baumler AJ (2008) Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nat Med 14:421–428PubMedGoogle Scholar
  68. 68.
    Hue S, Mention JJ, Monteiro RC, Zhang S, Cellier C, Schmitz J, Verkarre V, Fodil N, Bahram S, Cerf-Bensussan N, Caillat-Zucman S (2004) A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 21:367–377PubMedGoogle Scholar
  69. 69.
    Meresse B, Chen Z, Ciszewski C, Tretiakova M, Bhagat G, Krausz TN, Raulet DH, Lanier LL, Groh V, Spies T, Ebert EC, Green PH, Jabri B (2004) Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 21:357–366PubMedGoogle Scholar
  70. 70.
    Rust C, Kooy Y, Pena S, Mearin ML, Kluin P, Koning F (1992) Phenotypical and functional characterization of small intestinal TcR gamma delta + T cells in coeliac disease. Scand J Immunol 35:459–468PubMedGoogle Scholar
  71. 71.
    Chen Y, Chou K, Fuchs E, Havran WL, Boismenu R (2002) Protection of the intestinal mucosa by intraepithelial gamma delta T cells. Proc Natl Acad Sci USA 99:14338–14343PubMedGoogle Scholar
  72. 72.
    Inagaki-Ohara K, Dewi FN, Hisaeda H, Smith AL, Jimi F, Miyahira M, Abdel-Aleem AS, Horii Y, Nawa Y (2006) Intestinal intraepithelial lymphocytes sustain the epithelial barrier function against Eimeria vermiformis infection. Infect Immun 74:5292–5301PubMedGoogle Scholar
  73. 73.
    Ismail AS, Behrendt CL, Hooper LV (2009) Reciprocal interactions between commensal bacteria and gamma delta intraepithelial lymphocytes during mucosal injury. J Immunol 182:3047–3054PubMedGoogle Scholar
  74. 74.
    Boismenu R, Havran WL (1994) Modulation of epithelial cell growth by intraepithelial gamma delta T cells. Science 266:1253–1255PubMedGoogle Scholar
  75. 75.
    Komano H, Fujiura Y, Kawaguchi M, Matsumoto S, Hashimoto Y, Obana S, Mombaerts P, Tonegawa S, Yamamoto H, Itohara S et al (1995) Homeostatic regulation of intestinal epithelia by intraepithelial gamma delta T cells. Proc Natl Acad Sci USA 92:6147–6151PubMedGoogle Scholar
  76. 76.
    Yang H, Antony PA, Wildhaber BE, Teitelbaum DH (2004) Intestinal intraepithelial lymphocyte gamma delta-T cell-derived keratinocyte growth factor modulates epithelial growth in the mouse. J Immunol 172:4151–4158PubMedGoogle Scholar
  77. 77.
    Kamanaka M, Kim ST, Wan YY, Sutterwala FS, Lara-Tejero M, Galan JE, Harhaj E, Flavell RA (2006) Expression of interleukin-10 in intestinal lymphocytes detected by an interleukin-10 reporter knockin tiger mouse. Immunity 25:941–952PubMedGoogle Scholar
  78. 78.
    Mengel J, Cardillo F, Aroeira LS, Williams O, Russo M, Vaz NM (1995) Anti-gamma delta T cell antibody blocks the induction and maintenance of oral tolerance to ovalbumin in mice. Immunol Lett 48:97–102PubMedGoogle Scholar
  79. 79.
    Fujihashi K, Dohi T, Kweon MN, McGhee JR, Koga T, Cooper MD, Tonegawa S, Kiyono H (1999) Gammadelta T cells regulate mucosally induced tolerance in a dose-dependent fashion. Int Immunol 11:1907–1916PubMedGoogle Scholar
  80. 80.
    Bhagat G, Naiyer AJ, Shah JG, Harper J, Jabri B, Wang TC, Green PH, Manavalan JS (2008) Small intestinal CD8 + TCRgammadelta + NKG2A + intraepithelial lymphocytes have attributes of regulatory cells in patients with celiac disease. J Clin Invest 118:281–293PubMedGoogle Scholar
  81. 81.
    Cheroutre H, Lambolez F (2008) Doubting the TCR coreceptor function of CD8alphaalpha. Immunity 28:149–159PubMedGoogle Scholar
  82. 82.
    Corazza GR, Villanacci V (2005) Coeliac disease. J Clin Pathol 58:573–574PubMedGoogle Scholar
  83. 83.
    Veress B, Franzen L, Bodin L, Borch K (2004) Duodenal intraepithelial lymphocyte-count revisited. Scand J Gastroenterol 39:138–144PubMedGoogle Scholar
  84. 84.
    Goldstein NS (2004) Proximal small-bowel mucosal villous intraepithelial lymphocytes. Histopathology 44:199–205PubMedGoogle Scholar
  85. 85.
    Vecchi M, Crosti L, Berti E, Agape D, Cerri A, De Franchis R (1992) Increased jejunal intraepithelial lymphocytes bearing gamma/delta T-cell receptor in dermatitis herpetiformis. Gastroenterology 102:1499–1505PubMedGoogle Scholar
  86. 86.
    Walker MM, Murray JA (2011) An update in the diagnosis of coeliac disease. Histopathology 59:166–179PubMedGoogle Scholar
  87. 87.
    Husby S, Koletzko S, Korponay-Szabo IR, Mearin ML, Phillips A, Shamir R, Troncone R, Giersiepen K, Branski D, Catassi C, Lelgeman M, Maki M, Ribes-Koninckx C, Ventura A, Zimmer KP (2012) European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J Pediatr Gastroenterol Nutr 54:136–160PubMedGoogle Scholar
  88. 88.
    Spencer J, Isaacson PG, Diss TC, MacDonald TT (1989) Expression of disulfide-linked and non-disulfide-linked forms of the T cell receptor gamma/delta heterodimer in human intestinal intraepithelial lymphocytes. Eur J Immunol 19:1335–1338PubMedGoogle Scholar
  89. 89.
    Calleja S, Vivas S, Santiuste M, Arias L, Hernando M, Nistal E, Casqueiro J, Ruiz de Morales JG (2011) Dynamics of non-conventional intraepithelial lymphocytes-NK, NKT, and gammadelta T-in celiac disease: relationship with age, diet, and histopathology. Dig Dis Sci 56:2042–2049PubMedGoogle Scholar
  90. 90.
    Halstensen TS, Brandtzaeg P (1995) TCR gamma/delta + and CD8+TCR alpha/beta + intraepithelial lymphocytes (IEL) express proliferation marker (Ki-67) in the coeliac lesion. Adv Exp Med Biol 371B:1333–1338PubMedGoogle Scholar
  91. 91.
    Troncone R, Greco L, Mayer M, Mazzarella G, Maiuri L, Congia M, Frau F, De Virgiliis S, Auricchio S (1996) In siblings of celiac children, rectal gluten challenge reveals gluten sensitization not restricted to celiac HLA. Gastroenterology 111:318–324PubMedGoogle Scholar
  92. 92.
    Savilahti E, Ormala T, Arato A, Hacsek G, Holm K, Klemola T, Nemeth A, Maki M, Reunala T (1997) Density of gamma/delta + T cells in the jejunal epithelium of patients with coeliac disease and dermatitis herpetiformis is increased with age. Clin Exp Immunol 109:464–467PubMedGoogle Scholar
  93. 93.
    Jarvinen TT, Kaukinen K, Laurila K, Kyronpalo S, Rasmussen M, Maki M, Korhonen H, Reunala T, Collin P (2003) Intraepithelial lymphocytes in celiac disease. Am J Gastroenterol 98:1332–1337PubMedGoogle Scholar
  94. 94.
    Kutlu T, Brousse N, Rambaud C, Le Deist F, Schmitz J, Cerf-Bensussan N (1993) Numbers of T cell receptor (TCR) alpha beta + but not of TcR gamma delta + intraepithelial lymphocytes correlate with the grade of villous atrophy in coeliac patients on a long term normal diet. Gut 34:208–214PubMedGoogle Scholar
  95. 95.
    Trejdosiewicz LK, Calabrese A, Smart CJ, Oakes DJ, Howdle PD, Crabtree JE, Losowsky MS, Lancaster F, Boylston AW (1991) Gamma delta T cell receptor-positive cells of the human gastrointestinal mucosa: occurrence and V region gene expression in Helicobacter pylori-associated gastritis, coeliac disease and inflammatory bowel disease. Clin Exp Immunol 84:440–444PubMedGoogle Scholar
  96. 96.
    Iltanen S, Holm K, Partanen J, Laippala P, Maki M (1999) Increased density of jejunal gammadelta + T cells in patients having normal mucosa–marker of operative autoimmune mechanisms? Autoimmunity 29:179–187PubMedGoogle Scholar
  97. 97.
    Maki M, Holm K, Collin P, Savilahti E (1991) Increase in gamma/delta T cell receptor bearing lymphocytes in normal small bowel mucosa in latent coeliac disease. Gut 32:1412–1414PubMedGoogle Scholar
  98. 98.
    Holm K, Maki M, Savilahti E, Lipsanen V, Laippala P, Koskimies S (1992) Intraepithelial gamma delta T-cell-receptor lymphocytes and genetic susceptibility to coeliac disease. Lancet 339:1500–1503PubMedGoogle Scholar
  99. 99.
    Paparo F, Petrone E, Tosco A, Maglio M, Borrelli M, Salvati VM, Miele E, Greco L, Auricchio S, Troncone R (2005) Clinical, HLA, and small bowel immunohistochemical features of children with positive serum antiendomysium antibodies and architecturally normal small intestinal mucosa. Am J Gastroenterol 100:2294–2298PubMedGoogle Scholar
  100. 100.
    Holtmeier W, Rowell DL, Nyberg A, Kagnoff MF (1997) Distinct delta T cell receptor repertoires in monozygotic twins concordant for coeliac disease. Clin Exp Immunol 107:148–157PubMedGoogle Scholar
  101. 101.
    Schild H, Mavaddat N, Litzenberger C, Ehrich EW, Davis MM, Bluestone JA, Matis L, Draper RK, Chien YH (1994) The nature of major histocompatibility complex recognition by gamma delta T cells. Cell 76:29–37PubMedGoogle Scholar
  102. 102.
    Weintraub BC, Jackson MR, Hedrick SM (1994) Gamma delta T cells can recognize nonclassical MHC in the absence of conventional antigenic peptides. J Immunol 153:3051–3058PubMedGoogle Scholar
  103. 103.
    Holtmeier W, Witthoft T, Hennemann A, Winter HS, Kagnoff MF (1997) The TCR-delta repertoire in human intestine undergoes characteristic changes during fetal to adult development. J Immunol 158:5632–5641PubMedGoogle Scholar
  104. 104.
    Spada FM, Grant EP, Peters PJ, Sugita M, Melian A, Leslie DS, Lee HK, van Donselaar E, Hanson DA, Krensky AM, Majdic O, Porcelli SA, Morita CT, Brenner MB (2000) Self-recognition of CD1 by gamma/delta T cells: implications for innate immunity. J Exp Med 191:937–948PubMedGoogle Scholar
  105. 105.
    Groh V, Steinle A, Bauer S, Spies T (1998) Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science 279:1737–1740PubMedGoogle Scholar
  106. 106.
    Xu B, Pizarro JC, Holmes MA, McBeth C, Groh V, Spies T, Strong RK (2011) Crystal structure of a gammadelta T-cell receptor specific for the human MHC class I homolog MICA. Proc Natl Acad Sci USA 108:2414–2419PubMedGoogle Scholar
  107. 107.
    Bandeira A, Itohara S, Bonneville M, Burlen-Defranoux O, Mota-Santos T, Coutinho A, Tonegawa S (1991) Extrathymic origin of intestinal intraepithelial lymphocytes bearing T-cell antigen receptor gamma delta. Proc Natl Acad Sci USA 88:43–47PubMedGoogle Scholar
  108. 108.
    Kawaguchi M, Nanno M, Umesaki Y, Matsumoto S, Okada Y, Cai Z, Shimamura T, Matsuoka Y, Ohwaki M, Ishikawa H (1993) Cytolytic activity of intestinal intraepithelial lymphocytes in germ-free mice is strain dependent and determined by T cells expressing gamma delta T-cell antigen receptors. Proc Natl Acad Sci USA 90:8591–8594PubMedGoogle Scholar
  109. 109.
    Soderstrom K, Bucht A, Halapi E, Lundqvist C, Gronberg A, Nilsson E, Orsini DL, van de Wal Y, Koning F, Hammarstrom ML et al (1994) High expression of V gamma 8 is a shared feature of human gamma delta T cells in the epithelium of the gut and in the inflamed synovial tissue. J Immunol 152:6017–6027PubMedGoogle Scholar
  110. 110.
    DuBois RN, Lazenby AJ, Yardley JH, Hendrix TR, Bayless TM, Giardiello FM (1989) Lymphocytic enterocolitis in patients with 'refractory sprue'. JAMA 262:935–937PubMedGoogle Scholar
  111. 111.
    Loft DE, Marsh MN, Sandle GI, Crowe PT, Garner V, Gordon D, Baker R (1989) Studies of intestinal lymphoid tissue. XII. Epithelial lymphocyte and mucosal responses to rectal gluten challenge in celiac sprue. Gastroenterology 97:29–37PubMedGoogle Scholar
  112. 112.
    Maiuri L, Ciacci C, Vacca L, Ricciardelli I, Auricchio S, Quaratino S, Londei M (2001) IL-15 drives the specific migration of CD94+ and TCR-gammadelta + intraepithelial lymphocytes in organ cultures of treated celiac patients. Am J Gastroenterol 96:150–156PubMedGoogle Scholar
  113. 113.
    Inagaki-Ohara K, Nishimura H, Mitani A, Yoshikai Y (1997) Interleukin-15 preferentially promotes the growth of intestinal intraepithelial lymphocytes bearing gamma delta T cell receptor in mice. Eur J Immunol 27:2885–2891PubMedGoogle Scholar
  114. 114.
    Parker CM, Groh V, Band H, Porcelli SA, Morita C, Fabbi M, Glass D, Strominger JL, Brenner MB (1990) Evidence for extrathymic changes in the T cell receptor gamma/delta repertoire. J Exp Med 171:1597–1612PubMedGoogle Scholar
  115. 115.
    Mazzarella G, Stefanile R, Camarca A, Giliberti P, Cosentini E, Marano C, Iaquinto G, Giardullo N, Auricchio S, Sette A, Troncone R, Gianfrani C (2008) Gliadin activates HLA class I-restricted CD8+ T cells in celiac disease intestinal mucosa and induces the enterocyte apoptosis. Gastroenterology 134:1017–1027PubMedGoogle Scholar
  116. 116.
    Louka AS, Sollid LM (2003) HLA in coeliac disease: unravelling the complex genetics of a complex disorder. Tissue Antigens 61:105–117PubMedGoogle Scholar
  117. 117.
    Green PH, Jabri B (2003) Coeliac disease. Lancet 362:383–391PubMedGoogle Scholar
  118. 118.
    Jabri B, Sollid LM (2009) Tissue-mediated control of immunopathology in coeliac disease. Nat Rev Immunol 9:858–870PubMedGoogle Scholar
  119. 119.
    Abadie V, Sollid LM, Barreiro LB, Jabri B (2011) Integration of genetic and immunological insights into a model of celiac disease pathogenesis. Annu Rev Immunol 29:493–525PubMedGoogle Scholar
  120. 120.
    Maiuri L, Ciacci C, Ricciardelli I, Vacca L, Raia V, Auricchio S, Picard J, Osman M, Quaratino S, Londei M (2003) Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. Lancet 362:30–37PubMedGoogle Scholar
  121. 121.
    Terrazzano G, Sica M, Gianfrani C, Mazzarella G, Maurano F, De Giulio B, de Saint-Mezard S, Zanzi D, Maiuri L, Londei M, Jabri B, Troncone R, Auricchio S, Zappacosta S, Carbone E (2007) Gliadin regulates the NK-dendritic cell cross-talk by HLA-E surface stabilization. J Immunol 179:372–381PubMedGoogle Scholar
  122. 122.
    Rinke de Wit TF, Vloemans S, van den Elsen PJ, Haworth A, Stern PL (1990) Differential expression of the HLA class I multigene family by human embryonal carcinoma and choriocarcinoma cell lines. J Immunol 144:1080–1087PubMedGoogle Scholar
  123. 123.
    Forsberg G, Hernell O, Hammarstrom S, Hammarstrom ML (2007) Concomitant increase of IL-10 and pro-inflammatory cytokines in intraepithelial lymphocyte subsets in celiac disease. Int Immunol 19:993–1001PubMedGoogle Scholar
  124. 124.
    DePaolo RW, Abadie V, Tang F, Fehlner-Peach H, Hall JA, Wang W, Marietta EV, Kasarda DD, Waldmann TA, Murray JA, Semrad C, Kupfer SS, Belkaid Y, Guandalini S, Jabri B (2011) Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature 471:220–224PubMedGoogle Scholar
  125. 125.
    Mention JJ, Ben Ahmed M, Begue B, Barbe U, Verkarre V, Asnafi V, Colombel JF, Cugnenc PH, Ruemmele FM, McIntyre E, Brousse N, Cellier C, Cerf-Bensussan N (2003) Interleukin 15: a key to disrupted intraepithelial lymphocyte homeostasis and lymphomagenesis in celiac disease. Gastroenterology 125:730–745PubMedGoogle Scholar
  126. 126.
    Benahmed M, Meresse B, Arnulf B, Barbe U, Mention JJ, Verkarre V, Allez M, Cellier C, Hermine O, Cerf-Bensussan N (2007) Inhibition of TGF-beta signaling by IL-15: a new role for IL-15 in the loss of immune homeostasis in celiac disease. Gastroenterology 132:994–1008PubMedGoogle Scholar
  127. 127.
    Song H, Hur DY, Kim KE, Park H, Kim T, Kim CW, Bang S, Cho DH (2006) IL-2/IL-18 prevent the down-modulation of NKG2D by TGF-beta in NK cells via the c-Jun N-terminal kinase (JNK) pathway. Cell Immunol 242:39–45PubMedGoogle Scholar
  128. 128.
    Tang F, Chen Z, Ciszewski C, Setty M, Solus J, Tretiakova M, Ebert E, Han J, Lin A, Guandalini S, Groh V, Spies T, Green P, Jabri B (2009) Cytosolic PLA2 is required for CTL-mediated immunopathology of celiac disease via NKG2D and IL-15. J Exp Med 206:707–719PubMedGoogle Scholar
  129. 129.
    Upshaw JL, Leibson PJ (2006) NKG2D-mediated activation of cytotoxic lymphocytes: unique signaling pathways and distinct functional outcomes. Semin Immunol 18:167–175PubMedGoogle Scholar
  130. 130.
    Zanzi D, Stefanile R, Santagata S, Iaffaldano L, Iaquinto G, Giardullo N, Lania G, Vigliano I, Vera AR, Ferrara K, Auricchio S, Troncone R, Mazzarella G (2011) IL-15 interferes with suppressive activity of intestinal regulatory T cells expanded in celiac disease. Am J Gastroenterol 106:1308–1317PubMedGoogle Scholar
  131. 131.
    Peluso I, Fantini MC, Fina D, Caruso R, Boirivant M, MacDonald TT, Pallone F, Monteleone G (2007) IL-21 counteracts the regulatory T cell-mediated suppression of human CD4+ T lymphocytes. J Immunol 178:732–739PubMedGoogle Scholar
  132. 132.
    Fina D, Sarra M, Caruso R, Del Vecchio BG, Pallone F, MacDonald TT, Monteleone G (2008) Interleukin 21 contributes to the mucosal T helper cell type 1 response in coeliac disease. Gut 57:887–892PubMedGoogle Scholar
  133. 133.
    Zeng R, Spolski R, Finkelstein SE, Oh S, Kovanen PE, Hinrichs CS, Pise-Masison CA, Radonovich MF, Brady JN, Restifo NP, Berzofsky JA, Leonard WJ (2005) Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J Exp Med 201:139–148PubMedGoogle Scholar
  134. 134.
    Ebert EC (2009) Interleukin 21 up-regulates perforin-mediated cytotoxic activity of human intra-epithelial lymphocytes. Immunology 127:206–215PubMedGoogle Scholar
  135. 135.
    Sperandeo MP, Tosco A, Izzo V, Tucci F, Troncone R, Auricchio R, Romanos J, Trynka G, Auricchio S, Jabri B, Greco L (2011) Potential celiac patients: a model of celiac disease pathogenesis. PLoS One 6:e21281PubMedGoogle Scholar
  136. 136.
    Malamut G, El Machhour R, Montcuquet N, Martin-Lanneree S, Dusanter-Fourt I, Verkarre V, Mention JJ, Rahmi G, Kiyono H, Butz EA, Brousse N, Cellier C, Cerf-Bensussan N, Meresse B (2010) IL-15 triggers an antiapoptotic pathway in human intraepithelial lymphocytes that is a potential new target in celiac disease-associated inflammation and lymphomagenesis. J Clin Invest 120:2131–2143PubMedGoogle Scholar
  137. 137.
    Cellier C, Patey N, Mauvieux L, Jabri B, Delabesse E, Cervoni JP, Burtin ML, Guy-Grand D, Bouhnik Y, Modigliani R, Barbier JP, Macintyre E, Brousse N, Cerf-Bensussan N (1998) Abnormal intestinal intraepithelial lymphocytes in refractory sprue. Gastroenterology 114:471–481PubMedGoogle Scholar
  138. 138.
    Daum S, Cellier C, Mulder CJ (2005) Refractory coeliac disease. Best Pract Res Clin Gastroenterol 19:413–424PubMedGoogle Scholar
  139. 139.
    Yokoyama S, Watanabe N, Sato N, Perera PY, Filkoski L, Tanaka T, Miyasaka M, Waldmann TA, Hiroi T, Perera LP (2009) Antibody-mediated blockade of IL-15 reverses the autoimmune intestinal damage in transgenic mice that overexpress IL-15 in enterocytes. Proc Natl Acad Sci USA 106:15849–15854PubMedGoogle Scholar
  140. 140.
    Zhou R, Wei H, Sun R, Zhang J, Tian Z (2007) NKG2D recognition mediates Toll-like receptor 3 signaling-induced breakdown of epithelial homeostasis in the small intestines of mice. Proc Natl Acad Sci USA 104:7512–7515PubMedGoogle Scholar
  141. 141.
    Zhang Y, Moffatt MF, Cookson WO (2012) Genetic and genomic approaches to asthma: new insights for the origins. Curr Opin Pulm Med 18:6–13PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Sainte-Justine Hospital Research Centre, Department of Microbiology and Immunology, Faculty of MedicineUniversity of MontrealMontrealCanada
  2. 2.Department of PediatricsUniversity of ChicagoChicagoUSA
  3. 3.European Laboratory for the Investigation of Food Induced Diseases (ELFID), Department of PediatricsUniversity of Naples Federico IINaplesItaly
  4. 4.Department of Medicine and Department of PathologyUniversity of ChicagoChicagoUSA

Personalised recommendations