Seminars in Immunopathology

, Volume 34, Issue 2, pp 215–235 | Cite as

Metal ion acquisition in Staphylococcus aureus: overcoming nutritional immunity

Review

Abstract

Transition metals are essential nutrients to virtually all forms of life, including bacterial pathogens. In Staphylococcus aureus, metal ions participate in diverse biochemical processes such as metabolism, DNA synthesis, regulation of virulence factors, and defense against oxidative stress. As an innate immune response to bacterial infection, vertebrate hosts sequester transition metals in a process that has been termed “nutritional immunity.” To successfully infect vertebrates, S. aureus must overcome host sequestration of these critical nutrients. The objective of this review is to outline the current knowledge of staphylococcal metal ion acquisition systems, as well as to define the host mechanisms of nutritional immunity during staphylococcal infection.

Keywords

Staphylococcus aureus Calprotectin Iron Manganese Zinc Copper 

References

  1. 1.
    Edelsberg J, Taneja C, Zervos M, Haque N, Moore C, Reyes K, Spalding J, Jiang J, Oster G (2009) Trends in US hospital admissions for skin and soft tissue infections. Emerg Infect Dis 15(9):1516–1518PubMedCrossRefGoogle Scholar
  2. 2.
    Moran GJ, Krishnadasan A, Gorwitz RJ, Fosheim GE, McDougal LK, Carey RB, Talan DA (2006) Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J Med 355(7):666–674. doi:10.1056/NEJMoa055356 PubMedCrossRefGoogle Scholar
  3. 3.
    Baddour LM, Wilson WR, Bayer AS, Fowler VG Jr, Bolger AF, Levison ME, Ferrieri P, Gerber MA, Tani LY, Gewitz MH, Tong DC, Steckelberg JM, Baltimore RS, Shulman ST, Burns JC, Falace DA, Newburger JW, Pallasch TJ, Takahashi M, Taubert KA (2005) Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications: a statement for healthcare professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia, American Heart Association: endorsed by the Infectious Diseases Society of America. Circulation 111(23):e394–e434. doi:10.1161/CIRCULATIONAHA.105.165564 PubMedCrossRefGoogle Scholar
  4. 4.
    Lew DP, Waldvogel FA (2004) Osteomyelitis. Lancet 364(9431):369–379. doi:10.1016/S0140-6736(04)16727-5 PubMedCrossRefGoogle Scholar
  5. 5.
    Kallen AJ, Mu Y, Bulens S, Reingold A, Petit S, Gershman K, Ray SM, Harrison LH, Lynfield R, Dumyati G, Townes JM, Schaffner W, Patel PR, Fridkin SK (2010) Health care-associated invasive MRSA infections, 2005–2008. Jama 304(6):641–648. doi:10.1001/jama.2010.1115 PubMedCrossRefGoogle Scholar
  6. 6.
    Kirby WM (1944) Extraction of a highly potent penicillin inactivator from penicillin resistant staphylococci. Science 99(2579):452–453. doi:10.1126/science.99.2579.452 PubMedCrossRefGoogle Scholar
  7. 7.
    Barber M (1961) Methicillin-resistant staphylococci. J Clin Pathol 14:385–393PubMedCrossRefGoogle Scholar
  8. 8.
    Nannini E, Murray BE, Arias CA (2010) Resistance or decreased susceptibility to glycopeptides, daptomycin, and linezolid in methicillin-resistant Staphylococcus aureus. Curr Opin Pharmacol 10(5):516–521. doi:10.1016/j.coph.2010.06.006 PubMedCrossRefGoogle Scholar
  9. 9.
    Schaffer AC, Lee JC (2009) Staphylococcal vaccines and immunotherapies. Infect Dis Clin North Am 23(1):153–171. doi:10.1016/j.idc.2008.10.005 PubMedCrossRefGoogle Scholar
  10. 10.
    David MZ, Daum RS (2010) Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 23(3):616–687. doi:10.1128/CMR.00081-09 PubMedCrossRefGoogle Scholar
  11. 11.
    Bartlett AH, Hulten KG (2010) Staphylococcus aureus pathogenesis: secretion systems, adhesins, and invasins. Pediatr Infect Dis J 29(9):860–861. doi:10.1097/INF.0b013e3181ef2477 PubMedCrossRefGoogle Scholar
  12. 12.
    Gordon RJ, Lowy FD (2008) Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis 46(Suppl 5):S350–S359. doi:10.1086/533591 PubMedCrossRefGoogle Scholar
  13. 13.
    de Haas CJ, Veldkamp KE, Peschel A, Weerkamp F, Van Wamel WJ, Heezius EC, Poppelier MJ, Van Kessel KP, van Strijp JA (2004) Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J Exp Med 199(5):687–695. doi:10.1084/jem.20031636 PubMedCrossRefGoogle Scholar
  14. 14.
    Dumont AL, Nygaard TK, Watkins RL, Smith A, Kozhaya L, Kreiswirth BN, Shopsin B, Unutmaz D, Voyich JM, Torres VJ (2011) Characterization of a new cytotoxin that contributes to Staphylococcus aureus pathogenesis. Mol Microbiol 79(3):814–825. doi:10.1111/j.1365-2958.2010.07490.x PubMedCrossRefGoogle Scholar
  15. 15.
    Menestrina G, Serra MD, Prevost G (2001) Mode of action of beta-barrel pore-forming toxins of the staphylococcal alpha-hemolysin family. Toxicon 39(11):1661–1672PubMedCrossRefGoogle Scholar
  16. 16.
    Chavakis T, Hussain M, Kanse SM, Peters G, Bretzel RG, Flock JI, Herrmann M, Preissner KT (2002) Staphylococcus aureus extracellular adherence protein serves as anti-inflammatory factor by inhibiting the recruitment of host leukocytes. Nat Med 8(7):687–693. doi:10.1038/nm728 PubMedCrossRefGoogle Scholar
  17. 17.
    Wang R, Braughton KR, Kretschmer D, Bach TH, Queck SY, Li M, Kennedy AD, Dorward DW, Klebanoff SJ, Peschel A, DeLeo FR, Otto M (2007) Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med 13(12):1510–1514. doi:10.1038/nm1656 PubMedCrossRefGoogle Scholar
  18. 18.
    Bestebroer J, Poppelier MJ, Ulfman LH, Lenting PJ, Denis CV, van Kessel KP, van Strijp JA, de Haas CJ (2007) Staphylococcal superantigen-like 5 binds PSGL-1 and inhibits P-selectin-mediated neutrophil rolling. Blood 109(7):2936–2943. doi:10.1182/blood-2006-06-015461 PubMedGoogle Scholar
  19. 19.
    Rooijakkers SH, Ruyken M, Roos A, Daha MR, Presanis JS, Sim RB, van Wamel WJ, van Kessel KP, van Strijp JA (2005) Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat Immunol 6(9):920–927. doi:10.1038/ni1235 PubMedCrossRefGoogle Scholar
  20. 20.
    Lee LY, Hook M, Haviland D, Wetsel RA, Yonter EO, Syribeys P, Vernachio J, Brown EL (2004) Inhibition of complement activation by a secreted Staphylococcus aureus protein. J Infect Dis 190(3):571–579. doi:10.1086/422259 PubMedCrossRefGoogle Scholar
  21. 21.
    Haupt K, Reuter M, van den Elsen J, Burman J, Halbich S, Richter J, Skerka C, Zipfel PF (2008) The Staphylococcus aureus protein Sbi acts as a complement inhibitor and forms a tripartite complex with host complement Factor H and C3b. PLoS Pathog 4(12):e1000250. doi:10.1371/journal.ppat.1000250 PubMedCrossRefGoogle Scholar
  22. 22.
    Langley R, Wines B, Willoughby N, Basu I, Proft T, Fraser JD (2005) The staphylococcal superantigen-like protein 7 binds IgA and complement C5 and inhibits IgA-Fc alpha RI binding and serum killing of bacteria. J Immunol 174(5):2926–2933PubMedGoogle Scholar
  23. 23.
    Forsgren A, Nordstrom K (1974) Protein A from Staphylococcus aureus: the biological significance of its reaction with IgG. Ann N Y Acad Sci 236:252–266PubMedCrossRefGoogle Scholar
  24. 24.
    Thakker M, Park JS, Carey V, Lee JC (1998) Staphylococcus aureus serotype 5 capsular polysaccharide is antiphagocytic and enhances bacterial virulence in a murine bacteremia model. Infect Immun 66(11):5183–5189PubMedGoogle Scholar
  25. 25.
    Nilsson IM, Lee JC, Bremell T, Ryden C, Tarkowski A (1997) The role of staphylococcal polysaccharide microcapsule expression in septicemia and septic arthritis. Infect Immun 65(10):4216–4221PubMedGoogle Scholar
  26. 26.
    Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G, Kalbacher H, Nieuwenhuizen WF, Jung G, Tarkowski A, van Kessel KP, van Strijp JA (2001) Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med 193(9):1067–1076PubMedCrossRefGoogle Scholar
  27. 27.
    Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Gotz F (1999) Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274(13):8405–8410PubMedCrossRefGoogle Scholar
  28. 28.
    Li M, Cha DJ, Lai Y, Villaruz AE, Sturdevant DE, Otto M (2007) The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol Microbiol 66(5):1136–1147. doi:10.1111/j.1365-2958.2007.05986.x PubMedCrossRefGoogle Scholar
  29. 29.
    Jonsson K, McDevitt D, McGavin MH, Patti JM, Hook M (1995) Staphylococcus aureus expresses a major histocompatibility complex class II analog. J Biol Chem 270(37):21457–21460PubMedCrossRefGoogle Scholar
  30. 30.
    Lee LY, Miyamoto YJ, McIntyre BW, Hook M, McCrea KW, McDevitt D, Brown EL (2002) The Staphylococcus aureus Map protein is an immunomodulator that interferes with T cell-mediated responses. J Clin Invest 110(10):1461–1471. doi:10.1172/JCI16318 PubMedGoogle Scholar
  31. 31.
    Kochan I (1973) The role of iron in bacterial infections, with special consideration of host-tubercle bacillus interaction. Curr Top Microbiol Immunol 60:1–30PubMedCrossRefGoogle Scholar
  32. 32.
    Weinberg ED (2009) Iron availability and infection. Biochim Biophys Acta 1790(7):600–605. doi:10.1016/j.bbagen.2008.07.002 PubMedCrossRefGoogle Scholar
  33. 33.
    Braun V, Hantke K, Koster W (1998) Bacterial iron transport: mechanisms, genetics, and regulation. Met Ions Biol Syst 35:67–145PubMedGoogle Scholar
  34. 34.
    Corbin BD, Seeley EH, Raab A, Feldmann J, Miller MR, Torres VJ, Anderson KL, Dattilo BM, Dunman PM, Gerads R, Caprioli RM, Nacken W, Chazin WJ, Skaar EP (2008) Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319(5865):962–965. doi:10.1126/science.1152449 PubMedCrossRefGoogle Scholar
  35. 35.
    Ganz T, Nemeth E (2006) Regulation of iron acquisition and iron distribution in mammals. Biochim Biophys Acta 1763(7):690–699. doi:10.1016/j.bbamcr.2006.03.014 PubMedCrossRefGoogle Scholar
  36. 36.
    Le NT, Richardson DR (2002) The role of iron in cell cycle progression and the proliferation of neoplastic cells. Biochim Biophys Acta 1603(1):31–46PubMedGoogle Scholar
  37. 37.
    Lukianova OA, David SS (2005) A role for iron-sulfur clusters in DNA repair. Curr Opin Chem Biol 9(2):145–151. doi:10.1016/j.cbpa.2005.02.006 PubMedCrossRefGoogle Scholar
  38. 38.
    Crichton R (2001) Inorganic biochemistry of iron metabolism: from molecular mechanisms to clinical consequences, vol 2. Wiley, West SussexGoogle Scholar
  39. 39.
    Vadillo M, Corbella X, Pac V, Fernandez-Viladrich P, Pujol R (1994) Multiple liver abscesses due to Yersinia enterocolitica discloses primary hemochromatosis: three cases reports and review. Clin Infect Dis 18(6):938–941PubMedCrossRefGoogle Scholar
  40. 40.
    Barton JC, Acton RT (2009) Hemochromatosis and Vibrio vulnificus wound infections. J Clin Gastroenterol 43(9):890–893. doi:10.1097/MCG.0b013e31819069c1 PubMedCrossRefGoogle Scholar
  41. 41.
    Weinberg ED (2000) Microbial pathogens with impaired ability to acquire host iron. Biometals 13(1):85–89PubMedCrossRefGoogle Scholar
  42. 42.
    Manso C, Rivas I, Peraire J, Vidal F, Richart C (1997) Fatal Listeria meningitis, endocarditis and pericarditis in a patient with haemochromatosis. Scand J Infect Dis 29(3):308–309PubMedCrossRefGoogle Scholar
  43. 43.
    Posey JE, Gherardini FC (2000) Lack of a role for iron in the Lyme disease pathogen. Science 288(5471):1651–1653PubMedCrossRefGoogle Scholar
  44. 44.
    Archibald F (1986) Manganese: its acquisition by and function in the lactic acid bacteria. Crit Rev Microbiol 13(1):63–109. doi:10.3109/10408418609108735 PubMedCrossRefGoogle Scholar
  45. 45.
    Meiwes J, Fiedler HP, Haag H, Zahner H, Konetschny-Rapp S, Jung G (1990) Isolation and characterization of staphyloferrin A, a compound with siderophore activity from Staphylococcus hyicus DSM 20459. FEMS Microbiol Lett 55(1–2):201–205PubMedCrossRefGoogle Scholar
  46. 46.
    Courcol RJ, Trivier D, Bissinger MC, Martin GR, Brown MR (1997) Siderophore production by Staphylococcus aureus and identification of iron-regulated proteins. Infect Immun 65(5):1944–1948PubMedGoogle Scholar
  47. 47.
    Beasley FC, Vines ED, Grigg JC, Zheng Q, Liu S, Lajoie GA, Murphy ME, Heinrichs DE (2009) Characterization of staphyloferrin A biosynthetic and transport mutants in Staphylococcus aureus. Mol Microbiol 72(4):947–963. doi:10.1111/j.1365-2958.2009.06698.x PubMedCrossRefGoogle Scholar
  48. 48.
    Friedman DB, Stauff DL, Pishchany G, Whitwell CW, Torres VJ, Skaar EP (2006) Staphylococcus aureus redirects central metabolism to increase iron availability. PLoS Pathog 2(8):e87. doi:10.1371/journal.ppat.0020087 PubMedCrossRefGoogle Scholar
  49. 49.
    Horsburgh MJ, Ingham E, Foster SJ (2001) In Staphylococcus aureus, Fur is an interactive regulator with PerR, contributes to virulence, and is necessary for oxidative stress resistance through positive regulation of catalase and iron homeostasis. J Bacteriol 183(2):468–475. doi:10.1128/JB.183.2.468-475.2001 PubMedCrossRefGoogle Scholar
  50. 50.
    Hantke K (1981) Regulation of ferric iron transport in Escherichia coli K12: isolation of a constitutive mutant. Mol Gen Genet 182(2):288–292PubMedCrossRefGoogle Scholar
  51. 51.
    Xiong A, Singh VK, Cabrera G, Jayaswal RK (2000) Molecular characterization of the ferric-uptake regulator, Fur, from Staphylococcus aureus. Microbiology 146(Pt 3):659–668PubMedGoogle Scholar
  52. 52.
    Cotton JL, Tao J, Balibar CJ (2009) Identification and characterization of the Staphylococcus aureus gene cluster coding for staphyloferrin A. Biochemistry 48(5):1025–1035. doi:10.1021/bi801844c PubMedCrossRefGoogle Scholar
  53. 53.
    Speziali CD, Dale SE, Henderson JA, Vines ED, Heinrichs DE (2006) Requirement of Staphylococcus aureus ATP-binding cassette-ATPase FhuC for iron-restricted growth and evidence that it functions with more than one iron transporter. J Bacteriol 188(6):2048–2055. doi:10.1128/JB.188.6.2048-2055.2006 PubMedCrossRefGoogle Scholar
  54. 54.
    Skaar EP, Humayun M, Bae T, DeBord KL, Schneewind O (2004) Iron-source preference of Staphylococcus aureus infections. Science 305(5690):1626–1628. doi:10.1126/science.1099930 PubMedCrossRefGoogle Scholar
  55. 55.
    Grigg JC, Cooper JD, Cheung J, Heinrichs DE, Murphy ME (2010) The Staphylococcus aureus siderophore receptor HtsA undergoes localized conformational changes to enclose staphyloferrin A in an arginine-rich binding pocket. J Biol Chem 285(15):11162–11171. doi:10.1074/jbc.M109.097865 PubMedCrossRefGoogle Scholar
  56. 56.
    Drechsel H, Freund S, Nicholson G, Haag H, Jung O, Zahner H, Jung G (1993) Purification and chemical characterization of staphyloferrin B, a hydrophilic siderophore from staphylococci. Biometals 6(3):185–192PubMedCrossRefGoogle Scholar
  57. 57.
    Cheung J, Beasley FC, Liu S, Lajoie GA, Heinrichs DE (2009) Molecular characterization of staphyloferrin B biosynthesis in Staphylococcus aureus. Mol Microbiol 74(3):594–608. doi:10.1111/j.1365-2958.2009.06880.x PubMedCrossRefGoogle Scholar
  58. 58.
    Dale SE, Sebulsky MT, Heinrichs DE (2004) Involvement of SirABC in iron-siderophore import in Staphylococcus aureus. J Bacteriol 186(24):8356–8362. doi:10.1128/JB.186.24.8356-8362.2004 PubMedCrossRefGoogle Scholar
  59. 59.
    Grigg JC, Cheung J, Heinrichs DE, Murphy ME (2010) Specificity of Staphyloferrin B recognition by the SirA receptor from Staphylococcus aureus. J Biol Chem 285(45):34579–34588. doi:10.1074/jbc.M110.172924 PubMedCrossRefGoogle Scholar
  60. 60.
    Beasley FC, Marolda CL, Cheung J, Buac S, Heinrichs DE (2011) Staphylococcus aureus transporters Hts, Sir, and Sst capture iron liberated from human transferrin by staphyloferrin a, staphyloferrin B, and catecholamine stress hormones, respectively, and contribute to virulence. Infect Immun 79(6):2345–2355. doi:10.1128/IAI.00117-11 PubMedCrossRefGoogle Scholar
  61. 61.
    Brock JH, Ng J (1983) The effect of desferrioxamine on the growth of Staphylococcus aureus, Yersinia enterocolitica and Streptococcus faecalis in human serum: uptake of desferrioxamine-bound iron. FEMS Microbiol Lett 20(3):439–442CrossRefGoogle Scholar
  62. 62.
    Sebulsky MT, Hohnstein D, Hunter MD, Heinrichs DE (2000) Identification and characterization of a membrane permease involved in iron-hydroxamate transport in Staphylococcus aureus. J Bacteriol 182(16):4394–4400PubMedCrossRefGoogle Scholar
  63. 63.
    Sebulsky MT, Heinrichs DE (2001) Identification and characterization of fhuD1 and fhuD2, two genes involved in iron-hydroxamate uptake in Staphylococcus aureus. J Bacteriol 183(17):4994–5000PubMedCrossRefGoogle Scholar
  64. 64.
    Neupane GP, Kim DM (2009) Comparison of the effects of deferasirox, deferiprone, and deferoxamine on the growth and virulence of Vibrio vulnificus. Transfusion 49(8):1762–1769. doi:10.1111/j.1537-2995.2009.02186.x PubMedCrossRefGoogle Scholar
  65. 65.
    Lesic B, Foulon J, Carniel E (2002) Comparison of the effects of deferiprone versus deferoxamine on growth and virulence of Yersinia enterocolitica. Antimicrob Agents Chemother 46(6):1741–1745PubMedCrossRefGoogle Scholar
  66. 66.
    Boelaert JR, de Locht M, Van Cutsem J, Kerrels V, Cantinieaux B, Verdonck A, Van Landuyt HW, Schneider YJ (1993) Mucormycosis during deferoxamine therapy is a siderophore-mediated infection. In vitro and in vivo animal studies. J Clin Invest 91(5):1979–1986. doi:10.1172/JCI116419 PubMedCrossRefGoogle Scholar
  67. 67.
    Morrissey JA, Cockayne A, Hill PJ, Williams P (2000) Molecular cloning and analysis of a putative siderophore ABC transporter from Staphylococcus aureus. Infect Immun 68(11):6281–6288PubMedCrossRefGoogle Scholar
  68. 68.
    Cendrowski S, MacArthur W, Hanna P (2004) Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol Microbiol 51(2):407–417. doi:10.1046/j.1365-2958.2003.03861.x PubMedCrossRefGoogle Scholar
  69. 69.
    Cox CD (1982) Effect of pyochelin on the virulence of Pseudomonas aeruginosa. Infect Immun 36(1):17–23PubMedGoogle Scholar
  70. 70.
    Meyer JM, Neely A, Stintzi A, Georges C, Holder IA (1996) Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect Immun 64(2):518–523PubMedGoogle Scholar
  71. 71.
    Heesemann J, Hantke K, Vocke T, Saken E, Rakin A, Stojiljkovic I, Berner R (1993) Virulence of Yersinia enterocolitica is closely associated with siderophore production, expression of an iron-repressible outer membrane polypeptide of 65,000 Da and pesticin sensitivity. Mol Microbiol 8(2):397–408PubMedCrossRefGoogle Scholar
  72. 72.
    Allard KA, Dao J, Sanjeevaiah P, McCoy-Simandle K, Chatfield CH, Crumrine DS, Castignetti D, Cianciotto NP (2009) Purification of Legiobactin and importance of this siderophore in lung infection by Legionella pneumophila. Infect Immun 77(7):2887–2895. doi:10.1128/IAI.00087-09 PubMedCrossRefGoogle Scholar
  73. 73.
    Williams PH (1979) Novel iron uptake system specified by ColV plasmids: an important component in the virulence of invasive strains of Escherichia coli. Infect Immun 26(3):925–932PubMedGoogle Scholar
  74. 74.
    Dale SE, Doherty-Kirby A, Lajoie G, Heinrichs DE (2004) Role of siderophore biosynthesis in virulence of Staphylococcus aureus: identification and characterization of genes involved in production of a siderophore. Infect Immun 72(1):29–37PubMedCrossRefGoogle Scholar
  75. 75.
    Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10(5):1033–1043PubMedCrossRefGoogle Scholar
  76. 76.
    Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, Akira S, Aderem A (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432(7019):917–921. doi:10.1038/nature03104 PubMedCrossRefGoogle Scholar
  77. 77.
    Berger T, Togawa A, Duncan GS, Elia AJ, You-Ten A, Wakeham A, Fong HE, Cheung CC, Mak TW (2006) Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia-reperfusion injury. Proc Natl Acad Sci U S A 103(6):1834–1839. doi:10.1073/pnas.0510847103 PubMedCrossRefGoogle Scholar
  78. 78.
    Chan YR, Liu JS, Pociask DA, Zheng M, Mietzner TA, Berger T, Mak TW, Clifton MC, Strong RK, Ray P, Kolls JK (2009) Lipocalin 2 is required for pulmonary host defense against Klebsiella infection. J Immunol 182(8):4947–4956. doi:10.4049/jimmunol.0803282 PubMedCrossRefGoogle Scholar
  79. 79.
    Johnson EE, Srikanth CV, Sandgren A, Harrington L, Trebicka E, Wang L, Borregaard N, Murray M, Cherayil BJ (2010) Siderocalin inhibits the intracellular replication of Mycobacterium tuberculosis in macrophages. FEMS Immunol Med Microbiol 58(1):138–145. doi:10.1111/j.1574-695X.2009.00622.x PubMedCrossRefGoogle Scholar
  80. 80.
    Holmes MA, Paulsene W, Jide X, Ratledge C, Strong RK (2005) Siderocalin (Lcn 2) also binds carboxymycobactins, potentially defending against mycobacterial infections through iron sequestration. Structure 13(1):29–41. doi:10.1016/j.str.2004.10.009 PubMedCrossRefGoogle Scholar
  81. 81.
    Nelson AL, Barasch JM, Bunte RM, Weiser JN (2005) Bacterial colonization of nasal mucosa induces expression of siderocalin, an iron-sequestering component of innate immunity. Cell Microbiol 7(10):1404–1417. doi:10.1111/j.1462-5822.2005.00566.x PubMedCrossRefGoogle Scholar
  82. 82.
    Mori K, Lee HT, Rapoport D, Drexler IR, Foster K, Yang J, Schmidt-Ott KM, Chen X, Li JY, Weiss S, Mishra J, Cheema FH, Markowitz G, Suganami T, Sawai K, Mukoyama M, Kunis C, D’Agati V, Devarajan P, Barasch J (2005) Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest 115(3):610–621. doi:10.1172/JCI23056 PubMedGoogle Scholar
  83. 83.
    Wilson MK, Abergel RJ, Raymond KN, Arceneaux JE, Byers BR (2006) Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Biochem Biophys Res Commun 348(1):320–325. doi:10.1016/j.bbrc.2006.07.055 PubMedCrossRefGoogle Scholar
  84. 84.
    Abergel RJ, Wilson MK, Arceneaux JE, Hoette TM, Strong RK, Byers BR, Raymond KN (2006) Anthrax pathogen evades the mammalian immune system through stealth siderophore production. Proc Natl Acad Sci U S A 103(49):18499–18503. doi:10.1073/pnas.0607055103 PubMedCrossRefGoogle Scholar
  85. 85.
    Hantke K, Nicholson G, Rabsch W, Winkelmann G (2003) Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. Proc Natl Acad Sci U S A 100(7):3677–3682. doi:10.1073/pnas.0737682100 PubMedCrossRefGoogle Scholar
  86. 86.
    Young NS, Gerson SL, High KA (2006) Clinical hematology, vol 1. Mosby Elsevier, PhiladelphiaGoogle Scholar
  87. 87.
    Everse J, Hsia N (1997) The toxicities of native and modified hemoglobins. Free Radic Biol Med 22(6):1075–1099PubMedCrossRefGoogle Scholar
  88. 88.
    Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman HJ, Law SK, Moestrup SK (2001) Identification of the haemoglobin scavenger receptor. Nature 409(6817):198–201. doi:10.1038/35051594 PubMedCrossRefGoogle Scholar
  89. 89.
    Allhorn M, Berggard T, Nordberg J, Olsson ML, Akerstrom B (2002) Processing of the lipocalin alpha(1)-microglobulin by hemoglobin induces heme-binding and heme-degradation properties. Blood 99(6):1894–1901PubMedCrossRefGoogle Scholar
  90. 90.
    Anzaldi LL, Skaar EP (2010) Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens. Infect Immun 78(12):4977–4989. doi:10.1128/IAI.00613-10 PubMedCrossRefGoogle Scholar
  91. 91.
    Tong Y, Guo M (2009) Bacterial heme-transport proteins and their heme-coordination modes. Arch Biochem Biophys 481(1):1–15. doi:10.1016/j.abb.2008.10.013 PubMedCrossRefGoogle Scholar
  92. 92.
    Mazmanian SK, Liu G, Ton-That H, Schneewind O (1999) Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285(5428):760–763PubMedCrossRefGoogle Scholar
  93. 93.
    Mazmanian SK, Ton-That H, Schneewind O (2001) Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Mol Microbiol 40(5):1049–1057PubMedCrossRefGoogle Scholar
  94. 94.
    Mazmanian SK, Ton-That H, Su K, Schneewind O (2002) An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis. Proc Natl Acad Sci U S A 99(4):2293–2298. doi:10.1073/pnas.032523999 PubMedCrossRefGoogle Scholar
  95. 95.
    Hammer ND, Skaar EP (2011) Molecular mechanisms of Staphylococcus aureus iron acquisition. Annu Rev Microbiol. doi:10.1146/annurev-micro-090110-102851
  96. 96.
    Torres VJ, Pishchany G, Humayun M, Schneewind O, Skaar EP (2006) Staphylococcus aureus IsdB is a hemoglobin receptor required for heme iron utilization. J Bacteriol 188(24):8421–8429. doi:10.1128/JB.01335-06 PubMedCrossRefGoogle Scholar
  97. 97.
    Dryla A, Gelbmann D, von Gabain A, Nagy E (2003) Identification of a novel iron regulated staphylococcal surface protein with haptoglobin-haemoglobin binding activity. Mol Microbiol 49(1):37–53PubMedCrossRefGoogle Scholar
  98. 98.
    Muryoi N, Tiedemann MT, Pluym M, Cheung J, Heinrichs DE, Stillman MJ (2008) Demonstration of the iron-regulated surface determinant (Isd) heme transfer pathway in Staphylococcus aureus. J Biol Chem 283(42):28125–28136. doi:10.1074/jbc.M802171200 PubMedCrossRefGoogle Scholar
  99. 99.
    Zhu H, Xie G, Liu M, Olson JS, Fabian M, Dooley DM, Lei B (2008) Pathway for heme uptake from human methemoglobin by the iron-regulated surface determinants system of Staphylococcus aureus. J Biol Chem 283(26):18450–18460. doi:10.1074/jbc.M801466200 PubMedCrossRefGoogle Scholar
  100. 100.
    Liu M, Tanaka WN, Zhu H, Xie G, Dooley DM, Lei B (2008) Direct hemin transfer from IsdA to IsdC in the iron-regulated surface determinant (Isd) heme acquisition system of Staphylococcus aureus. J Biol Chem 283(11):6668–6676. doi:10.1074/jbc.M708372200 PubMedCrossRefGoogle Scholar
  101. 101.
    Mazmanian SK, Skaar EP, Gaspar AH, Humayun M, Gornicki P, Jelenska J, Joachmiak A, Missiakas DM, Schneewind O (2003) Passage of heme-iron across the envelope of Staphylococcus aureus. Science 299(5608):906–909. doi:10.1126/science.1081147 PubMedCrossRefGoogle Scholar
  102. 102.
    Skaar EP, Gaspar AH, Schneewind O (2004) IsdG and IsdI, heme-degrading enzymes in the cytoplasm of Staphylococcus aureus. J Biol Chem 279(1):436–443. doi:10.1074/jbc.M307952200 PubMedCrossRefGoogle Scholar
  103. 103.
    Wu R, Skaar EP, Zhang R, Joachimiak G, Gornicki P, Schneewind O, Joachimiak A (2005) Staphylococcus aureus IsdG and IsdI, heme-degrading enzymes with structural similarity to monooxygenases. J Biol Chem 280(4):2840–2846. doi:10.1074/jbc.M409526200 PubMedCrossRefGoogle Scholar
  104. 104.
    Reniere ML, Ukpabi GN, Harry SR, Stec DF, Krull R, Wright DW, Bachmann BO, Murphy ME, Skaar EP (2010) The IsdG-family of haem oxygenases degrades haem to a novel chromophore. Mol Microbiol 75(6):1529–1538. doi:10.1111/j.1365-2958.2010.07076.x PubMedCrossRefGoogle Scholar
  105. 105.
    Reniere ML, Skaar EP (2008) Staphylococcus aureus haem oxygenases are differentially regulated by iron and haem. Mol Microbiol 69(5):1304–1315. doi:10.1111/j.1365-2958.2008.06363.x PubMedCrossRefGoogle Scholar
  106. 106.
    Torres VJ, Stauff DL, Pishchany G, Bezbradica JS, Gordy LE, Iturregui J, Anderson KL, Dunman PM, Joyce S, Skaar EP (2007) A Staphylococcus aureus regulatory system that responds to host heme and modulates virulence. Cell Host Microbe 1(2):109–119. doi:10.1016/j.chom.2007.03.001 PubMedCrossRefGoogle Scholar
  107. 107.
    Stauff DL, Bagaley D, Torres VJ, Joyce R, Anderson KL, Kuechenmeister L, Dunman PM, Skaar EP (2008) Staphylococcus aureus HrtA is an ATPase required for protection against heme toxicity and prevention of a transcriptional heme stress response. J Bacteriol 190(10):3588–3596. doi:10.1128/JB.01921-07 PubMedCrossRefGoogle Scholar
  108. 108.
    Kennedy AD, Bubeck Wardenburg J, Gardner DJ, Long D, Whitney AR, Braughton KR, Schneewind O, DeLeo FR (2010) Targeting of alpha-hemolysin by active or passive immunization decreases severity of USA300 skin infection in a mouse model. J Infect Dis 202(7):1050–1058. doi:10.1086/656043 PubMedCrossRefGoogle Scholar
  109. 109.
    Bubeck Wardenburg J, Patel RJ, Schneewind O (2007) Surface proteins and exotoxins are required for the pathogenesis of Staphylococcus aureus pneumonia. Infect Immun 75(2):1040–1044. doi:10.1128/IAI.01313-06 PubMedCrossRefGoogle Scholar
  110. 110.
    Bubeck Wardenburg J, Bae T, Otto M, Deleo FR, Schneewind O (2007) Poring over pores: alpha-hemolysin and Panton-Valentine leukocidin in Staphylococcus aureus pneumonia. Nat Med 13(12):1405–1406. doi:10.1038/nm1207-1405 PubMedCrossRefGoogle Scholar
  111. 111.
    Ji Y, Marra A, Rosenberg M, Woodnutt G (1999) Regulated antisense RNA eliminates alpha-toxin virulence in Staphylococcus aureus infection. J Bacteriol 181(21):6585–6590PubMedGoogle Scholar
  112. 112.
    Kernodle DS, Voladri RK, Menzies BE, Hager CC, Edwards KM (1997) Expression of an antisense hla fragment in Staphylococcus aureus reduces alpha-toxin production in vitro and attenuates lethal activity in a murine model. Infect Immun 65(1):179–184PubMedGoogle Scholar
  113. 113.
    Callegan MC, Engel LS, Hill JM, O’Callaghan RJ (1994) Corneal virulence of Staphylococcus aureus: roles of alpha-toxin and protein A in pathogenesis. Infect Immun 62(6):2478–2482PubMedGoogle Scholar
  114. 114.
    Patel AH, Nowlan P, Weavers ED, Foster T (1987) Virulence of protein A-deficient and alpha-toxin-deficient mutants of Staphylococcus aureus isolated by allele replacement. Infect Immun 55(12):3103–3110PubMedGoogle Scholar
  115. 115.
    Ragle BE, Bubeck Wardenburg J (2009) Anti-alpha-hemolysin monoclonal antibodies mediate protection against Staphylococcus aureus pneumonia. Infect Immun 77(7):2712–2718. doi:10.1128/IAI.00115-09 PubMedCrossRefGoogle Scholar
  116. 116.
    Cheng AG, Kim HK, Burts ML, Krausz T, Schneewind O, Missiakas DM (2009) Genetic requirements for Staphylococcus aureus abscess formation and persistence in host tissues. FASEB J 23(10):3393–3404. doi:10.1096/fj.09-135467 PubMedCrossRefGoogle Scholar
  117. 117.
    Kim HK, DeDent A, Cheng AG, McAdow M, Bagnoli F, Missiakas DM, Schneewind O (2010) IsdA and IsdB antibodies protect mice against Staphylococcus aureus abscess formation and lethal challenge. Vaccine 28(38):6382–6392. doi:10.1016/j.vaccine.2010.02.097 PubMedCrossRefGoogle Scholar
  118. 118.
    Pishchany G, McCoy AL, Torres VJ, Krause JC, Crowe JE Jr, Fabry ME, Skaar EP (2010) Specificity for human hemoglobin enhances Staphylococcus aureus infection. Cell Host Microbe 8(6):544–550. doi:10.1016/j.chom.2010.11.002 PubMedCrossRefGoogle Scholar
  119. 119.
    Maione D, Margarit I, Rinaudo CD, Masignani V, Mora M, Scarselli M, Tettelin H, Brettoni C, Iacobini ET, Rosini R, D’Agostino N, Miorin L, Buccato S, Mariani M, Galli G, Nogarotto R, Nardi Dei V, Vegni F, Fraser C, Mancuso G, Teti G, Madoff LC, Paoletti LC, Rappuoli R, Kasper DL, Telford JL, Grandi G (2005) Identification of a universal group B streptococcus vaccine by multiple genome screen. Science 309(5731):148–150. doi:10.1126/science.1109869 PubMedCrossRefGoogle Scholar
  120. 120.
    Stranger-Jones YK, Bae T, Schneewind O (2006) Vaccine assembly from surface proteins of Staphylococcus aureus. Proc Natl Acad Sci U S A 103(45):16942–16947. doi:10.1073/pnas.0606863103 PubMedCrossRefGoogle Scholar
  121. 121.
    Kuklin NA, Clark DJ, Secore S, Cook J, Cope LD, McNeely T, Noble L, Brown MJ, Zorman JK, Wang XM, Pancari G, Fan H, Isett K, Burgess B, Bryan J, Brownlow M, George H, Meinz M, Liddell ME, Kelly R, Schultz L, Montgomery D, Onishi J, Losada M, Martin M, Ebert T, Tan CY, Schofield TL, Nagy E, Meineke A, Joyce JG, Kurtz MB, Caulfield MJ, Jansen KU, McClements W, Anderson AS (2006) A novel Staphylococcus aureus vaccine: iron surface determinant B induces rapid antibody responses in rhesus macaques and specific increased survival in a murine S. aureus sepsis model. Infect Immun 74(4):2215–2223. doi:10.1128/IAI.74.4.2215-2223.2006 PubMedCrossRefGoogle Scholar
  122. 122.
    Clarke SR, Brummell KJ, Horsburgh MJ, McDowell PW, Mohamad SA, Stapleton MR, Acevedo J, Read RC, Day NP, Peacock SJ, Mond JJ, Kokai-Kun JF, Foster SJ (2006) Identification of in vivo-expressed antigens of Staphylococcus aureus and their use in vaccinations for protection against nasal carriage. J Infect Dis 193(8):1098–1108. doi:10.1086/501471 PubMedCrossRefGoogle Scholar
  123. 123.
    Ebert T, Smith S, Pancari G, Clark D, Hampton R, Secore S, Towne V, Fan H, Wang XM, Wu X, Ernst R, Harvey BR, Finnefrock AC, Wang F, Tan C, Durr E, Cope L, Anderson A, An Z, McNeely T (2010) A fully human monoclonal antibody to Staphylococcus aureus iron regulated surface determinant B (IsdB) with functional activity in vitro and in vivo. Hum Antibodies 19(4):113–128. doi:10.3233/HAB-2010-0235 PubMedGoogle Scholar
  124. 124.
    Harro C, Betts R, Orenstein W, Kwak EJ, Greenberg HE, Onorato MT, Hartzel J, Lipka J, DiNubile MJ, Kartsonis N (2010) Safety and immunogenicity of a novel Staphylococcus aureus vaccine: results from the first study of the vaccine dose range in humans. Clin Vaccine Immunol 17(12):1868–1874. doi:10.1128/CVI.00356-10 PubMedCrossRefGoogle Scholar
  125. 125.
    Clarke SR, Wiltshire MD, Foster SJ (2004) IsdA of Staphylococcus aureus is a broad spectrum, iron-regulated adhesin. Mol Microbiol 51(5):1509–1519. doi:10.1111/j.1365-2958.2003.03938.x PubMedCrossRefGoogle Scholar
  126. 126.
    Corrigan RM, Miajlovic H, Foster TJ (2009) Surface proteins that promote adherence of Staphylococcus aureus to human desquamated nasal epithelial cells. BMC Microbiol 9:22. doi:10.1186/1471-2180-9-22 PubMedCrossRefGoogle Scholar
  127. 127.
    Clarke SR, Andre G, Walsh EJ, Dufrene YF, Foster TJ, Foster SJ (2009) Iron-regulated surface determinant protein A mediates adhesion of Staphylococcus aureus to human corneocyte envelope proteins. Infect Immun 77(6):2408–2416. doi:10.1128/IAI.01304-08 PubMedCrossRefGoogle Scholar
  128. 128.
    Clarke SR, Mohamed R, Bian L, Routh AF, Kokai-Kun JF, Mond JJ, Tarkowski A, Foster SJ (2007) The Staphylococcus aureus surface protein IsdA mediates resistance to innate defenses of human skin. Cell Host Microbe 1(3):199–212. doi:10.1016/j.chom.2007.04.005 PubMedCrossRefGoogle Scholar
  129. 129.
    Palazzolo-Ballance AM, Reniere ML, Braughton KR, Sturdevant DE, Otto M, Kreiswirth BN, Skaar EP, DeLeo FR (2008) Neutrophil microbicides induce a pathogen survival response in community-associated methicillin-resistant Staphylococcus aureus. J Immunol 180(1):500–509PubMedGoogle Scholar
  130. 130.
    Clarke SR, Foster SJ (2008) IsdA protects Staphylococcus aureus against the bactericidal protease activity of apolactoferrin. Infect Immun 76(4):1518–1526. doi:10.1128/IAI.01530-07 PubMedCrossRefGoogle Scholar
  131. 131.
    Mason WJ, Skaar EP (2009) Assessing the contribution of heme-iron acquisition to Staphylococcus aureus pneumonia using computed tomography. PLoS One 4(8):e6668. doi:10.1371/journal.pone.0006668 PubMedCrossRefGoogle Scholar
  132. 132.
    Attia AS, Benson MA, Stauff DL, Torres VJ, Skaar EP (2010) Membrane damage elicits an immunomodulatory program in Staphylococcus aureus. PLoS Pathog 6(3):e1000802. doi:10.1371/journal.ppat.1000802 PubMedCrossRefGoogle Scholar
  133. 133.
    Aschner JL, Aschner M (2005) Nutritional aspects of manganese homeostasis. Mol Aspects Med 26(4–5):353–362. doi:10.1016/j.mam.2005.07.003 PubMedCrossRefGoogle Scholar
  134. 134.
    Aschner M, Guilarte TR, Schneider JS, Zheng W (2007) Manganese: recent advances in understanding its transport and neurotoxicity. Toxicol Appl Pharmacol 221(2):131–147. doi:10.1016/j.taap.2007.03.001 PubMedCrossRefGoogle Scholar
  135. 135.
    Friedman BJ, Freeland-Graves JH, Bales CW, Behmardi F, Shorey-Kutschke RL, Willis RA, Crosby JB, Trickett PC, Houston SD (1987) Manganese balance and clinical observations in young men fed a manganese-deficient diet. J Nutr 117(1):133–143PubMedGoogle Scholar
  136. 136.
    Jakubovics NS, Jenkinson HF (2001) Out of the iron age: new insights into the critical role of manganese homeostasis in bacteria. Microbiology 147(Pt 7):1709–1718PubMedGoogle Scholar
  137. 137.
    Bartsevich VV, Pakrasi HB (1995) Molecular identification of an ABC transporter complex for manganese: analysis of a cyanobacterial mutant strain impaired in the photosynthetic oxygen evolution process. EMBO J 14(9):1845–1853PubMedGoogle Scholar
  138. 138.
    Que Q, Helmann JD (2000) Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins. Mol Microbiol 35(6):1454–1468PubMedCrossRefGoogle Scholar
  139. 139.
    Kehres DG, Zaharik ML, Finlay BB, Maguire ME (2000) The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen. Mol Microbiol 36(5):1085–1100PubMedCrossRefGoogle Scholar
  140. 140.
    Papp-Wallace KM, Maguire ME (2006) Manganese transport and the role of manganese in virulence. Annu Rev Microbiol 60:187–209. doi:10.1146/annurev.micro.60.080805.142149 PubMedCrossRefGoogle Scholar
  141. 141.
    Fisher S, Buxbaum L, Toth K, Eisenstadt E, Silver S (1973) Regulation of manganese accumulation and exchange in Bacillus subtilis W23. J Bacteriol 113(3):1373–1380PubMedGoogle Scholar
  142. 142.
    Rosch JW, Gao G, Ridout G, Wang YD, Tuomanen EI (2009) Role of the manganese efflux system mntE for signalling and pathogenesis in Streptococcus pneumoniae. Mol Microbiol 72(1):12–25. doi:10.1111/j.1365-2958.2009.06638.x PubMedCrossRefGoogle Scholar
  143. 143.
    Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27(2–3):313–339PubMedCrossRefGoogle Scholar
  144. 144.
    Horsburgh MJ, Wharton SJ, Cox AG, Ingham E, Peacock S, Foster SJ (2002) MntR modulates expression of the PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake. Mol Microbiol 44(5):1269–1286PubMedCrossRefGoogle Scholar
  145. 145.
    Horsburgh MJ, Clements MO, Crossley H, Ingham E, Foster SJ (2001) PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus. Infect Immun 69(6):3744–3754. doi:10.1128/IAI.69.6.3744-3754.2001 PubMedCrossRefGoogle Scholar
  146. 146.
    Kuroda M, Hayashi H, Ohta T (1999) Chromosome-determined zinc-responsible operon czr in Staphylococcus aureus strain 912. Microbiol Immunol 43(2):115–125PubMedGoogle Scholar
  147. 147.
    Xiong A, Jayaswal RK (1998) Molecular characterization of a chromosomal determinant conferring resistance to zinc and cobalt ions in Staphylococcus aureus. J Bacteriol 180(16):4024–4029PubMedGoogle Scholar
  148. 148.
    Clements MO, Watson SP, Foster SJ (1999) Characterization of the major superoxide dismutase of Staphylococcus aureus and its role in starvation survival, stress resistance, and pathogenicity. J Bacteriol 181(13):3898–3903PubMedGoogle Scholar
  149. 149.
    Valderas MW, Hart ME (2001) Identification and characterization of a second superoxide dismutase gene (sodM) from Staphylococcus aureus. J Bacteriol 183(11):3399–3407. doi:10.1128/JB.183.11.3399-3407.2001 PubMedCrossRefGoogle Scholar
  150. 150.
    Kehl-Fie TE, Chitayat S, Hood MI, Damo S, Restrepo N, Garcia C, Munro KA, Chazin WJ, Skaar EP (2011) Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus. Cell Host Microbe 10(2):158–164. doi:10.1016/j.chom.2011.07.004 PubMedCrossRefGoogle Scholar
  151. 151.
    Anderson ES, Paulley JT, Gaines JM, Valderas MW, Martin DW, Menscher E, Brown TD, Burns CS, Roop RM 2nd (2009) The manganese transporter MntH is a critical virulence determinant for Brucella abortus 2308 in experimentally infected mice. Infect Immun 77(8):3466–3474. doi:10.1128/IAI.00444-09 PubMedCrossRefGoogle Scholar
  152. 152.
    Boyer E, Bergevin I, Malo D, Gros P, Cellier MF (2002) Acquisition of Mn(II) in addition to Fe(II) is required for full virulence of Salmonella enterica serovar Typhimurium. Infect Immun 70(11):6032–6042PubMedCrossRefGoogle Scholar
  153. 153.
    Lim KH, Jones CE, vanden Hoven RN, Edwards JL, Falsetta ML, Apicella MA, Jennings MP, McEwan AG (2008) Metal binding specificity of the MntABC permease of Neisseria gonorrhoeae and its influence on bacterial growth and interaction with cervical epithelial cells. Infect Immun 76(8):3569–3576. doi:10.1128/IAI.01725-07 PubMedCrossRefGoogle Scholar
  154. 154.
    Singh KV, Coque TM, Weinstock GM, Murray BE (1998) In vivo testing of an Enterococcus faecalis efaA mutant and use of efaA homologs for species identification. FEMS Immunol Med Microbiol 21(4):323–331PubMedGoogle Scholar
  155. 155.
    Berry AM, Paton JC (1996) Sequence heterogeneity of PsaA, a 37-kilodalton putative adhesin essential for virulence of Streptococcus pneumoniae. Infect Immun 64(12):5255–5262PubMedGoogle Scholar
  156. 156.
    Bearden SW, Perry RD (1999) The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Mol Microbiol 32(2):403–414PubMedCrossRefGoogle Scholar
  157. 157.
    Gruenheid S, Pinner E, Desjardins M, Gros P (1997) Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome. J Exp Med 185(4):717–730PubMedCrossRefGoogle Scholar
  158. 158.
    Jabado N, Jankowski A, Dougaparsad S, Picard V, Grinstein S, Gros P (2000) Natural resistance to intracellular infections: natural resistance-associated macrophage protein 1 (Nramp1) functions as a pH-dependent manganese transporter at the phagosomal membrane. J Exp Med 192(9):1237–1248PubMedCrossRefGoogle Scholar
  159. 159.
    Forbes JR, Gros P (2003) Iron, manganese, and cobalt transport by Nramp1 (Slc11a1) and Nramp2 (Slc11a2) expressed at the plasma membrane. Blood 102(5):1884–1892. doi:10.1182/blood-2003-02-0425 PubMedCrossRefGoogle Scholar
  160. 160.
    Goswami T, Bhattacharjee A, Babal P, Searle S, Moore E, Li M, Blackwell JM (2001) Natural-resistance-associated macrophage protein 1 is an H+/bivalent cation antiporter. Biochem J 354(Pt 3):511–519PubMedCrossRefGoogle Scholar
  161. 161.
    Vidal S, Tremblay ML, Govoni G, Gauthier S, Sebastiani G, Malo D, Skamene E, Olivier M, Jothy S, Gros P (1995) The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J Exp Med 182(3):655–666PubMedCrossRefGoogle Scholar
  162. 162.
    van Crevel R, Parwati I, Sahiratmadja E, Marzuki S, Ottenhoff TH, Netea MG, van der Ven A, Nelwan RH, van der Meer JW, Alisjahbana B, van de Vosse E (2009) Infection with Mycobacterium tuberculosis Beijing genotype strains is associated with polymorphisms in SLC11A1/NRAMP1 in Indonesian patients with tuberculosis. J Infect Dis 200(11):1671–1674. doi:10.1086/648477 PubMedCrossRefGoogle Scholar
  163. 163.
    Jin J, Sun L, Jiao W, Zhao S, Li H, Guan X, Jiao A, Jiang Z, Shen A (2009) SLC11A1 (formerly NRAMP1) gene polymorphisms associated with pediatric tuberculosis in China. Clin Infect Dis 48(6):733–738. doi:10.1086/597034 PubMedCrossRefGoogle Scholar
  164. 164.
    Koh WJ, Kwon OJ, Kim EJ, Lee KS, Ki CS, Kim JW (2005) NRAMP1 gene polymorphism and susceptibility to nontuberculous mycobacterial lung diseases. Chest 128(1):94–101. doi:10.1378/chest.128.1.94 PubMedCrossRefGoogle Scholar
  165. 165.
    Dale I, Fagerhol MK, Naesgaard I (1983) Purification and partial characterization of a highly immunogenic human leukocyte protein, the L1 antigen. Eur J Biochem 134(1):1–6PubMedCrossRefGoogle Scholar
  166. 166.
    Edgeworth J, Gorman M, Bennett R, Freemont P, Hogg N (1991) Identification of p8,14 as a highly abundant heterodimeric calcium binding protein complex of myeloid cells. J Biol Chem 266(12):7706–7713PubMedGoogle Scholar
  167. 167.
    Yui S, Nakatani Y, Mikami M (2003) Calprotectin (S100A8/S100A9), an inflammatory protein complex from neutrophils with a broad apoptosis-inducing activity. Biol Pharm Bull 26(6):753–760PubMedCrossRefGoogle Scholar
  168. 168.
    Steinbakk M, Naess-Andresen CF, Lingaas E, Dale I, Brandtzaeg P, Fagerhol MK (1990) Antimicrobial actions of calcium binding leucocyte L1 protein, calprotectin. Lancet 336(8718):763–765PubMedCrossRefGoogle Scholar
  169. 169.
    Sohnle PG, Collins-Lech C, Wiessner JH (1991) Antimicrobial activity of an abundant calcium-binding protein in the cytoplasm of human neutrophils. J Infect Dis 163(1):187–192PubMedCrossRefGoogle Scholar
  170. 170.
    Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535. doi:10.1126/science.1092385 PubMedCrossRefGoogle Scholar
  171. 171.
    Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W, Brinkmann V, Jungblut PR, Zychlinsky A (2009) Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog 5(10):e1000639. doi:10.1371/journal.ppat.1000639 PubMedCrossRefGoogle Scholar
  172. 172.
    Croce K, Gao H, Wang Y, Mooroka T, Sakuma M, Shi C, Sukhova GK, Packard RR, Hogg N, Libby P, Simon DI (2009) Myeloid-related protein-8/14 is critical for the biological response to vascular injury. Circulation 120(5):427–436. doi:10.1161/CIRCULATIONAHA.108.814582 PubMedCrossRefGoogle Scholar
  173. 173.
    Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA, Nacken W, Foell D, van der Poll T, Sorg C, Roth J (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13(9):1042–1049. doi:10.1038/nm1638 PubMedCrossRefGoogle Scholar
  174. 174.
    Ehrchen JM, Sunderkotter C, Foell D, Vogl T, Roth J (2009) The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol 86(3):557–566. doi:10.1189/jlb.1008647 PubMedCrossRefGoogle Scholar
  175. 175.
    Ghavami S, Kerkhoff C, Chazin WJ, Kadkhoda K, Xiao W, Zuse A, Hashemi M, Eshraghi M, Schulze-Osthoff K, Klonisch T, Los M (2008) S100A8/9 induces cell death via a novel, RAGE-independent pathway that involves selective release of Smac/DIABLO and Omi/HtrA2. Biochim Biophys Acta 1783(2):297–311. doi:10.1016/j.bbamcr.2007.10.015 PubMedCrossRefGoogle Scholar
  176. 176.
    Li C, Chen H, Ding F, Zhang Y, Luo A, Wang M, Liu Z (2009) A novel p53 target gene, S100A9, induces p53-dependent cellular apoptosis and mediates the p53 apoptosis pathway. Biochem J 422(2):363–372. doi:10.1042/BJ20090465 PubMedCrossRefGoogle Scholar
  177. 177.
    Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 181(7):4666–4675PubMedGoogle Scholar
  178. 178.
    Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, Ortiz M, Nacken W, Sorg C, Vogl T, Roth J, Gabrilovich DI (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205(10):2235–2249. doi:10.1084/jem.20080132 PubMedCrossRefGoogle Scholar
  179. 179.
    Sohnle PG, Hunter MJ, Hahn B, Chazin WJ (2000) Zinc-reversible antimicrobial activity of recombinant calprotectin (migration inhibitory factor-related proteins 8 and 14). J Infect Dis 182(4):1272–1275. doi:10.1086/315810 PubMedCrossRefGoogle Scholar
  180. 180.
    Sohnle PG, Collins-Lech C, Wiessner JH (1991) The zinc-reversible antimicrobial activity of neutrophil lysates and abscess fluid supernatants. J Infect Dis 164(1):137–142PubMedCrossRefGoogle Scholar
  181. 181.
    Clohessy PA, Golden BE (1995) Calprotectin-mediated zinc chelation as a biostatic mechanism in host defence. Scand J Immunol 42(5):551–556PubMedCrossRefGoogle Scholar
  182. 182.
    Lusitani D, Malawista SE, Montgomery RR (2003) Calprotectin, an abundant cytosolic protein from human polymorphonuclear leukocytes, inhibits the growth of Borrelia burgdorferi. Infect Immun 71(8):4711–4716PubMedCrossRefGoogle Scholar
  183. 183.
    Murdoch DA (1998) Gram-positive anaerobic cocci. Clin Microbiol Rev 11(1):81–120PubMedGoogle Scholar
  184. 184.
    Akerstrom B, Bjorck L (2009) Bacterial surface protein L binds and inactivates neutrophil proteins S100A8/A9. J Immunol 183(7):4583–4592. doi:10.4049/jimmunol.0901487 PubMedCrossRefGoogle Scholar
  185. 185.
    DeLeo FR, Diep BA, Otto M (2009) Host defense and pathogenesis in Staphylococcus aureus infections. Infect Dis Clin North Am 23(1):17–34. doi:10.1016/j.idc.2008.10.003 PubMedCrossRefGoogle Scholar
  186. 186.
    Pilsczek FH, Salina D, Poon KK, Fahey C, Yipp BG, Sibley CD, Robbins SM, Green FH, Surette MG, Sugai M, Bowden MG, Hussain M, Zhang K, Kubes P (2010) A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol 185(12):7413–7425. doi:10.4049/jimmunol.1000675 PubMedCrossRefGoogle Scholar
  187. 187.
    Prasad AS, Meftah S, Abdallah J, Kaplan J, Brewer GJ, Bach JF, Dardenne M (1988) Serum thymulin in human zinc deficiency. J Clin Invest 82(4):1202–1210. doi:10.1172/JCI113717 PubMedCrossRefGoogle Scholar
  188. 188.
    Beck FW, Prasad AS, Kaplan J, Fitzgerald JT, Brewer GJ (1997) Changes in cytokine production and T cell subpopulations in experimentally induced zinc-deficient humans. Am J Physiol 272(6 Pt 1):E1002–E1007PubMedGoogle Scholar
  189. 189.
    Prasad AS (2008) Zinc in human health: effect of zinc on immune cells. Mol Med 14(5–6):353–357. doi:10.2119/2008-00033.Prasad PubMedGoogle Scholar
  190. 190.
    Shankar AH, Prasad AS (1998) Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr 68(2 Suppl):447S–463SPubMedGoogle Scholar
  191. 191.
    Sazawal S, Black RE, Bhan MK, Bhandari N, Sinha A, Jalla S (1995) Zinc supplementation in young children with acute diarrhea in India. N Engl J Med 333(13):839–844. doi:10.1056/NEJM199509283331304 PubMedCrossRefGoogle Scholar
  192. 192.
    Sazawal S, Black RE, Jalla S, Mazumdar S, Sinha A, Bhan MK (1998) Zinc supplementation reduces the incidence of acute lower respiratory infections in infants and preschool children: a double-blind, controlled trial. Pediatrics 102(1 Pt 1):1–5PubMedCrossRefGoogle Scholar
  193. 193.
    Lassi ZS, Haider BA, Bhutta ZA (2010) Zinc supplementation for the prevention of pneumonia in children aged 2 months to 59 months. Cochrane Database Syst Rev (12):CD005978. doi:10.1002/14651858.CD005978.pub2
  194. 194.
    Prasad AS, Beck FW, Bao B, Fitzgerald JT, Snell DC, Steinberg JD, Cardozo LJ (2007) Zinc supplementation decreases incidence of infections in the elderly: effect of zinc on generation of cytokines and oxidative stress. Am J Clin Nutr 85(3):837–844PubMedGoogle Scholar
  195. 195.
    Andreini C, Banci L, Bertini I, Rosato A (2006) Zinc through the three domains of life. J Proteome Res 5(11):3173–3178. doi:10.1021/pr0603699 PubMedCrossRefGoogle Scholar
  196. 196.
    Patzer SI, Hantke K (1998) The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol 28(6):1199–1210PubMedCrossRefGoogle Scholar
  197. 197.
    Blencowe DK, Morby AP (2003) Zn(II) metabolism in prokaryotes. FEMS Microbiol Rev 27(2–3):291–311PubMedCrossRefGoogle Scholar
  198. 198.
    Shin JH, Jung HJ, An YJ, Cho YB, Cha SS, Roe JH (2011) Graded expression of zinc-responsive genes through two regulatory zinc-binding sites in Zur. Proc Natl Acad Sci U S A 108(12):5045–5050. doi:10.1073/pnas.1017744108 PubMedCrossRefGoogle Scholar
  199. 199.
    Grass G, Wong MD, Rosen BP, Smith RL, Rensing C (2002) ZupT is a Zn(II) uptake system in Escherichia coli. J Bacteriol 184(3):864–866PubMedCrossRefGoogle Scholar
  200. 200.
    Rensing C, Mitra B, Rosen BP (1997) The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci U S A 94(26):14326–14331PubMedCrossRefGoogle Scholar
  201. 201.
    Nies DH, Silver S (1989) Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus. J Bacteriol 171(2):896–900PubMedGoogle Scholar
  202. 202.
    Hassan MT, van der Lelie D, Springael D, Romling U, Ahmed N, Mergeay M (1999) Identification of a gene cluster, czr, involved in cadmium and zinc resistance in Pseudomonas aeruginosa. Gene 238(2):417–425PubMedCrossRefGoogle Scholar
  203. 203.
    Singh VK, Xiong A, Usgaard TR, Chakrabarti S, Deora R, Misra TK, Jayaswal RK (1999) ZntR is an autoregulatory protein and negatively regulates the chromosomal zinc resistance operon znt of Staphylococcus aureus. Mol Microbiol 33(1):200–207PubMedCrossRefGoogle Scholar
  204. 204.
    Nucifora G, Chu L, Misra TK, Silver S (1989) Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc Natl Acad Sci U S A 86(10):3544–3548PubMedCrossRefGoogle Scholar
  205. 205.
    Lindsay JA, Foster SJ (2001) Zur: a Zn(2+)-responsive regulatory element of Staphylococcus aureus. Microbiology 147(Pt 5):1259–1266PubMedGoogle Scholar
  206. 206.
    Cousins RJ, Leinart AS (1988) Tissue-specific regulation of zinc metabolism and metallothionein genes by interleukin 1. FASEB J 2(13):2884–2890PubMedGoogle Scholar
  207. 207.
    Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340(6):448–454. doi:10.1056/NEJM199902113400607 PubMedCrossRefGoogle Scholar
  208. 208.
    Liuzzi JP, Lichten LA, Rivera S, Blanchard RK, Aydemir TB, Knutson MD, Ganz T, Cousins RJ (2005) Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc Natl Acad Sci U S A 102(19):6843–6848. doi:10.1073/pnas.0502257102 PubMedCrossRefGoogle Scholar
  209. 209.
    Pless DD, Ruthel G, Reinke EK, Ulrich RG, Bavari S (2005) Persistence of zinc-binding bacterial superantigens at the surface of antigen-presenting cells contributes to the extreme potency of these superantigens as T-cell activators. Infect Immun 73(9):5358–5366. doi:10.1128/IAI.73.9.5358-5366.2005 PubMedCrossRefGoogle Scholar
  210. 210.
    Conrady DG, Brescia CC, Horii K, Weiss AA, Hassett DJ, Herr AB (2008) A zinc-dependent adhesion module is responsible for intercellular adhesion in staphylococcal biofilms. Proc Natl Acad Sci U S A 105(49):19456–19461. doi:10.1073/pnas.0807717105 PubMedCrossRefGoogle Scholar
  211. 211.
    Sitthisak S, Knutsson L, Webb JW, Jayaswal RK (2007) Molecular characterization of the copper transport system in Staphylococcus aureus. Microbiology 153(Pt 12):4274–4283. doi:10.1099/mic.0.2007/009860-0 PubMedCrossRefGoogle Scholar
  212. 212.
    Grossoehme N, Kehl-Fie TE, Ma Z, Adams KW, Cowart DM, Scott RA, Skaar EP, Giedroc DP (2011) Control of copper resistance and inorganic sulfur metabolism by paralogous regulators in Staphylococcus aureus. J Biol Chem 286(15):13522–13531. doi:10.1074/jbc.M111.220012 PubMedCrossRefGoogle Scholar
  213. 213.
    Liu T, Ramesh A, Ma Z, Ward SK, Zhang L, George GN, Talaat AM, Sacchettini JC, Giedroc DP (2007) CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nat Chem Biol 3(1):60–68. doi:10.1038/nchembio844 PubMedCrossRefGoogle Scholar
  214. 214.
    Banci L, Bertini I, Ciofi-Baffoni S, Del Conte R, Gonnelli L (2003) Understanding copper trafficking in bacteria: interaction between the copper transport protein CopZ and the N-terminal domain of the copper ATPase CopA from Bacillus subtilis. Biochemistry 42(7):1939–1949. doi:10.1021/bi027096p PubMedCrossRefGoogle Scholar
  215. 215.
    Radford DS, Kihlken MA, Borrelly GP, Harwood CR, Le Brun NE, Cavet JS (2003) CopZ from Bacillus subtilis interacts in vivo with a copper exporting CPx-type ATPase CopA. FEMS Microbiol Lett 220(1):105–112PubMedCrossRefGoogle Scholar
  216. 216.
    Shafeeq S, Yesilkaya H, Kloosterman TG, Narayanan G, Andrew PW, Kuipers OP, Morrissey JA (2011) The cop operon is required for copper homeostasis and contributes to virulence in Streptococcus pneumoniae. Mol Microbiol. doi:10.1111/j.1365-2958.2011.07758.x
  217. 217.
    Wolschendorf F, Ackart D, Shrestha TB, Hascall-Dove L, Nolan S, Lamichhane G, Wang Y, Bossmann SH, Basaraba RJ, Niederweis M (2011) Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 108(4):1621–1626. doi:10.1073/pnas.1009261108 PubMedCrossRefGoogle Scholar
  218. 218.
    Schwan WR, Warrener P, Keunz E, Stover CK, Folger KR (2005) Mutations in the cueA gene encoding a copper homeostasis P-type ATPase reduce the pathogenicity of Pseudomonas aeruginosa in mice. Int J Med Microbiol 295(4):237–242PubMedCrossRefGoogle Scholar
  219. 219.
    Prohaska JR, Lukasewycz OA (1981) Copper deficiency suppresses the immune response of mice. Science 213(4507):559–561PubMedCrossRefGoogle Scholar
  220. 220.
    White C, Lee J, Kambe T, Fritsche K, Petris MJ (2009) A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J Biol Chem 284(49):33949–33956. doi:10.1074/jbc.M109.070201 PubMedCrossRefGoogle Scholar
  221. 221.
    Arredondo M, Nunez MT (2005) Iron and copper metabolism. Mol Aspects Med 26(4–5):313–327. doi:10.1016/j.mam.2005.07.010 PubMedCrossRefGoogle Scholar
  222. 222.
    Edvinsson M, Frisk P, Molin Y, Hjelm E, Ilback NG (2008) Trace element balance is changed in infected organs during acute Chlamydophila pneumoniae infection in mice. Biometals 21(2):229–237. doi:10.1007/s10534-007-9114-7 PubMedCrossRefGoogle Scholar
  223. 223.
    Ramadori G, Van Damme J, Rieder H, Buschenfelde KH Meyer zum (1988) Interleukin 6, the third mediator of acute-phase reaction, modulates hepatic protein synthesis in human and mouse. Comparison with interleukin 1 beta and tumor necrosis factor-alpha. Eur J Immunol 18(8):1259–1264. doi:10.1002/eji.1830180817 PubMedCrossRefGoogle Scholar
  224. 224.
    Noyce JO, Michels H, Keevil CW (2006) Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment. J Hosp Infect 63(3):289–297. doi:10.1016/j.jhin.2005.12.008 PubMedCrossRefGoogle Scholar
  225. 225.
    Shirai T, Tsuchiya H, Shimizu T, Ohtani K, Zen Y, Tomita K (2009) Prevention of pin tract infection with titanium-copper alloys. J Biomed Mater Res B Appl Biomater 91(1):373–380. doi:10.1002/jbm.b.31412 PubMedGoogle Scholar
  226. 226.
    Hall TJ, Wren MW, Jeanes A, Gant VA (2009) A comparison of the antibacterial efficacy and cytotoxicity to cultured human skin cells of 7 commercial hand rubs and Xgel, a new copper-based biocidal hand rub. Am J Infect Control 37(4):322–326. doi:10.1016/j.ajic.2008.09.011 PubMedCrossRefGoogle Scholar
  227. 227.
    Gant VA, Wren MW, Rollins MS, Jeanes A, Hickok SS, Hall TJ (2007) Three novel highly charged copper-based biocides: safety and efficacy against healthcare-associated organisms. J Antimicrob Chemother 60(2):294–299. doi:10.1093/jac/dkm201 PubMedCrossRefGoogle Scholar
  228. 228.
    Baker J, Sitthisak S, Sengupta M, Johnson M, Jayaswal RK, Morrissey JA (2010) Copper stress induces a global stress response in Staphylococcus aureus and represses sae and agr expression and biofilm formation. Appl Environ Microbiol 76(1):150–160. doi:10.1128/AEM.02268-09 PubMedCrossRefGoogle Scholar
  229. 229.
    Seeley EH, Caprioli RM (2011) MALDI imaging mass spectrometry of human tissue: method challenges and clinical perspectives. Trends Biotechnol 29(3):136–143. doi:10.1016/j.tibtech.2010.12.002 PubMedCrossRefGoogle Scholar
  230. 230.
    Sinha TK, Khatib-Shahidi S, Yankeelov TE, Mapara K, Ehtesham M, Cornett DS, Dawant BM, Caprioli RM, Gore JC (2008) Integrating spatially resolved three-dimensional MALDI IMS with in vivo magnetic resonance imaging. Nat Methods 5(1):57–59. doi:10.1038/nmeth1147 PubMedCrossRefGoogle Scholar
  231. 231.
    Watrous JD, Dorrestein PC (2011) Imaging mass spectrometry in microbiology. Nat Rev Microbiol 9(9):683–694. doi:10.1038/nrmicro2634 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Division of Pediatric Infectious Diseases, Department of PediatricsVanderbilt University Medical CenterNashvilleUSA
  2. 2.Department of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations