Skip to main content

Advertisement

Log in

To be or not to be accepted: the role of immunogenicity of neural stem cells following transplantation into the brain in animal and human studies

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Grafting of neural stem cells into the mammalian central nervous system (CNS) has been performed for some decades now, both in basic research and clinical applications for neurological disorders such as Parkinson's and Huntington's disease, stroke, and spinal cord injuries. Albeit the “proof of principle” status that neural grafts can reinstate functional deficits and rebuild damaged neuronal circuitries, many critical scientific questions are still open. Among them are the manifold immunological aspects that are encountered during the graft–host interaction in vivo. For example, the experience with allografted cells in absence of immunosuppressant drugs has raised serious doubts about an immunological privileged site within the CNS as compared to other engraftment sites in the body. This review discusses recent experimental and clinical findings demonstrating that neural stem cells have unique characteristics that help them modulate the host immunological defense, but, under some conditions, may still trigger a rejection process. Implications of these findings on neural grafting and potential new therapeutic applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Björklund A (1999) Transplanted precursors of nerve cells: Das and Altman and the revival of neural transplantation research. Brain Res Bull 50:477–478

    Article  PubMed  Google Scholar 

  2. Morizane A, Li J, Brundin P (2008) From bench to bed: the potential of stem cells for the treatment of Parkinson's disease. Cell Tissue Res 331:323–336

    Article  PubMed  Google Scholar 

  3. Peschanski M, Bachoud-Lévi A, Hantraye P (2004) Integrating fetal neural transplants into a therapeutic strategy: the example of Huntington's disease. Brain 127:1219–1228

    Article  PubMed  Google Scholar 

  4. Barker RA, Widner H (2004) Immune problems in central nervous system cell therapy. NeuroRx 1:472–481

    Article  PubMed  Google Scholar 

  5. Barker CF, Billingham RE (1977) Immunologically privileged sites. Adv Immunol 25:1–54

    Article  PubMed  CAS  Google Scholar 

  6. Krystkowiak P et al (2007) Alloimmunisation to donor antigens and immune rejection following foetal neural grafts to the brain in patients with Huntington's disease. PLoS ONE 2:e166

    Article  PubMed  Google Scholar 

  7. Brabb T (2000) In situ tolerance within the central nervous system as a mechanism for preventing autoimmunity. J Exp Med 192:871–880

    Article  PubMed  CAS  Google Scholar 

  8. Hori J et al (2003) Neural progenitor cells lack immunogenicity and resist destruction as allografts. Stem Cells 21:405–416

    Article  PubMed  Google Scholar 

  9. Duan WM, Cameron RM, Brundin P, Widner H (1997) Rat intrastriatal neural allografts challenged with skin allografts at different time points. Exp Neurol 148:334–347

    Article  PubMed  CAS  Google Scholar 

  10. Odeberg J, Piao J, Samuelsson E, Falci S, Akesson E (2005) Low immunogenicity of in vitro-expanded human neural cells despite high MHC expression. J Neuroimmunol 161:1–11

    Article  PubMed  CAS  Google Scholar 

  11. Kordower JH et al (1996) Functional fetal nigral grafts in a patient with Parkinson's disease: chemoanatomic, ultrastructural, and metabolic studies. J Comp Neurol 370:203–230

    Article  PubMed  CAS  Google Scholar 

  12. Mendez I et al (2005) Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson's disease. Brain 128:1498–1510

    Article  PubMed  Google Scholar 

  13. Li J et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat Med 14:501–503

    Article  PubMed  CAS  Google Scholar 

  14. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease. Nat Med 14:504–506

    Article  PubMed  CAS  Google Scholar 

  15. Freeman TB et al (2000) Transplanted fetal striatum in Huntington's disease: phenotypic development and lack of pathology. Proc Natl Acad Sci U S A 97:13877–13882

    Article  PubMed  CAS  Google Scholar 

  16. Capetian P et al (2009) Histological findings on fetal striatal grafts in a Huntington's disease patient early after transplantation. Neuroscience 160:661–675

    Article  PubMed  CAS  Google Scholar 

  17. Vignais L et al (1993) Transplantation of oligodendrocyte precursors in the adult demyelinated spinal cord: migration and remyelination. Int J Dev Neurosci 11:603–612

    Article  PubMed  CAS  Google Scholar 

  18. Das S, Ghosh D, Basu A (2009) Japanese encephalitis virus induce immuno-competency in neural stem/progenitor cells. PLoS ONE 4:e8134

    Article  PubMed  Google Scholar 

  19. Fink JS et al (2000) Porcine xenografts in Parkinson's disease and Huntington's disease patients: preliminary results. Cell Transplant 9:273–278

    PubMed  CAS  Google Scholar 

  20. Galili U (1993) Interaction of the natural anti-Gal antibody with alpha-galactosyl epitopes: a major obstacle for xenotransplantation in humans. Immunol Today 14:480–482

    Article  PubMed  CAS  Google Scholar 

  21. Brundin P, Widner H, Nilsson OG, Strecker RE, Björklund A (1989) Intracerebral xenografts of dopamine neurons: the role of immunosuppression and the blood–brain barrier. Exp Brain Res 75:195–207

    Article  PubMed  CAS  Google Scholar 

  22. Brandis A et al (1998) Time-dependent expression of donor- and host-specific major histocompatibility complex class I and II antigens in allogeneic dopamine-rich macro- and micrografts: comparison of two different grafting protocols. Acta Neuropathol 95:85–97

    Article  PubMed  CAS  Google Scholar 

  23. Broadwell RD, Baker BJ, Ebert P, Hickey WF, Villegas J (1992) Intracerebral grafting of solid tissues and cell suspensions: the blood–brain barrier and host immune response. Prog Brain Res 91:95–102

    Article  PubMed  CAS  Google Scholar 

  24. Takei K et al (1990) Immunological rejection of grafted tissue in xenogeneic neural transplantation. Prog Brain Res 82:103–109

    Article  PubMed  CAS  Google Scholar 

  25. Baker-Cairns BJ, Sloan DJ, Broadwell RD, Puklavec M, Charlton HM (1996) Contributions of donor and host blood vessels in CNS allografts. Exp Neurol 142:36–46

    Article  PubMed  CAS  Google Scholar 

  26. Oertel J, Samii M, Walter GF (2004) Fetal allogeneic dopaminergic cell suspension grafts in the ventricular system of the rat: characterization of transplant morphology and graft–host interactions. Acta Neuropathol 107:421–427

    Article  PubMed  CAS  Google Scholar 

  27. Sloan DJ, Baker BJ, Puklavec M, Charlton HM (1990) The effect of site of transplantation and histocompatibility differences on the survival of neural tissue transplanted to the CNS of defined inbred rat strains. Prog Brain Res 82:141–152

    Article  PubMed  CAS  Google Scholar 

  28. Kida S, Pantazis A, Weller RO (1993) CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 19:480–488

    Article  PubMed  CAS  Google Scholar 

  29. Vass K, Lassmann H (1990) Intrathecal application of interferon gamma. Progressive appearance of MHC antigens within the rat nervous system. Am J Pathol 137:789–800

    PubMed  CAS  Google Scholar 

  30. Pluchino S et al (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422:688–694

    Article  PubMed  CAS  Google Scholar 

  31. Pluchino S et al (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436:266–271

    Article  PubMed  CAS  Google Scholar 

  32. Pluchino S et al (2009) Immune regulatory neural stem/precursor cells protect from central nervous system autoimmunity by restraining dendritic cell function. PLoS ONE 4:e5959

    Article  PubMed  Google Scholar 

  33. Pluchino S et al (2009) Human neural stem cells ameliorate autoimmune encephalomyelitis in non-human primates. Ann Neurol 66:343–354

    Article  PubMed  CAS  Google Scholar 

  34. Aharonowiz M et al (2008) Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis. PLoS ONE 3:e3145

    Article  PubMed  Google Scholar 

  35. Krebs S (2011) Immune response after striatal engraftment of fetal neuronal cells in patients with Huntington's disease: consequences for cerebral transplantation programs. Clinical and Experimental Neuroimmunology (in press)

  36. Winkler C, Kirik D, Björklund A (2005) Cell transplantation in Parkinson's disease: how can we make it work? Trends Neurosci 28:86–92

    Article  PubMed  CAS  Google Scholar 

  37. Nikkhah G et al (2009) Microtransplantation of dopaminergic cell suspensions: further characterization and optimization of grafting parameters. Cell Transplant 18:119–133

    Article  PubMed  Google Scholar 

  38. Döbrössy M et al (2010) Neurorehabilitation with neural transplantation. Neurorehabil Neural Repair 24:692–701

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the European Commission under the 7th Framework Programme—HEALTH—Collaborative Project Transeuro (contract no. 242003), the German Parkinson Foundation (dPV), and the Weber-Petri-Foundation.

The clinical trial in HD patients that is mentioned in this paper was designed in the framework of the MIG-HD trial with the logistic and expertise support of the PI and the coordination centre of the MIG-HD trial. Patients randomisation was performed at Henri Mondor Hospital at Créteil. The MIG-HD trial is granted through two PHRC AOM00139 and AOM 04021 from the DRCD (Assistance publique- Hôpitaux de Paris, Minsitère de la Santé) and the support of the AFM. The coordination centre of MIG-HD involves AC Bachoud-Lévi (Principal Investigator), S. Palfi , P. Remy, M. Peschanski, P. Hantraye, JP Lefaucheur, D. Challine, P. Maison. CROs were: Amandine Rialland, D. Schmitz, Data manager G. Dolbeau, The Sites PI are : AC Bachoud-Lévi, Palfi S, ( Créteil), P. Krystkowiak, S. Blond, (Lille), JF Démonet , J-C Sol (Toulouse), C. Verny P. Menei (Angers), P. Damier, Y Lajat (Nantes); F. Supiot M. Levivier (Bruxelles).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Nikkhah.

Additional information

This article is published as part of the Special Issue on Immunopathology of Pluripotent Stem Cell Transplantation [33:6].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capetian, P., Döbrössy, M., Winkler, C. et al. To be or not to be accepted: the role of immunogenicity of neural stem cells following transplantation into the brain in animal and human studies. Semin Immunopathol 33, 619–626 (2011). https://doi.org/10.1007/s00281-011-0272-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-011-0272-x

Keywords

Navigation