Seminars in Immunopathology

, Volume 33, Issue 2, pp 201–210 | Cite as

Special issues in the management and selection of the donor for lung transplantation

  • Priyumvada M. NaikEmail author
  • Luis F. Angel


Lung transplantation is a viable treatment option for select patients with end-stage lung disease. Two issues hamper progress in transplantation: first, donor shortage is a major limitation to increasing the number of transplants performed. Secondly, recipient outcomes remain disappointing when compared with other solid organ transplant results. Outcomes are limited by primary graft dysfunction (PGD), the posttransplant acute lung injury that increases both short-and long-term mortality. Attempts to overcome donor shortage have included aggressively managing solid organ donors to increase the number of donor lungs suitable for transplantation. Yet, the quality of the lung donor is likely to be related to the probability of the recipient experiencing PGD. PGD is the culmination of a series of insults, hemodynamic, metabolic, and inflammatory, that begin with the brain dead donor and result in poor recipient outcomes. Understanding the mechanism of donor lung injury resulting from brain death and the possible treatment strategies for its inhibition could help to increase the number of usable lungs and decrease the rate of PGD in the recipient. Here we present a review of the key pathways which result in donor lung injury, and follow this with a brief review of recent biomarkers that are proving to be instrumental to our ability to predict truly unsuitable lungs, and our ability to predict and hopefully prevent or treat recipients with subsequent lung injury.


Organ donation Lung transplantation Donor management Brain death 


  1. 1.
    Hardy JD et al (1963) Lung homotransplantation in man. JAMA 186:1065–1074PubMedCrossRefGoogle Scholar
  2. 2.
    Veith FJ (1978) Lung transplantation. Surg Clin North Am 58(2):357–364PubMedGoogle Scholar
  3. 3.
    Derom F et al (1971) Ten-month survival after lung homotransplantation in man. J Thorac Cardiovasc Surg 61(6):835–846PubMedGoogle Scholar
  4. 4.
    Thabut G et al (2002) Primary graft failure following lung transplantation: predictive factors of mortality. Chest 121(6):1876–1882PubMedCrossRefGoogle Scholar
  5. 5.
    Christie JD et al (2005) Report of the ISHLT working group on Primary Lung Graft Dysfunction part II: definition. a consensus statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 24(10):1454–1459PubMedCrossRefGoogle Scholar
  6. 6.
    Fiser SM et al (2002) Ischemia-reperfusion injury after lung transplantation increases risk of late bronchiolitis obliterans syndrome. Ann Thorac Surg 73(4):1041–1047, discussion 1047-8PubMedCrossRefGoogle Scholar
  7. 7.
    Daud SA et al (2007) Impact of immediate primary lung allograft dysfunction on bronchiolitis obliterans syndrome. Am J Respir Crit Care Med 175(5):507–513PubMedCrossRefGoogle Scholar
  8. 8.
    Fisher AJ et al (1999) Enhanced pulmonary inflammation in organ donors following fatal non-traumatic brain injury. Lancet 353(9162):1412–1413PubMedCrossRefGoogle Scholar
  9. 9.
    Avlonitis VS, JAK DJH (2005) The effect of time from donor brain death to retrieval on reperfusion injury after lung transplantation. J Heart Lung Transplant 24(2):S121CrossRefGoogle Scholar
  10. 10.
    Gabbay E et al (1999) Maximizing the utilization of donor organs offered for lung transplantation. Am J Respir Crit Care Med 160(1):265–271PubMedGoogle Scholar
  11. 11.
    Angel LF et al (2006) Impact of a lung transplantation donor-management protocol on lung donation and recipient outcomes. Am J Respir Crit Care Med 174(6):710–716PubMedCrossRefGoogle Scholar
  12. 12.
    Annual report of the U.S. Organ Procurement and Transplantation Network and the Scientific Registry of Transplant Recipients (2008): transplant data 1998–2007. Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, Division of Transplantation, Rockville, MD; United Network for Organ Sharing, Richmond, VAGoogle Scholar
  13. 13.
    Terasaki PI et al (1995) High survival rates of kidney transplants from spousal and living unrelated donors. N Engl J Med 333(6):333–336PubMedCrossRefGoogle Scholar
  14. 14.
    Pratschke J et al (2000) Accelerated rejection of renal allografts from brain-dead donors. Ann Surg 232(2):263–271PubMedCrossRefGoogle Scholar
  15. 15.
    Wilhelm MJ et al (2000) Activation of the heart by donor brain death accelerates acute rejection after transplantation. Circulation 102(19):2426–2433PubMedGoogle Scholar
  16. 16.
    Van der Hoeven JA et al (2001) Donor brain death reduces survival after transplantation in rat livers preserved for 20 h. Transplantation 72(10):1632–1636PubMedCrossRefGoogle Scholar
  17. 17.
    Zweers N et al (2004) Donor brain death aggravates chronic rejection after lung transplantation in rats. Transplantation 78(9):1251–1258PubMedCrossRefGoogle Scholar
  18. 18.
    Avlonitis VS et al (2003) Pulmonary transplantation: the role of brain death in donor lung injury. Transplantation 75(12):1928–1933PubMedCrossRefGoogle Scholar
  19. 19.
    Avlonitis VS et al (2005) The hemodynamic mechanisms of lung injury and systemic inflammatory response following brain death in the transplant donor. Am J Transplant 5(4 Pt 1):684–693PubMedCrossRefGoogle Scholar
  20. 20.
    Smith M (2004) Physiologic changes during brain stem death—lessons for management of the organ donor. J Heart Lung Transplant 23(9 Suppl):S217–S222PubMedCrossRefGoogle Scholar
  21. 21.
    Rosendale JD et al (2003) Aggressive pharmacologic donor management results in more transplanted organs. Transplantation 75(4):482–487PubMedCrossRefGoogle Scholar
  22. 22.
    Chen EP et al (1996) Hormonal and hemodynamic changes in a validated animal model of brain death. Crit Care Med 24(8):1352–1359PubMedCrossRefGoogle Scholar
  23. 23.
    Smith WS, Matthay MA (1997) Evidence for a hydrostatic mechanism in human neurogenic pulmonary edema. Chest 111(5):1326–1333PubMedCrossRefGoogle Scholar
  24. 24.
    Kerr GW (1998) Neurogenic pulmonary oedema. J Accid Emerg Med 15(4):275–276PubMedCrossRefGoogle Scholar
  25. 25.
    Wray NP, Nicotra MB (1978) Pathogenesis of neurogenic pulmonary edema. Am Rev Respir Dis 118(4):783–786PubMedGoogle Scholar
  26. 26.
    Novitzky D et al (1987) Pathophysiology of pulmonary edema following experimental brain death in the chacma baboon. Ann Thorac Surg 43(3):288–294PubMedCrossRefGoogle Scholar
  27. 27.
    Baumann A et al (2007) Neurogenic pulmonary edema. Acta Anaesthesiol Scand 51(4):447–455PubMedCrossRefGoogle Scholar
  28. 28.
    Shanahan W (1908) Acute pulmonary oedema as a complication of epileptic seizures. NY Med J 37:54Google Scholar
  29. 29.
    Simmons RL et al (1969) Respiratory insufficiency in combat casualties. II. pulmonary edema following head injury. Ann Surg 170(1):39–44PubMedCrossRefGoogle Scholar
  30. 30.
    Shohami E et al (1994) Closed head injury triggers early production of TNF alpha and IL-6 by brain tissue. J Cereb Blood Flow Metab 14(4):615–619PubMedCrossRefGoogle Scholar
  31. 31.
    Wang CX, Shuaib A (2002) Involvement of inflammatory cytokines in central nervous system injury. Prog Neurobiol 67(2):161–172PubMedCrossRefGoogle Scholar
  32. 32.
    Skrabal CA et al (2005) Organ-specific regulation of pro-inflammatory molecules in heart, lung, and kidney following brain death. J Surg Res 123(1):118–125PubMedCrossRefGoogle Scholar
  33. 33.
    Lentsch AB, Ward PA (2001) Regulation of experimental lung inflammation. Respir Physiol 128(1):17–22PubMedCrossRefGoogle Scholar
  34. 34.
    Strieter RM, Kunkel SL (1994) Acute lung injury: the role of cytokines in the elicitation of neutrophils. J Investig Med 42(4):640–651PubMedGoogle Scholar
  35. 35.
    Naik P et al (2008) Oxidative stress in lung allograft recipients with and without graft dysfunction. J Heart Lung Transplant 28(2):S283--S284Google Scholar
  36. 36.
    Sutherland AJ et al (2007) The endothelin axis and gelatinase activity in alveolar macrophages after brain-stem death injury: a pilot study. J Heart Lung Transplant 26(10):1040–1047PubMedCrossRefGoogle Scholar
  37. 37.
    Bobadilla JL et al (2008) Th-17, monokines, collagen type V, and primary graft dysfunction in lung transplantation. Am J Respir Crit Care Med 177(6):660–668PubMedCrossRefGoogle Scholar
  38. 38.
    Iwata T et al (2008) Lung transplant ischemia reperfusion injury: metalloprotease inhibition down-regulates exposure of type V collagen, growth-related oncogene-induced neutrophil chemotaxis, and tumor necrosis factor-alpha expression. Transplantation 85(3):417–426PubMedGoogle Scholar
  39. 39.
    Burlingham WJ et al (2007) IL-17-dependent cellular immunity to collagen type V predisposes to obliterative bronchiolitis in human lung transplants. J Clin Invest 117(11):3498–3506PubMedCrossRefGoogle Scholar
  40. 40.
    Donnelly SC et al (1993) Interleukin-8 and development of adult respiratory distress syndrome in at-risk patient groups. Lancet 341(8846):643–647PubMedCrossRefGoogle Scholar
  41. 41.
    Fisher AJ et al (2001) Elevated levels of interleukin-8 in donor lungs is associated with early graft failure after lung transplantation. Am J Respir Crit Care Med 163(1):259–265PubMedGoogle Scholar
  42. 42.
    De Perrot M et al (2002) Interleukin-8 release during early reperfusion predicts graft function in human lung transplantation. Am J Respir Crit Care Med 165(2):211–215PubMedGoogle Scholar
  43. 43.
    Ramasamy R et al (2005) Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 15(7):16R–28RPubMedCrossRefGoogle Scholar
  44. 44.
    Schmidt AM et al (2001) The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest 108(7):949–955PubMedGoogle Scholar
  45. 45.
    Liliensiek B et al (2004) Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response. J Clin Invest 113(11):1641–1650PubMedGoogle Scholar
  46. 46.
    Uchida T et al (2006) Receptor for advanced glycation end-products is a marker of type I cell injury in acute lung injury. Am J Respir Crit Care Med 173(9):1008–1015PubMedCrossRefGoogle Scholar
  47. 47.
    Calfee CS et al (2007) Plasma receptor for advanced glycation end-products predicts duration of ICU stay and mechanical ventilation in patients after lung transplantation. J Heart Lung Transplant 26(7):675–680PubMedCrossRefGoogle Scholar
  48. 48.
    Christie JD et al (2009) Plasma levels of receptor for advanced glycation end products, blood transfusion, and risk of primary graft dysfunction. Am J Respir Crit Care Med 180(10):1010–1015PubMedCrossRefGoogle Scholar
  49. 49.
    Pelaez A et al (2010) Receptor for advanced glycation end products in donor lungs is associated with primary graft dysfunction after lung transplantation. Am J Transplant 10(4):900–907PubMedCrossRefGoogle Scholar
  50. 50.
    Sternberg DI et al (2008) Blockade of receptor for advanced glycation end product attenuates pulmonary reperfusion injury in mice. J Thorac Cardiovasc Surg 136(6):1576–1585PubMedCrossRefGoogle Scholar
  51. 51.
    Novitzky D et al (2006) Hormonal therapy of the brain-dead organ donor: experimental and clinical studies. Transplantation 82(11):1396–1401PubMedCrossRefGoogle Scholar
  52. 52.
    Ueno T, Zhi-Li C, Itoh T (2000) Unique circulatory responses to exogenous catecholamines after brain death. Transplantation 70(3):436–440PubMedCrossRefGoogle Scholar
  53. 53.
    van Der Hoeven JA et al (2000) Effects of brain death and hemodynamic status on function and immunologic activation of the potential donor liver in the rat. Ann Surg 232(6):804–813CrossRefGoogle Scholar
  54. 54.
    Keogh AM et al (1988) Pituitary function in brain-stem dead organ donors: a prospective survey. Transplant Proc 20(5):729–730PubMedGoogle Scholar
  55. 55.
    Howlett TA et al (1989) Anterior and posterior pituitary function in brain-stem-dead donors. a possible role for hormonal replacement therapy. Transplantation 47(5):828–834PubMedCrossRefGoogle Scholar
  56. 56.
    Yoshioka T et al (1986) Prolonged hemodynamic maintenance by the combined administration of vasopressin and epinephrine in brain death: a clinical study. Neurosurgery 18(5):565–567PubMedCrossRefGoogle Scholar
  57. 57.
    Mukadam ME et al (2005) Does donor catecholamine administration affect early lung function after transplantation? J Thorac Cardiovasc Surg 130(3):926–927PubMedCrossRefGoogle Scholar
  58. 58.
    Ware LB et al (2002) Selected contribution: mechanisms that may stimulate the resolution of alveolar edema in the transplanted human lung. J Appl Physiol 93(5):1869–1874PubMedGoogle Scholar
  59. 59.
    van der Hoeven JA et al (2003) Relationship between duration of brain death and hemodynamic (in)stability on progressive dysfunction and increased immunologic activation of donor kidneys. Kidney Int 64(5):1874–1882PubMedCrossRefGoogle Scholar
  60. 60.
    Auphan N et al (1995) Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science 270(5234):286–290PubMedCrossRefGoogle Scholar
  61. 61.
    Folkesson HG et al (2000) Dexamethasone and thyroid hormone pretreatment upregulate alveolar epithelial fluid clearance in adult rats. J Appl Physiol 88(2):416–424PubMedGoogle Scholar
  62. 62.
    Follette DM, Rudich SM, Babcock WD (1998) Improved oxygenation and increased lung donor recovery with high-dose steroid administration after brain death. J Heart Lung Transplant 17(4):423–429PubMedGoogle Scholar
  63. 63.
    Goarin JP et al (1996) The effects of triiodothyronine on hemodynamic status and cardiac function in potential heart donors. Anesth Analg 83(1):41–47PubMedGoogle Scholar
  64. 64.
    Marik PE (2001) Aspiration pneumonitis and aspiration pneumonia. N Engl J Med 344(9):665–671PubMedCrossRefGoogle Scholar
  65. 65.
    Pierre AF et al (2002) Marginal donor lungs: a reassessment. J Thorac Cardiovasc Surg 123(3):421–427, discussion, 427-8PubMedCrossRefGoogle Scholar
  66. 66.
    Spital A (2005) Conscription of cadaveric organs for transplantation: a stimulating idea whose time has not yet come. Cambridge Q Healthc Ethics 14:107–112Google Scholar
  67. 67.
    Mozes MF et al (1991) Impediments to successful organ procurement in the “required request” era: an urban center experience. Transplant Proc 23(5):2545PubMedGoogle Scholar
  68. 68.
    America DL. National Donor Designation Report Card. 2010 [cited 2010 May 4]; Available from:
  69. 69.
    Michielsen P (1996) Presumed consent to organ donation: 10 years’ experience in Belgium. J R Soc Med 89(12):663–666PubMedGoogle Scholar
  70. 70.
    Frost AE (1997) Donor criteria and evaluation. Clin Chest Med 18(2):231–237PubMedCrossRefGoogle Scholar
  71. 71.
    Weill D (2002) Donor criteria in lung transplantation: an issue revisited. Chest 121(6):2029–2031PubMedCrossRefGoogle Scholar
  72. 72.
    Arcasoy SM, Kotloff RM (1999) Lung transplantation. N Engl J Med 340(14):1081–1091PubMedCrossRefGoogle Scholar
  73. 73.
    Bonde PN et al (2006) Impact of donor lung organisms on post-lung transplant pneumonia. J Heart Lung Transplant 25(1):99–105PubMedCrossRefGoogle Scholar
  74. 74.
    Weill D et al (2002) A positive donor gram stain does not predict outcome following lung transplantation. J Heart Lung Transplant 21(5):555–558PubMedCrossRefGoogle Scholar
  75. 75.
    Ruiz I et al (2006) Donor-to-host transmission of bacterial and fungal infections in lung transplantation. Am J Transplant 6(1):178–182PubMedCrossRefGoogle Scholar
  76. 76.
    Bhorade SM et al (2000) Liberalization of donor criteria may expand the donor pool without adverse consequence in lung transplantation. J Heart Lung Transplant 19(12):1199–1204PubMedCrossRefGoogle Scholar
  77. 77.
    Dahlman S et al (2006) Expanding the donor pool: lung transplantation with donors 55 years and older. Transplant Proc 38(8):2691–2693PubMedCrossRefGoogle Scholar
  78. 78.
    Fischer S et al (2005) Lung transplantation with lungs from donors fifty years of age and older. J Thorac Cardiovasc Surg 129(4):919–925PubMedCrossRefGoogle Scholar
  79. 79.
    Lardinois D et al (2005) Extended donor lungs: eleven years experience in a consecutive series. Eur J Cardiothorac Surg 27(5):762–767PubMedCrossRefGoogle Scholar
  80. 80.
    Aigner C et al (2005) Extended donor criteria for lung transplantation—a clinical reality. Eur J Cardiothorac Surg 27(5):757–761PubMedCrossRefGoogle Scholar
  81. 81.
    Ware LB et al (2002) Assessment of lungs rejected for transplantation and implications for donor selection. Lancet 360(9333):619–620PubMedCrossRefGoogle Scholar
  82. 82.
    Straznicka M et al (2002) Aggressive management of lung donors classified as unacceptable: excellent recipient survival one year after transplantation. J Thorac Cardiovasc Surg 124(2):250–258PubMedCrossRefGoogle Scholar
  83. 83.
    Kirschbaum CE, Hudson S (2010) Increasing organ yield through a lung management protocol. Prog Transplant 20(1):28–32PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Heart Lung Institute, Center for Thoracic TransplantSt. Joseph’s HospitalPhoenixUSA
  2. 2.Cardiothoracic Surgery and Pulmonary and Critical Care MedicineUniversity of Texas Health Science CenterSan AntonioUSA

Personalised recommendations