Seminars in Immunopathology

, Volume 33, Issue 2, pp 169–184 | Cite as

The role of innate immunity in donor organ procurement



Solid organ transplantation is a life saving procedure for patients with end-stage organ disease, and great care is taken to ensure that healthy organs are procured from deceased or live donors. Despite rigorous efforts to avoid injury, all organs experience some degree of damage from a process called ischemia reperfusion injury (IRI). The first part of the injury (ischemia) occurs when the donor organ's blood supply is compromised, and the second part (reperfusion) occurs when the blood supply is reestablished. The pathophysiology of the IRI is complex, but data from many laboratories have demonstrated that the inciting events of ischemia/reperfusion injury are triggered through a phylogenetically conserved system called the innate immune system. The innate immune system is a complex array of molecules, receptors and cellular elements present in species as diverse as plants to humans. This review discusses the role of the innate immune system in renal IRI and focuses on mechanisms of injury during organ procurement and transplantation. Although there are overlapping complex mechanisms, blockade of the innate immune system will likely provide a novel approach to preventing the earliest events associated with renal ischemia. Potentially, blockade of innate immune activation will provide the opportunity to increase the use marginal donors, especially those from patients deceased after cardiac death.


Ischemia/reperfusion injury Innate Immunity TLRs NLRs 


  1. 1.
    Agrawal A, Gurusamy K, Powis S, Gray DW, Fuller B, Davidson BR (2008) A meta-analysis of the impact of the two-layer method of preservation on human pancreatic islet transplantation. Cell Transplant 17:1315–1322PubMedCrossRefGoogle Scholar
  2. 2.
    Akira S (2003) Mammalian toll-like receptors. Curr Opin Immunol 15:5–11PubMedCrossRefGoogle Scholar
  3. 3.
    Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511PubMedCrossRefGoogle Scholar
  4. 4.
    Anders HJ, Banas B, Linde Y, Weller L, Cohen CD, Kretzler M, Martin S, Vielhauer V, Schlondorff D, Grone HJ (2003) Bacterial CpG-DNA aggravates immune complex glomerulonephritis: role of TLR9-mediated expression of chemokines and chemokine receptors. J Am Soc Nephrol 14:317–326PubMedCrossRefGoogle Scholar
  5. 5.
    Arbibe L, Mira JP, Teusch N, Kline L, Guha M, Mackman N, Godowski PJ, Ulevitch RJ, Knaus UG (2000) Toll-like receptor 2-mediated NF-kappa B activation requires a Rac1-dependent pathway. Nat Immunol 1:533–540PubMedCrossRefGoogle Scholar
  6. 6.
    Ascon DB, Lopez-Briones S, Liu M, Ascon M, Savransky V, Colvin RB, Soloski MJ, Rabb H (2006) Phenotypic and functional characterization of kidney-infiltrating lymphocytes in renal ischemia reperfusion injury. J Immunol 177:3380–3387PubMedGoogle Scholar
  7. 7.
    Ascon DB, Ascon M, Satpute S, Lopez-Briones S, Racusen L, Colvin RB, Soloski MJ, Rabb H (2008) Normal mouse kidneys contain activated and CD3+CD4-CD8-double-negative T lymphocytes with a distinct TCR repertoire. J Leukoc Biol 84:1400–1409PubMedCrossRefGoogle Scholar
  8. 8.
    Bajwa A, Kinsey GR, Okusa MD (2009) Immune mechanisms and novel pharmacological therapies of acute kidney injury. Curr Drug Targets 10:1196–1204PubMedCrossRefGoogle Scholar
  9. 9.
    Banas MC, Banas B, Hudkins KL, Wietecha TA, Iyoda M, Bock E, Hauser P, Pippin JW, Shankland SJ, Smith KD, Stoelcker B, Liu G, Grone HJ, Kramer BK, Alpers CE (2008) TLR4 links podocytes with the innate immune system to mediate glomerular injury. J Am Soc Nephrol 19:704–713PubMedCrossRefGoogle Scholar
  10. 10.
    Barker CF, Billingham RE (1971) The lymphatic status of hamster cheek pouch tissue in relation to its properties as a graft and as a graft site. J Exp Med 133:620–639PubMedCrossRefGoogle Scholar
  11. 11.
    Barklin A (2009) Systemic inflammation in the brain-dead organ donor. Acta Anaesthesiol Scand 53:425–435PubMedCrossRefGoogle Scholar
  12. 12.
    Barrat FJ, Meeker T, Chan JH, Guiducci C, Coffman RL (2007) Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms. Eur J Immunol 37:3582–3586PubMedCrossRefGoogle Scholar
  13. 13.
    Barton GM, Kagan JC, Medzhitov R (2006) Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol 7:49–56PubMedCrossRefGoogle Scholar
  14. 14.
    Baskin-Bey ES, Washburn K, Feng S, Oltersdorf T, Shapiro D, Huyghe M, Burgart L, Garrity-Park M, van Vilsteren FG, Oliver LK, Rosen CB, Gores GJ (2007) Clinical trial of the pan-caspase inhibitor, IDN-6556, in human liver preservation injury. Am J Transplant 7:218–225PubMedCrossRefGoogle Scholar
  15. 15.
    Bernhardt WM, Gottmann U, Doyon F, Buchholz B, Campean V, Schodel J, Reisenbuechler A, Klaus S, Arend M, Flippin L, Willam C, Wiesener MS, Yard B, Warnecke C, Eckardt KU (2009) Donor treatment with a PHD-inhibitor activating HIFs prevents graft injury and prolongs survival in an allogenic kidney transplant model. Proc Natl Acad Sci USA 106:21276–21281PubMedCrossRefGoogle Scholar
  16. 16.
    Bessems M, Doorschodt BM, van Marle J, Vreeling H, Meijer AJ, van Gulik TM (2005) Improved machine perfusion preservation of the non-heart-beating donor rat liver using Polysol: a new machine perfusion preservation solution. Liver Transplant 11:1379–1388CrossRefGoogle Scholar
  17. 17.
    Beutler B (2009) Microbe sensing, positive feedback loops, and the pathogenesis of inflammatory diseases. Immunol Rev 227:248–263PubMedCrossRefGoogle Scholar
  18. 18.
    Beutler BA (2009) TLRs and innate immunity. Blood 113:1399–1407PubMedCrossRefGoogle Scholar
  19. 19.
    Billingham RE (1971) The passenger cell concept in transplantation immunology. Cell Immunol 2:1–12PubMedCrossRefGoogle Scholar
  20. 20.
    Blasius AL, Beutler B (2010) Intracellular toll-like receptors. Immunity 32:305–315PubMedCrossRefGoogle Scholar
  21. 21.
    Bonventre JV, Zuk A (2004) Ischemic acute renal failure: an inflammatory disease? Kidney Int 66:480–485PubMedCrossRefGoogle Scholar
  22. 22.
    Boone DL, Turer EE, Lee EG, Ahmad RC, Wheeler MT, Tsui C, Hurley P, Chien M, Chai S, Hitotsumatsu O, McNally E, Pickart C, Ma A (2004) The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 5:1052–1060PubMedCrossRefGoogle Scholar
  23. 23.
    Bouma HR, Ploeg RJ, Schuurs TA (2009) Signal transduction pathways involved in brain death-induced renal injury. Am J Transplant 9:989–997PubMedCrossRefGoogle Scholar
  24. 24.
    Brown HJ, Lock HR, Sacks SH, Robson MG (2006) TLR2 stimulation of intrinsic renal cells in the induction of immune-mediated glomerulonephritis. J Immunol 177:1925–1931PubMedGoogle Scholar
  25. 25.
    Brown HJ, Sacks SH, Robson MG (2006) Toll-like receptor 2 agonists exacerbate accelerated nephrotoxic nephritis. J Am Soc Nephrol 17:1931–1939PubMedCrossRefGoogle Scholar
  26. 26.
    Brown HJ, Lock HR, Wolfs TG, Buurman WA, Sacks SH, Robson MG (2007) Toll-like receptor 4 ligation on intrinsic renal cells contributes to the induction of antibody-mediated glomerulonephritis via CXCL1 and CXCL2. J Am Soc Nephrol 18:1732–1739PubMedCrossRefGoogle Scholar
  27. 27.
    Carneiro LA, Magalhaes JG, Tattoli I, Philpott DJ, Travassos LH (2008) Nod-like proteins in inflammation and disease. J Pathol 214:136–148PubMedCrossRefGoogle Scholar
  28. 28.
    Cassel SL, Eisenbarth SC, Iyer SS, Sadler JJ, Colegio OR, Tephly LA, Carter AB, Rothman PB, Flavell RA, Sutterwala FS (2008) The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci USA 105:9035–9040PubMedCrossRefGoogle Scholar
  29. 29.
    Chatterjee PK, Zacharowski K, Cuzzocrea S, Otto M, Thiemermann C (2000) Inhibitors of poly (ADP-ribose) synthetase reduce renal ischemia-reperfusion injury in the anesthetized rat in vivo. FASEB J 14:641–651PubMedGoogle Scholar
  30. 30.
    Chiao H, Kohda Y, McLeroy P, Craig L, Housini I, Star RA (1997) Alpha-melanocyte-stimulating hormone protects against renal injury after ischemia in mice and rats. J Clin Invest 99:1165–1172PubMedCrossRefGoogle Scholar
  31. 31.
    Christensen SR, Shupe J, Nickerson K, Kashgarian M, Flavell RA, Shlomchik MJ (2006) Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25:417–428PubMedCrossRefGoogle Scholar
  32. 32.
    Codas R, Petruzzo P, Morelon E, Lefrancois N, Danjou F, Berthillot C, Contu P, Espa M, Martin X, Badet L (2009) IGL-1 solution in kidney transplantation: first multi-center study. Clin Transplant 23:337–342PubMedCrossRefGoogle Scholar
  33. 33.
    Corps CL, Shires M, Crellin D, Smolenski R, Pratt J, Potts D, Lodge JP (2009) Histidine-tryptophan-ketoglutarate and delayed graft function after prolonged cold ischemia. Transplant Proc 41:3567–3570PubMedCrossRefGoogle Scholar
  34. 34.
    Cravedi P, Ruggenenti P, Remuzzi G (2010) Sirolimus for calcineurin inhibitors in organ transplantation: contra. Kidney Int 78:1068–1074PubMedCrossRefGoogle Scholar
  35. 35.
    Day YJ, Huang L, Ye H, Linden J, Okusa MD (2005) Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: role of macrophages. Am J Physiol Ren Physiol 288:F722–F731CrossRefGoogle Scholar
  36. 36.
    De Greef KE, Ysebaert DK, Dauwe S, Persy V, Vercauteren SR, Mey D, De Broe ME (2001) Anti-B7-1 blocks mononuclear cell adherence in vasa recta after ischemia. Kidney Int 60:1415–1427PubMedGoogle Scholar
  37. 37.
    Dickens BM (1998) Legal developments in transplantation. Ann Transplant 3:30–37PubMedGoogle Scholar
  38. 38.
    Diepenhorst GM, van Gulik TM, Hack CE (2009) Complement-mediated ischemia-reperfusion injury: lessons learned from animal and clinical studies. Ann Surg 249:889–899PubMedCrossRefGoogle Scholar
  39. 39.
    Doucet C, Milin S, Favreau F, Desurmont T, Manguy E, Hebrard W, Yamamoto Y, Mauco G, Eugene M, Papadopoulos V, Hauet T, Goujon JM (2008) A p38 mitogen-activated protein kinase inhibitor protects against renal damage in a non-heart-beating donor model. Am J Physiol Ren Physiol 295:F179–F191CrossRefGoogle Scholar
  40. 40.
    DuBose J, Salim A (2008) Aggressive organ donor management protocol. J Intensive Care Med 23:367–375PubMedCrossRefGoogle Scholar
  41. 41.
    Edgtton KL, Kausman JY, Li M, O'Sullivan K, Lo C, Hutchinson P, Yagita H, Holdsworth SR, Kitching AR (2008) Intrarenal antigens activate CD4+ cells via co-stimulatory signals from dendritic cells. J Am Soc Nephrol 19:515–526PubMedCrossRefGoogle Scholar
  42. 42.
    Feng S (2010) Donor intervention and organ preservation: where is the science and what are the obstacles? Am J Transplant 10:1155–1162PubMedCrossRefGoogle Scholar
  43. 43.
    Fleming SD, Shea-Donohue T, Guthridge JM, Kulik L, Waldschmidt TJ, Gipson MG, Tsokos GC, Holers VM (2002) Mice deficient in complement receptors 1 and 2 lack a tissue injury-inducing subset of the natural antibody repertoire. J Immunol 169:2126–2133PubMedGoogle Scholar
  44. 44.
    Franchi L, Warner N, Viani K, Nunez G (2009) Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev 227:106–128PubMedCrossRefGoogle Scholar
  45. 45.
    Fridell JA, Mangus RS, Tector AJ (2009) Clinical experience with histidine-tryptophan-ketoglutarate solution in abdominal organ preservation: a review of recent literature. Clin Transplant 23:305–312PubMedCrossRefGoogle Scholar
  46. 46.
    Friedewald JJ, Rabb H (2004) Inflammatory cells in ischemic acute renal failure. Kidney Int 66:486–491PubMedCrossRefGoogle Scholar
  47. 47.
    Fuller TF, Freise CE, Serkova N, Niemann CU, Olson JL, Feng S (2003) Sirolimus delays recovery of rat kidney transplants after ischemia-reperfusion injury. Transplantation 76:1594–1599PubMedCrossRefGoogle Scholar
  48. 48.
    Fuller TF, Hoff U, Kong L, Naether M, Wagner P, Nieminen-Kelha M, Nolting J, Luft FC, Hegner B, Dragun D (2010) Cytoprotective actions of FTY720 modulate severe preservation reperfusion injury in rat renal transplants. Transplantation 89:402–408PubMedCrossRefGoogle Scholar
  49. 49.
    Gay NJ, Gangloff M (2007) Structure and function of Toll receptors and their ligands. Annu Rev Biochem 76:141–165PubMedCrossRefGoogle Scholar
  50. 50.
    Geuken E, Buis CI, Visser DS, Blokzijl H, Moshage H, Nemes B, Leuvenink HG, de Jong KP, Peeters PM, Slooff MJ, Porte RJ (2005) Expression of heme oxygenase-1 in human livers before transplantation correlates with graft injury and function after transplantation. Am J Transplant 5:1875–1885PubMedCrossRefGoogle Scholar
  51. 51.
    Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9:857–865PubMedCrossRefGoogle Scholar
  52. 52.
    Haug CE, Colvin RB, Delmonico FL, Auchincloss H Jr, Tolkoff-Rubin N, Preffer FI, Rothlein R, Norris S, Scharschmidt L, Cosimi AB (1993) A phase I trial of immunosuppression with anti-ICAM-1 (CD54) mAb in renal allograft recipients. Transplantation 55:766–772, discussion 772–763PubMedCrossRefGoogle Scholar
  53. 53.
    He W, Liu K, Ding H (2010) The relationship between transforming growth factor beta1 expression and cold ischemia injury of rat donor kidney. Exp Mol Pathol 88:206–209PubMedCrossRefGoogle Scholar
  54. 54.
    Hernandez-Alejandro R, Caumartin Y, Chent C, Levstik MA, Quan D, Muirhead N, House AA, McAlister V, Jevnikar AM, Luke PP, Wall W (2010) Kidney and liver transplants from donors after cardiac death: initial experience at the London Health Sciences Centre. Can J Surg 53:93–102PubMedGoogle Scholar
  55. 55.
    Hisamatsu T, Suzuki M, Reinecker HC, Nadeau WJ, McCormick BA, Podolsky DK (2003) CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 124:993–1000PubMedCrossRefGoogle Scholar
  56. 56.
    Hochegger K, Schatz T, Eller P, Tagwerker A, Heininger D, Mayer G, Rosenkranz AR (2007) Role of alpha/beta and gamma/delta T cells in renal ischemia-reperfusion injury. Am J Physiol Ren Physiol 293:F741–F747CrossRefGoogle Scholar
  57. 57.
    Hori Y, Yamada K, Hanafusa N, Okuda T, Okada N, Miyata T, Couser WG, Kurokawa K, Fujita T, Nangaku M (1999) Crry, a complement regulatory protein, modulates renal interstitial disease induced by proteinuria. Kidney Int 56:2096–2106PubMedCrossRefGoogle Scholar
  58. 58.
    Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847–856PubMedCrossRefGoogle Scholar
  59. 59.
    Hosgood SA, Barlow AD, Yates PJ et al. (2010) A pilot study assessing the feasibility of a short period of normothermic preservation in an experimental model of non heart beating donor kidneys. J Surg Res (in press)Google Scholar
  60. 60.
    Huet PM, Nagaoka MR, Desbiens G, Tarrab E, Brault A, Bralet MP, Bilodeau M (2004) Sinusoidal endothelial cell and hepatocyte death following cold ischemia-warm reperfusion of the rat liver. Hepatology 39:1110–1119PubMedCrossRefGoogle Scholar
  61. 61.
    Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, Almer S, Tysk C, O'Morain CA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahbatou M, Thomas G (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411:599–603PubMedCrossRefGoogle Scholar
  62. 62.
    Huugen D, Xiao H, van Esch A, Falk RJ, Peutz-Kootstra CJ, Buurman WA, Tervaert JW, Jennette JC, Heeringa P (2005) Aggravation of anti-myeloperoxidase antibody-induced glomerulonephritis by bacterial lipopolysaccharide: role of tumor necrosis factor-alpha. Am J Pathol 167:47–58PubMedCrossRefGoogle Scholar
  63. 63.
    Hysi P, Kabesch M, Moffatt MF, Schedel M, Carr D, Zhang Y, Boardman B, von Mutius E, Weiland SK, Leupold W, Fritzsch C, Klopp N, Musk AW, James A, Nunez G, Inohara N, Cookson WO (2005) NOD1 variation, immunoglobulin E and asthma. Hum Mol Genet 14:935–941PubMedCrossRefGoogle Scholar
  64. 64.
    Ikeda T, Yanaga K, Kishikawa K, Kakizoe S, Shimada M, Sugimachi K (1992) Ischemic injury in liver transplantation: difference in injury sites between warm and cold ischemia in rats. Hepatology 16:454–461PubMedCrossRefGoogle Scholar
  65. 65.
    Imamura R, Isaka Y, Sandoval RM et al. (2010) Intravital 2-photon microscopy assessment of renal protection efficacy of siRNA for p53 in experimental rat kidney transplantation models. Cell Transplant (in press)Google Scholar
  66. 66.
    Iyer SS, Pulskens WP, Sadler JJ, Butter LM, Teske GJ, Ulland TK, Eisenbarth SC, Florquin S, Flavell RA, Leemans JC, Sutterwala FS (2009) Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci USA 106:20388–20393PubMedCrossRefGoogle Scholar
  67. 67.
    Jang HR, Ko GJ, Wasowska BA, Rabb H (2009) The interaction between ischemia-reperfusion and immune responses in the kidney. J Mol Med 87:859–864PubMedCrossRefGoogle Scholar
  68. 68.
    Jang HR, Rabb H (2009) The innate immune response in ischemic acute kidney injury. Clin Immunol 130:41–50PubMedCrossRefGoogle Scholar
  69. 69.
    Jin MS, Lee JO (2008) Structures of TLR-ligand complexes. Curr Opin Immunol 20:414–419PubMedCrossRefGoogle Scholar
  70. 70.
    Jo SK, Sung SA, Cho WY, Go KJ, Kim HK (2006) Macrophages contribute to the initiation of ischaemic acute renal failure in rats. Nephrol Dial Transplant 21:1231–1239PubMedCrossRefGoogle Scholar
  71. 71.
    Kanazawa N, Okafuji I, Kambe N, Nishikomori R, Nakata-Hizume M, Nagai S, Fuji A, Yuasa T, Manki A, Sakurai Y, Nakajima M, Kobayashi H, Fujiwara I, Tsutsumi H, Utani A, Nishigori C, Heike T, Nakahata T, Miyachi Y (2005) Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-kappaB activation: common genetic etiology with Blau syndrome. Blood 105:1195–1197PubMedCrossRefGoogle Scholar
  72. 72.
    Kantor AB, Herzenberg LA (1993) Origin of murine B cell lineages. Annu Rev Immunol 11:501–538PubMedCrossRefGoogle Scholar
  73. 73.
    Kawai T, Akira S (2007) TLR signaling. Semin Immunol 19(1):24–32Google Scholar
  74. 74.
    Kawai T, Akira S (2009) The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 21:317–337PubMedCrossRefGoogle Scholar
  75. 75.
    Kazemeyni SM, Esfahani F (2008) Influence of hypernatremia and polyuria of brain-dead donors before organ procurement on kidney allograft function. J Urol 5:173–177Google Scholar
  76. 76.
    Ke B, Shen XD, Lassman CR, Gao F, Busuttil RW, Kupiec-Weglinski JW (2003) Cytoprotective and antiapoptotic effects of IL-13 in hepatic cold ischemia/reperfusion injury are heme oxygenase-1 dependent. Am J Transplant 3:1076–1082PubMedCrossRefGoogle Scholar
  77. 77.
    Kellum JA, Venkataraman R, Powner D, Elder M, Hergenroeder G, Carter M (2008) Feasibility study of cytokine removal by hemoadsorption in brain-dead humans. Crit Care Med 36:268–272PubMedCrossRefGoogle Scholar
  78. 78.
    Kinsey GR, Sharma R, Huang L, Li L, Vergis AL, Ye H, Ju ST, Okusa MD (2009) Regulatory T cells suppress innate immunity in kidney ischemia-reperfusion injury. J Am Soc Nephrol 20:1744–1753PubMedCrossRefGoogle Scholar
  79. 79.
    Ko GJ, Boo CS, Jo SK, Cho WY, Kim HK (2008) Macrophages contribute to the development of renal fibrosis following ischaemia/reperfusion-induced acute kidney injury. Nephrol Dial Transplant 23:842–852PubMedCrossRefGoogle Scholar
  80. 80.
    Komori HK, Meehan TF, Havran WL (2006) Epithelial and mucosal gamma delta T cells. Curr Opin Immunol 18:534–538PubMedCrossRefGoogle Scholar
  81. 81.
    Kono DH, Haraldsson MK, Lawson BR, Pollard KM, Koh YT, Du X, Arnold CN, Baccala R, Silverman GJ, Beutler BA, Theofilopoulos AN (2009) Endosomal TLR signaling is required for anti-nucleic acid and rheumatoid factor autoantibodies in lupus. Proc Natl Acad Sci USA 106:12061–12066PubMedCrossRefGoogle Scholar
  82. 82.
    Kotsch K, Francuski M, Pascher A, Klemz R, Seifert M, Mittler J, Schumacher G, Buelow R, Volk HD, Tullius SG, Neuhaus P, Pratschke J (2006) Improved long-term graft survival after HO-1 induction in brain-dead donors. Am J Transplant 6:477–486PubMedCrossRefGoogle Scholar
  83. 83.
    Kotsch K, Ulrich F, Reutzel-Selke A, Pascher A, Faber W, Warnick P, Hoffman S, Francuski M, Kunert C, Kuecuek O, Schumacher G, Wesslau C, Lun A, Kohler S, Weiss S, Tullius SG, Neuhaus P, Pratschke J (2008) Methylprednisolone therapy in deceased donors reduces inflammation in the donor liver and improves outcome after liver transplantation: a prospective randomized controlled trial. Ann Surg 248:1042–1050PubMedCrossRefGoogle Scholar
  84. 84.
    Kouwenhoven EA, de Bruin RW, Bajema IM, Marquet RL, Ijzermans JN (2001) Cold ischemia augments allogeneic-mediated injury in rat kidney allografts. Kidney Int 59:1142–1148PubMedCrossRefGoogle Scholar
  85. 85.
    Lafferty KJ, Cooley MA, Woolnough J, Walker KZ (1975) Thyroid allograft immunogenicity is reduced after a period in organ culture. Science 188:259–261PubMedCrossRefGoogle Scholar
  86. 86.
    Lafyatis R, Marshak-Rothstein A (2007) Toll-like receptors and innate immune responses in systemic lupus erythematosus. Arthritis Res Ther 9:222PubMedCrossRefGoogle Scholar
  87. 87.
    Lakkis FG, Arakelov A, Konieczny BT, Inoue Y (2000) Immunologic 'ignorance' of vascularized organ transplantation in the absence of secondary lymphoid tissue. Nat Med 6:686–688PubMedCrossRefGoogle Scholar
  88. 88.
    Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG, Knetter CF, Lien E, Nilsen NJ, Espevik T, Golenbock DT (2004) TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 5:190–198PubMedCrossRefGoogle Scholar
  89. 89.
    Lecine P, Esmiol S, Metais JY, Nicoletti C, Nourry C, McDonald C, Nunez G, Hugot JP, Borg JP, Ollendorff V (2007) The NOD2-RICK complex signals from the plasma membrane. J Biol Chem 282:15197–15207PubMedCrossRefGoogle Scholar
  90. 90.
    Li J, Gong Q, Zhong S et al. (2010) Neutralization of the extracellular HMGB1 released by ischaemic damaged renal cells protects against renal ischaemia-reperfusion injury. Nephrol Dial Transplant (in press)Google Scholar
  91. 91.
    Li Z, Nickkholgh A, Yi X, Bruns H, Gross ML, Hoffmann K, Mohr E, Zorn M, Buchler MW, Schemmer P (2009) Melatonin protects kidney grafts from ischemia/reperfusion injury through inhibition of NF-kB and apoptosis after experimental kidney transplantation. J Pineal Res 46:365–372PubMedCrossRefGoogle Scholar
  92. 92.
    Lieberthal W, Fuhro R, Andry CC, Rennke H, Abernathy VE, Koh JS, Valeri R, Levine JS (2001) Rapamycin impairs recovery from acute renal failure: role of cell-cycle arrest and apoptosis of tubular cells. Am J Physiol Ren Physiol 281:F693–F706Google Scholar
  93. 93.
    Lutz J, le Luong A, Strobl M, Deng M, Huang H, Anton M, Zakkar M, Enesa K, Chaudhury H, Haskard DO, Baumann M, Boyle J, Harten S, Maxwell PH, Pusey C, Heemann U, Evans PC (2008) The A20 gene protects kidneys from ischaemia/reperfusion injury by suppressing pro-inflammatory activation. J Mol Med 86:1329–1339PubMedCrossRefGoogle Scholar
  94. 94.
    Lutz J, Thurmel K, Heemann U (2010) Anti-inflammatory treatment strategies for ischemia/reperfusion injury in transplantation. J Inflamm 7:27CrossRefGoogle Scholar
  95. 95.
    Maio R, Sepodes B, Patel NS et al (2010) Erythropoietin preserves the integrity and quality of organs for transplantation after cardiac death. Shock 35:126–133CrossRefGoogle Scholar
  96. 96.
    Mangino MJ, Ametani M, Szabo C, Southard JH (2004) Poly(ADP-ribose) polymerase and renal hypothermic preservation injury. Am J Physiol Ren Physiol 286:F838–F847CrossRefGoogle Scholar
  97. 97.
    Mariathasan S, Weiss DS, Newton K, McBride J, O'Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232PubMedCrossRefGoogle Scholar
  98. 98.
    Marriott I, Rati DM, McCall SH, Tranguch SL (2005) Induction of Nod1 and Nod2 intracellular pattern recognition receptors in murine osteoblasts following bacterial challenge. Infect Immun 73:2967–2973PubMedCrossRefGoogle Scholar
  99. 99.
    Martin DR, Lewington AJ, Hammerman MR, Padanilam BJ (2000) Inhibition of poly(ADP-ribose) polymerase attenuates ischemic renal injury in rats. Am J Physiol Regul Integr Comp Physiol 279:R1834–R1840PubMedGoogle Scholar
  100. 100.
    Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426PubMedCrossRefGoogle Scholar
  101. 101.
    Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241PubMedCrossRefGoogle Scholar
  102. 102.
    Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265PubMedCrossRefGoogle Scholar
  103. 103.
    Mascia L, Mastromauro I, Viberti S, Vincenzi M, Zanello M (2009) Management to optimize organ procurement in brain dead donors. Minerva Anestesiol 75:125–133PubMedGoogle Scholar
  104. 104.
    McAnulty JF (2010) Hypothermic organ preservation by static storage methods: Current status and a view to the future. Cryobiology 60:S13–S19PubMedCrossRefGoogle Scholar
  105. 105.
    McKay D, Shigeoka A, Rubinstein M, Surh C, Sprent J (2006) Simultaneous deletion of MyD88 and Trif delays major histocompatibility and minor antigen mismatch allograft rejection. Eur J Immunol 36:1994–2002PubMedCrossRefGoogle Scholar
  106. 106.
    Miceli-Richard C, Lesage S, Rybojad M, Prieur AM, Manouvrier-Hanu S, Hafner R, Chamaillard M, Zouali H, Thomas G, Hugot JP (2001) CARD15 mutations in Blau syndrome. Nat Genet 29:19–20PubMedCrossRefGoogle Scholar
  107. 107.
    Moers C, Smits JM, Maathuis MH, Treckmann J, van Gelder F, Napieralski BP, van Kasterop-Kutz M, van der Heide JJ, Squifflet JP, van Heurn E, Kirste GR, Rahmel A, Leuvenink HG, Paul A, Pirenne J, Ploeg RJ (2009) Machine perfusion or cold storage in deceased-donor kidney transplantation. N Engl J Med 360:7–19PubMedCrossRefGoogle Scholar
  108. 108.
    Mullick AE, Tobias PS, Curtiss LK (2005) Modulation of atherosclerosis in mice by Toll-like receptor 2. J Clin Invest 115:3149–3156PubMedCrossRefGoogle Scholar
  109. 109.
    Nemoto T, Burne MJ, Daniels F, O'Donnell MP, Crosson J, Berens K, Issekutz A, Kasiske BL, Keane WF, Rabb H (2001) Small molecule selectin ligand inhibition improves outcome in ischemic acute renal failure. Kidney Int 60:2205–2214PubMedCrossRefGoogle Scholar
  110. 110.
    Nijboer WN, Schuurs TA, van der Hoeven JA, Fekken S, Wiersema-Buist J, Leuvenink HG, Hofker S, Homan van der Heide JJ, van Son WJ, Ploeg RJ (2004) Effect of brain death on gene expression and tissue activation in human donor kidneys. Transplantation 78:978–986PubMedCrossRefGoogle Scholar
  111. 111.
    Nishiya T, Kajita E, Miwa S, Defranco AL (2005) TLR3 and TLR7 are targeted to the same intracellular compartments by distinct regulatory elements. J Biol Chem 280:37107–37117PubMedCrossRefGoogle Scholar
  112. 112.
    Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G (2001) Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem 276:4812–4818PubMedCrossRefGoogle Scholar
  113. 113.
    Ogura Y, Lala S, Xin W, Smith E, Dowds TA, Chen FF, Zimmermann E, Tretiakova M, Cho JH, Hart J, Greenson JK, Keshav S, Nunez G (2003) Expression of NOD2 in Paneth cells: a possible link to Crohn's ileitis. Gut 52:1591–1597PubMedCrossRefGoogle Scholar
  114. 114.
    Ollinger R, Kogler P, Biebl M, Sieb M, Sucher R, Bosmuller C, Troppmair J, Mark W, Weiss H, Margreiter R (2008) Protein levels of heme oxygenase-1 during reperfusion in human kidney transplants with delayed graft function. Clin Transplant 22:418–423PubMedCrossRefGoogle Scholar
  115. 115.
    Ollinger R, Pratschke J (2010) Role of heme oxygenase-1 in transplantation. Transpl Int 23:1071–1081PubMedCrossRefGoogle Scholar
  116. 116.
    Ozturk H, Tuncer MC, Buyukbayram H (2007) Nitric oxide regulates expression of sonic hedgehog and hypoxia-inducible factor-1alpha in an experimental model of kidney ischemia-reperfusion. Ren Fail 29:249–256PubMedCrossRefGoogle Scholar
  117. 117.
    Park P, Haas M, Cunningham PN, Alexander JJ, Bao L, Guthridge JM, Kraus DM, Holers VM, Quigg RJ (2001) Inhibiting the complement system does not reduce injury in renal ischemia reperfusion. J Am Soc Nephrol 12:1383–1390PubMedGoogle Scholar
  118. 118.
    Park P, Haas M, Cunningham PN, Bao L, Alexander JJ, Quigg RJ (2002) Injury in renal ischemia-reperfusion is independent from immunoglobulins and T lymphocytes. Am J Physiol Ren Physiol 282:F352–F357Google Scholar
  119. 119.
    Patole PS, Grone HJ, Segerer S, Ciubar R, Belemezova E, Henger A, Kretzler M, Schlondorff D, Anders HJ (2005) Viral double-stranded RNA aggravates lupus nephritis through Toll-like receptor 3 on glomerular mesangial cells and antigen-presenting cells. J Am Soc Nephrol 16:1326–1338PubMedCrossRefGoogle Scholar
  120. 120.
    Patole PS, Pawar RD, Lech M, Zecher D, Schmidt H, Segerer S, Ellwart A, Henger A, Kretzler M, Anders HJ (2006) Expression and regulation of Toll-like receptors in lupus-like immune complex glomerulonephritis of MRL-Fas(lpr) mice. Nephrol Dial Transplant 21:3062–3073PubMedCrossRefGoogle Scholar
  121. 121.
    Pratschke J, Tullius SG, Neuhaus P (2004) Brain death associated ischemia/reperfusion injury. Ann Transplant 9:78–80PubMedGoogle Scholar
  122. 122.
    Pratschke J, Neuhaus P, Tullius SG (2005) What can be learned from brain-death models? Transpl Int 18:15–21PubMedCrossRefGoogle Scholar
  123. 123.
    Rabb H, Mendiola CC, Saba SR, Dietz JR, Smith CW, Bonventre JV, Ramirez G (1995) Antibodies to ICAM-1 protect kidneys in severe ischemic reperfusion injury. Biochem Biophys Res Commun 211:67–73PubMedCrossRefGoogle Scholar
  124. 124.
    Raza A, Dikdan G, Desai KK, Shareef A, Fernandes H, Aris V, de la Torre AN, Wilson D, Fisher A, Soteropoulos P, Koneru B (2010) Global gene expression profiles of ischemic preconditioning in deceased donor liver transplantation. Liver Transplant 16:588–599Google Scholar
  125. 125.
    Robson MG (2009) Toll-like receptors and renal disease. Nephron Exp Nephrol 113:e1–e7PubMedCrossRefGoogle Scholar
  126. 126.
    Rojas-Pena A, Reoma JL, Krause E, Boothman EL, Padiyar NP, Cook KE, Bartlett RH, Punch JD (2010) Extracorporeal support: improves donor renal graft function after cardiac death. Am J Transplant 10:1365–1374PubMedCrossRefGoogle Scholar
  127. 127.
    Rosendale JD, Kauffman HM, McBride MA, Chabalewski FL, Zaroff JG, Garrity ER, Delmonico FL, Rosengard BR (2003) Aggressive pharmacologic donor management results in more transplanted organs. Transplantation 75:482–487PubMedCrossRefGoogle Scholar
  128. 128.
    Salahudeen AK (2004) Consequences of cold ischemic injury of kidneys in clinical transplantation. J Investig Med 52:296–298PubMedGoogle Scholar
  129. 129.
    Salahudeen AK, Haider N, May W (2004) Cold ischemia and the reduced long-term survival of cadaveric renal allografts. Kidney Int 65:713–718PubMedCrossRefGoogle Scholar
  130. 130.
    Salim A, Martin M, Brown C, Rhee P, Demetriades D, Belzberg H (2006) The effect of a protocol of aggressive donor management: Implications for the national organ donor shortage. J Trauma 61:429–433, discussion 433–425PubMedCrossRefGoogle Scholar
  131. 131.
    Salmela K, Wramner L, Ekberg H, Hauser I, Bentdal O, Lins LE, Isoniemi H, Backman L, Persson N, Neumayer HH, Jorgensen PF, Spieker C, Hendry B, Nicholls A, Kirste G, Hasche G (1999) A randomized multicenter trial of the anti-ICAM-1 monoclonal antibody (enlimomab) for the prevention of acute rejection and delayed onset of graft function in cadaveric renal transplantation: a report of the European Anti-ICAM-1 Renal Transplant Study Group. Transplantation 67:729–736PubMedCrossRefGoogle Scholar
  132. 132.
    Schnuelle P, Gottmann U, Hoeger S, Boesebeck D, Lauchart W, Weiss C, Fischereder M, Jauch KW, Heemann U, Zeier M, Hugo C, Pisarski P, Kramer BK, Lopau K, Rahmel A, Benck U, Birck R, Yard BA (2009) Effects of donor pretreatment with dopamine on graft function after kidney transplantation: a randomized controlled trial. JAMA 302:1067–1075PubMedCrossRefGoogle Scholar
  133. 133.
    Shaw MH, Reimer T, Kim YG, Nunez G (2008) NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Curr Opin Immunol 20:377–382PubMedCrossRefGoogle Scholar
  134. 134.
    Shigeoka AA, Holscher TD, King AJ, Hall FW, Kiosses WB, Tobias PS, Mackman N, McKay DB (2007) TLR2 is constitutively expressed within the kidney and participates in ischemic renal injury through both MyD88-dependent and -independent pathways. J Immunol 178:6252–6258PubMedGoogle Scholar
  135. 135.
    Shigeoka AA, Kambo A, Mathison JC, King AJ, Hall WF, da Silva CJ, Ulevitch RJ, McKay DB (2010) Nod1 and nod2 are expressed in human and murine renal tubular epithelial cells and participate in renal ischemia reperfusion injury. J Immunol 184:2297–2304PubMedCrossRefGoogle Scholar
  136. 136.
    Shigeoka AA, Mueller JL, Kambo A et al (2010) An inflammasome-independent role for epithelial-expressed Nlrp3 in renal ischemia-reperfusion injury. J Immunol 185:6277–6285PubMedCrossRefGoogle Scholar
  137. 137.
    Shingu C, Koga H, Hagiwara S, Matsumoto S, Goto K, Yokoi I, Noguchi T (2010) Hydrogen-rich saline solution attenuates renal ischemia-reperfusion injury. J Anesth 24:569–574PubMedCrossRefGoogle Scholar
  138. 138.
    Smith KD (2009) Toll-like receptors in kidney disease. Curr Opin Nephrol Hypertens 18:189–196PubMedCrossRefGoogle Scholar
  139. 139.
    Snoeijs MG, Vink H, Voesten N et al (2010) Acute ischemic injury to the renal microvasculature in human kidney transplantation. Am J Physiol Ren Physiol 299:F1134–F1140CrossRefGoogle Scholar
  140. 140.
    Solez K, Morel-Maroger L, Sraer JD (1979) The morphology of "acute tubular necrosis" in man: analysis of 57 renal biopsies and a comparison with the glycerol model. Medicine (Baltimore) 58:362–376Google Scholar
  141. 141.
    Soos TJ, Sims TN, Barisoni L et al (2006) CX(3)CR1(+) interstitial dendritic cells form a contiguous network throughout the entire kidney. Kidney Int 70:591–596PubMedGoogle Scholar
  142. 142.
    Stewart ZA, Cameron AM, Singer AL, Dagher NN, Montgomery RA, Segev DL (2009) Histidine-tryptophan-ketoglutarate (HTK) is associated with reduced graft survival in pancreas transplantation. Am J Transplant 9:217–221PubMedCrossRefGoogle Scholar
  143. 143.
    Stewart ZA, Cameron AM, Singer AL, Montgomery RA, Segev DL (2009) Histidine-Tryptophan-Ketoglutarate (HTK) is associated with reduced graft survival in deceased donor livers, especially those donated after cardiac death. Am J Transplant 9:286–293PubMedCrossRefGoogle Scholar
  144. 144.
    Stewart ZA, Lonze BE, Warren DS, Dagher NN, Singer AL, Montgomery RA, Segev DL (2009) Histidine-tryptophan-ketoglutarate (HTK) is associated with reduced graft survival of deceased donor kidney transplants. Am J Transplant 9:1048–1054PubMedCrossRefGoogle Scholar
  145. 145.
    Suzuki H, Suzuki Y, Narita I, Aizawa M, Kihara M, Yamanaka T, Kanou T, Tsukaguchi H, Novak J, Horikoshi S, Tomino Y (2008) Toll-like receptor 9 affects severity of IgA nephropathy. J Am Soc Nephrol 19:2384–2395PubMedCrossRefGoogle Scholar
  146. 146.
    Tada H, Aiba S, Shibata K, Ohteki T, Takada H (2005) Synergistic effect of Nod1 and Nod2 agonists with toll-like receptor agonists on human dendritic cells to generate interleukin-12 and T helper type 1 cells. Infect Immun 73:7967–7976PubMedCrossRefGoogle Scholar
  147. 147.
    Tattoli I, Travassos LH, Carneiro LA, Magalhaes JG, Girardin SE (2007) The Nodosome: Nod1 and Nod2 control bacterial infections and inflammation. Semin Immunopathol 29:289–301PubMedCrossRefGoogle Scholar
  148. 148.
    Terasaki PI, Cho YW, Cecka JM (1997) Strategy for eliminating the kidney shortage. Clin Transpl:265–267Google Scholar
  149. 149.
    Thurman JM, Ljubanovic D, Royer PA, Kraus DM, Molina H, Barry NP, Proctor G, Levi M, Holers VM (2006) Altered renal tubular expression of the complement inhibitor Crry permits complement activation after ischemia/reperfusion. J Clin Invest 116:357–368PubMedCrossRefGoogle Scholar
  150. 150.
    Ting JP, Lovering RC, Alnemri ES, Bertin J, Boss JM, Davis BK, Flavell RA, Girardin SE, Godzik A, Harton JA, Hoffman HM, Hugot JP, Inohara N, Mackenzie A, Maltais LJ, Nunez G, Ogura Y, Otten LA, Philpott D, Reed JC, Reith W, Schreiber S, Steimle V, Ward PA (2008) The NLR gene family: a standard nomenclature. Immunity 28:285–287PubMedCrossRefGoogle Scholar
  151. 151.
    Ting JP, Willingham SB, Bergstralh DT (2008) NLRs at the intersection of cell death and immunity. Nat Rev Immunol 8:372–379PubMedCrossRefGoogle Scholar
  152. 152.
    Totsuka E, Dodson F, Urakami A, Moras N, Ishii T, Lee MC, Gutierrez J, Gerardo M, Molmenti E, Fung JJ (1999) Influence of high donor serum sodium levels on early postoperative graft function in human liver transplantation: effect of correction of donor hypernatremia. Liver Transplant Surg 5:421–428CrossRefGoogle Scholar
  153. 153.
    Treckmann J, Minor T, Saad S, Ozcelik A, Malago M, Broelsch CE, Paul A (2008) Retrograde oxygen persufflation preservation of human livers: a pilot study. Liver Transplant 14:358–364CrossRefGoogle Scholar
  154. 154.
    Tsuboi N, Yoshikai Y, Matsuo S, Kikuchi T, Iwami K, Nagai Y, Takeuchi O, Akira S, Matsuguchi T (2002) Roles of toll-like receptors in C-C chemokine production by renal tubular epithelial cells. J Immunol 169:2026–2033PubMedGoogle Scholar
  155. 155.
    Uehara A, Sugawara Y, Kurata S, Fujimoto Y, Fukase K, Kusumoto S, Satta Y, Sasano T, Sugawara S, Takada H (2005) Chemically synthesized pathogen-associated molecular patterns increase the expression of peptidoglycan recognition proteins via toll-like receptors, NOD1 and NOD2 in human oral epithelial cells. Cell Microbiol 7:675–686PubMedCrossRefGoogle Scholar
  156. 156.
    Uehara A, Fujimoto Y, Fukase K, Takada H (2007) Various human epithelial cells express functional Toll-like receptors, NOD1 and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines. Mol Immunol 44:3100–3111PubMedCrossRefGoogle Scholar
  157. 157.
    Velazquez P, Dustin ML, Nelson PJ (2009) Renal dendritic cells: an update. Nephron Exp Nephrol 111:e67–e71PubMedCrossRefGoogle Scholar
  158. 158.
    Vergoulas G, Boura P, Efstathiadis G (2009) Brain dead donor kidneys are immunologically active: is intervention justified? Hippokratia 13:205–210PubMedGoogle Scholar
  159. 159.
    von Bernuth H, Picard C, Jin Z, Pankla R, Xiao H, Ku CL, Chrabieh M, Mustapha IB, Ghandil P, Camcioglu Y, Vasconcelos J, Sirvent N, Guedes M, Vitor AB, Herrero-Mata MJ, Arostegui JI, Rodrigo C, Alsina L, Ruiz-Ortiz E, Juan M, Fortuny C, Yague J, Anton J, Pascal M, Chang HH, Janniere L, Rose Y, Garty BZ, Chapel H, Issekutz A, Marodi L, Rodriguez-Gallego C, Banchereau J, Abel L, Li X, Chaussabel D, Puel A, Casanova JL (2008) Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321:691–696CrossRefGoogle Scholar
  160. 160.
    Voss E, Wehkamp J, Wehkamp K, Stange EF, Schroder JM, Harder J (2006) NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2. J Biol Chem 281:2005–2011PubMedCrossRefGoogle Scholar
  161. 161.
    Weiss S, Kotsch K, Francuski M, Reutzel-Selke A, Mantouvalou L, Klemz R, Kuecuek O, Jonas S, Wesslau C, Ulrich F, Pascher A, Volk HD, Tullius SG, Neuhaus P, Pratschke J (2007) Brain death activates donor organs and is associated with a worse I/R injury after liver transplantation. Am J Transplant 7:1584–1593PubMedCrossRefGoogle Scholar
  162. 162.
    Wijnen RM, Booster MH, Stubenitsky BM, de Boer J, Heineman E, Kootstra G (1995) Outcome of transplantation of non-heart-beating donor kidneys. Lancet 345:1067–1070PubMedCrossRefGoogle Scholar
  163. 163.
    Wilhelm MJ, Pratschke J, Laskowski IA, Paz DM, Tilney NL (2000) Brain death and its impact on the donor heart-lessons from animal models. J Heart Lung Transplant 19:414–418PubMedCrossRefGoogle Scholar
  164. 164.
    Willingham SB, Bergstralh DT, O'Connor W, Morrison AC, Taxman DJ, Duncan JA, Barnoy S, Venkatesan MM, Flavell RA, Deshmukh M, Hoffman HM, Ting JP (2007) Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe 2:147–159PubMedCrossRefGoogle Scholar
  165. 165.
    Wood KE, Becker BN, McCartney JG, D'Alessandro AM, Coursin DB (2004) Care of the potential organ donor. N Engl J Med 351:2730–2739PubMedCrossRefGoogle Scholar
  166. 166.
    Yang B, Hosgood SA, Harper SJ, Nicholson ML (2010) Leucocyte depletion improves renal function in porcine kidney hemoreperfusion through reduction of myeloperoxidase + cells, caspase-3, IL-1beta, and tubular apoptosis. J Surg Res 164:e315–e324PubMedCrossRefGoogle Scholar
  167. 167.
    Yoshida J, Ozaki KS, Nalesnik MA, Ueki S, Castillo-Rama M, Faleo G, Ezzelarab M, Nakao A, Ekser B, Echeverri GJ, Ross MA, Stolz DB, Murase N (2010) Ex vivo application of carbon monoxide in UW solution prevents transplant-induced renal ischemia/reperfusion injury in pigs. Am J Transplant 10:763–772PubMedCrossRefGoogle Scholar
  168. 168.
    Zhang ZX, Shek K, Wang S, Huang X, Lau A, Yin Z, Sun H, Liu W, Garcia B, Rittling S, Jevnikar AM (2010) Osteopontin expressed in tubular epithelial cells regulates NK cell-mediated kidney ischemia reperfusion injury. J Immunol 185:967–973PubMedCrossRefGoogle Scholar
  169. 169.
    Zheng J, Devalaraja-Narashimha K, Singaravelu K, Padanilam BJ (2005) Poly(ADP-ribose) polymerase-1 gene ablation protects mice from ischemic renal injury. Am J Physiol Ren Physiol 288:F387–F398CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Immunology and Microbial ScienceThe Scripps Research InstituteLa JollaUSA

Personalised recommendations