Seminars in Immunopathology

, Volume 33, Issue 4, pp 353–367 | Cite as

Contribution of the immune system to the chemotherapeutic response

  • Alison M. McDonnell
  • Anna K. Nowak
  • Richard A. Lake
Review

Abstract

The immune system plays an important role in the surveillance of neoplastic cells by eliminating them before they manifest as full-blown cancer. Despite this, tumors do develop in the presence of a functioning immune system. Conventional chemotherapy and its ability to directly kill tumor cells is one of the most effective weapons in the fight against cancer, however, increasing evidence suggests that the therapeutic efficacy of some cytotoxic drugs relies on their capacity to interact with the immune system. Killing of tumor cells in a manner that favors their capture by immune cells or selective targeting of immunosuppressive pathways by specific chemotherapies promotes the generation of an effective anti-cancer response; however, this alone is rarely sufficient to cause elimination of advanced disease. An understanding of the immunological events occurring in both animal models and patients undergoing chemotherapy will guide decisions for the development of appropriate combinations and scheduling for the integration of chemotherapy with immunotherapy.

Keywords

Tumor immunity 1 Cancer chemotherapy 2 T lymphocytes 3 

References

  1. 1.
    Hanahan D, Weinberg R (2000) The hallmarks of cancer. Cell 100:57–70PubMedGoogle Scholar
  2. 2.
    Zitvogel L, Tesniere A, Kroemer G (2006) Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 6:715–727PubMedGoogle Scholar
  3. 3.
    Swann J, Smyth M (2007) Immune surveillance of tumors. J Clin Invest 117:1137–1146PubMedGoogle Scholar
  4. 4.
    Clemente CG, Mihm MC Jr, Bufalino R, Zurrida S, Collini P, Cascinelli N (1996) Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 77:1303–1310PubMedGoogle Scholar
  5. 5.
    Haanen J, Baars A, Gomez R, Weder P, Smits M, De Gruijl T, Von Blomberg B, Bloemena E, Scheper R, Van Ham S, Pinedo H, Van Den Eertwegh A (2006) Melanoma-specific tumor-infiltrating lymphocytes but not circulating melanoma-specific T cells may predict survival in resected advanced-stage melanoma patients. Cancer Immunol Immunother 55:451–458PubMedGoogle Scholar
  6. 6.
    Leffers N, Gooden MJ, de Jong RA, Hoogeboom BN, ten Hoor KA, Hollema H, Boezen HM, van der Zee AG, Daemen T, Nijman HW (2009) Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesions of advanced stage ovarian cancer. Cancer Immunol Immunother 58(3):449–459Google Scholar
  7. 7.
    Morris M, Platell C, Iacopetta B (2008) Tumor-infiltrating lymphocytes and perforation in colon cancer predict positive response to 5-fluorouracil chemotherapy. Clin Cancer Res 14:1413–1417PubMedGoogle Scholar
  8. 8.
    Piersma S, Jordanova E, Poelgeest V, Mie K, Kmc VD, Hulst J, Drijfhout J, Melief C, Kenter G, Fleuren G, Offringa R, Van Der Burg SH (2007) High number of intraepithelial CD8+ tumor-infiltrating lymphocytes is associated with the absence of lymph node metastases in patients with large early-stage cervical cancer. Cancer Res 67:354–361PubMedGoogle Scholar
  9. 9.
    Ropponen KM, Eskelinen MJ, Lipponen PK, Alhava E, Kosma VM (1997) Prognostic value of tumour-infiltrating lymphocytes (TILs) in colorectal cancer. J Pathol 182(3):318–324Google Scholar
  10. 10.
    Yamada N, Oizumi S, Kikuchi E, Shinagawa N, Konishi-Sakakibara J, Ishimine A, Aoe K, Gemba K, Kishimoto T, Torigoe T, Nishimura M (2010) CD8+ tumor-infiltrating lymphocytes predict favorable prognosis in malignant pleural mesothelioma after resection. Cancer Immunol Immunother 59(10): 1543–1549Google Scholar
  11. 11.
    Medzhitov R, Janeway CA Jr (1999) Innate immune induction of the adaptive immune response. Cold Spring Harb Symp Quant Biol 64:429–435PubMedGoogle Scholar
  12. 12.
    Teng M, Swann J, Koebel C, Schreiber R, Smyth M (2008) Immune-mediated dormancy: an equilibrium with cancer. J Leukoc Biol 84:988–993PubMedGoogle Scholar
  13. 13.
    Ferradini L, Mackensen A, Genevee C, Bosq J, Duvillard P, Avril M, Hercend T (1993) Analysis of T cell receptor variability in tumor-infiltrating lymphocytes from a human regressive melanoma. Evidence for in situ T cell clonal expansion. J Clin Invest 91:1183–1190PubMedGoogle Scholar
  14. 14.
    Zorn E, Hercend T (1999) A natural cytotoxic T cell response in a spontaneously regressing human melanoma targets a neoantigen resulting from a somatic point mutation. Eur J Immunol 29:592–601PubMedGoogle Scholar
  15. 15.
    Clark WH Jr, Elder De Guerry DT, Le B, Trock BJ, Schultz D, Synnestvedt M, Halpern AC (1989) Model predicting survival in stage I melanoma based on tumor progression. J Natl Cancer Inst 81:1893–1904PubMedGoogle Scholar
  16. 16.
    Sato E, Olson Sh, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth A, Frosina D, Gnjatic S, Ambrosone C, Kepner J, Odunsi T, Ritter G, Lele S, Chen Y-T, Ohtani H, Old L, Odunsi K (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Nat Acad Sci USA 102:18538–18543PubMedGoogle Scholar
  17. 17.
    Tomsová M, Melichar B, Sedláková I, Steiner I (2008) Prognostic significance of CD3+ tumor-infiltrating lymphocytes in ovarian carcinoma. Gynecol Oncol 108:415–420PubMedGoogle Scholar
  18. 18.
    Klebanoff C, Gattinoni L, Restifo N (2006) CD8+ T-cell memory in tumor immunology and immunotherapy. Immunol Rev 211:214–224PubMedGoogle Scholar
  19. 19.
    Rosenberg S, Restifo N, Yang J, Morgan R, Dudley M (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8:299–308PubMedGoogle Scholar
  20. 20.
    Harty J, Badovinac V (2008) Shaping and reshaping CD8+ T-cell memory. Nat Rev Immunol 8:107–119PubMedGoogle Scholar
  21. 21.
    Masson F, Mount A, Wilson N, Belz G (2008) Dendritic cells: driving the differentiation programme of T cells in viral infections. Immunol Cell Biol 86:333–342PubMedGoogle Scholar
  22. 22.
    Harty J, Tvinnereim A, White D (2000) CD8+ T cell effector mechanisms in resistance to infection. Annu Rev Immunol 18:275–308PubMedGoogle Scholar
  23. 23.
    Cyster J (1999) Chemokines and cell migration in secondary lymphoid organs. Science 286:2098–2102PubMedGoogle Scholar
  24. 24.
    Den Haan JM, Bevan MJ (2001) Antigen presentation to CD8+ T cells: cross-priming in infectious diseases. Curr Opin Immunol 13:437–441Google Scholar
  25. 25.
    Fu YX, Chaplin D (1999) Development and maturation of secondary lymphoid tissues. Annu Rev Immunol 17:399–433PubMedGoogle Scholar
  26. 26.
    Gerner M, Casey K, Mescher M (2008) Defective MHC class II presentation by Dendritic Cells Limits CD4 T Cell Help for antitumor CD8 T cell responses. J Immunol 181:155–164PubMedGoogle Scholar
  27. 27.
    Marzo A, Lake R, Lo D, Sherman L, Mcwilliam A, Nelson D, Robinson B, Scott B (1999) Tumor antigens are constitutively presented in the draining lymph nodes. J Immunol 162:5838–5845PubMedGoogle Scholar
  28. 28.
    Nelson D, Mukherjee S, Bundell C, Fisher S, Van Hagen D, Robinson B (2001) Tumor progression despite efficient tumor antigen cross-presentation and effective “arming” of tumor antigen-specific CTL. J Immunol 166:5557–5566PubMedGoogle Scholar
  29. 29.
    Van Mierlo GJD, Boonman ZFHM, Dumortier HMH, Den Boer AT, Fransen MF, Nouta J, Van Der Voort EIH, Offringa R, Rem T, Melief CJM (2004) Activation of dendritic cells that cross-present tumor-derived antigen licenses CD8+ CTL to cause tumor eradication. J Immunol 173:6753–6759PubMedGoogle Scholar
  30. 30.
    Jabbari A, Harty J (2006) The generation and modulation of antigen-specific memory CD8 T cell responses. J Leukoc Biol 80:16–23PubMedGoogle Scholar
  31. 31.
    Mescher M, Curtsinger J, Agarwal P, Casey K, Gerner M, Hammerbeck C, Popescu F, Xiao Z (2006) Signals required for programming effector and memory development by CD8+ T cells. Immunol Rev 211:81–92PubMedGoogle Scholar
  32. 32.
    Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H, Kohyama M, Calderon B, Schraml BU, Unanue ER, Diamond MS, Schreiber RD, Murphy TL, Murphy KM (2008) Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 322(5904): 1097-1100Google Scholar
  33. 33.
    Steinman R, Hawiger D, Liu K, Bonifaz L, Bonnyay D, Mahnke K, Iyoda T, Ravetch J, Dhodapkar M, Inaba K, Nussenzweig M (2003) Dendritic cell function in vivo during the steady state: a role in peripheral tolerance. Ann NY Acad Sci 987:15–25PubMedGoogle Scholar
  34. 34.
    Hernandez J, Aung S, Marquardt K, Sherman L (2002) Uncoupling of proliferative potential and gain of effector function by CD8+ T Cells responding to self-antigens. J Exp Med 196:323–333PubMedGoogle Scholar
  35. 35.
    Redmond W, Sherman L (2005) Peripheral tolerance of CD8 T lymphocytes. Immunity 22:275–284PubMedGoogle Scholar
  36. 36.
    Boise Lh, Minn A, Noel P, June Ch, Accavitti M, Lindsten T, Thompson C (1995) CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 3:87–98PubMedGoogle Scholar
  37. 37.
    Melief C (2008) Cancer immunotherapy by dendritic cells. Immunity 29:372–383PubMedGoogle Scholar
  38. 38.
    Harlin H, Kuna T, Peterson A, Meng Y, Gajewski T (2006) Tumor progression despite massive influx of activated CD8+ T cells in a patient with malignant melanoma ascites. Cancer Immunol Immunother 55:1185–1197PubMedGoogle Scholar
  39. 39.
    Valmori D, Scheibenbogen C, Dutoit V, Nagorsen D, Asemissen A, Rubio-Godoy V, Rimoldi D, Guillaume P, Romero P, Schadendorf D, Lipp M, Dietrich P-Y, Thiel E, Cerottini J-C, Lienard D, Keilholz U (2002) Circulating tumor-reactive CD8+ T cells in melanoma patients contain a CD45RA+CCR7-effector subset exerting ex vivo tumor-specific cytolytic activity. Cancer Res 62:1743–1750PubMedGoogle Scholar
  40. 40.
    Zippelius A, Batard P, Rubio-Godoy V, Bioley G, Lienard D, Lejeune F, Rimoldi D, Guillaume P, Meidenbauer N, Mackensen A, Rufer N, Lubenow N, Speiser D, Cerottini J-C, Romero P, Pittet M (2004) Effector function of human tumor-specific CD8 T cells in melanoma lesions: a state of local functional tolerance. Cancer Res 64:2865–2873PubMedGoogle Scholar
  41. 41.
    Nagorsen D, Keilholz U, Rivoltini L, Schmittel A, Letsch A, Asemissen A, Berger G, Buhr H, Thiel E, Scheibenbogen C (2000) Natural T-cell response against MHC class I epitopes of epithelial cell adhesion molecule, her-2/neu, and carcinoembryonic antigen in patients with colorectal cancer. Cancer Res 60:4850–4854PubMedGoogle Scholar
  42. 42.
    Nagorsen D, Scheibenbogen C, Schaller G, Leigh B, Schmittel A, Letsch A, Thiel E, Keilholz U (2003) Differences in T-cell immunity toward tumor-associated antigens in colorectal cancer and breast cancer patients. Int J Cancer 105:221–225PubMedGoogle Scholar
  43. 43.
    Maccalli C, Di Cristanziano V, Fodale V, Corsi D, D’agostino G, Petrangeli V, Laurenti L, Guida S, Mazzocchi A, Arienti F, Perrone M, Castelli C, Rivoltini L, Zagonel V, Tartaglia M, Parmiani G, Belardelli F (2008) Induction of both CD8+ and CD4+ T-cell-mediated responses in colorectal cancer patients by colon antigen-1. Clin Cancer Res 14:7292–7303PubMedGoogle Scholar
  44. 44.
    Rentzsch C, Kayser S, Stumm S, Watermann I, Walter S, Stevanovic S, Wallwiener D, Guckel B (2003) Evaluation of pre-existent immunity in patients with primary breast cancer: molecular and cellular assays to quantify antigen-specific T lymphocytes in peripheral blood mononuclear cells. Clin Cancer Res 9:4376–4386PubMedGoogle Scholar
  45. 45.
    Ohlen C, Kalos M, Cheng L, Shur A, Hong D, Carson B, Kokot N, Lerner C, Sather B, Huseby E, Greenberg P (2002) CD8(+) T cell tolerance to a tumor-associated antigen is maintained at the level of expansion rather than effector function. J Exp Med 195:1407–1418PubMedGoogle Scholar
  46. 46.
    Derre L, Rivals J-P, Jandus C, Pastor S, Rimoldi D, Romero P, Michielin O, Olive D, Speiser D (2010) BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination. J Clin Invest 120:157–167PubMedGoogle Scholar
  47. 47.
    Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher I, Sander C, Kirkwood J, Kuchroo V, Zarour H (2010) Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 207:2175–2186PubMedGoogle Scholar
  48. 48.
    Sakuishi K, Apetoh L, Sullivan J, Blazar B, Kuchroo V, Anderson A (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207:2187–2194PubMedGoogle Scholar
  49. 49.
    Zou W, Chen L (2008) Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 8:467–477PubMedGoogle Scholar
  50. 50.
    Ishida T, Oyama T, Carbone D, Gabrilovich D (1998) Defective function of Langerhans cells in tumor-bearing animals is the result of defective maturation from hemopoietic progenitors. J Immunol 161:4842–4851PubMedGoogle Scholar
  51. 51.
    Lucas H (1999) Progressor but not regressor skin tumours inhibit Langerhans’ cell migration from epidermis to local lymph nodes. Immunology 97:130–137PubMedGoogle Scholar
  52. 52.
    Preynat-Seauve O, Schuler P, Contassot E, Beermann F, Huard B, French L (2006) Tumor-infiltrating dendritic cells are potent antigen-presenting cells able to activate T cells and mediate tumor rejection. J Immunol 176:61–67PubMedGoogle Scholar
  53. 53.
    Villablanca E, Raccosta L, Zhou D, Fontana R, Maggioni D, Negro A, Sanvito F, Ponzoni M, Valentinis B, Bregni M, Prinetti A, Steffensen K, Sonnino S, Gustafsson J, Doglioni C, Bordignon C, Traversari C, Russo V (2010) Tumor-mediated liver X receptor-alpha activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses. Nat Med 16:98–105PubMedGoogle Scholar
  54. 54.
    Belkaid Y, Oldenhove G (2008) Tuning microenvironments: induction of regulatory T cells by dendritic cells. Immunity 29:362–371PubMedGoogle Scholar
  55. 55.
    Gabrilovich D, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174PubMedGoogle Scholar
  56. 56.
    Klages K, Mayer C, Lahl K, Loddenkemper C, Teng M, Ngiow S, Smyth M, Hamann A, Huehn J, Sparwasser T (2010) Selective depletion of Foxp3+ regulatory T cells improves effective therapeutic vaccination against established melanoma. Cancer Res 70:7788–7799PubMedGoogle Scholar
  57. 57.
    Kodumudi K, Woan K, Gilvary D, Sahakian E, Wei S, Djeu J (2010) A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. Clin Cancer Res 16:4583–4594PubMedGoogle Scholar
  58. 58.
    Li X, Kostareli E, Suffner J, Garbi N, Hämmerling G (2010) Efficient Treg depletion induces T-cell infiltration and rejection of large tumors. Eur J Immunol 40:3325–3335PubMedGoogle Scholar
  59. 59.
    Vincent J, Mignot GG, Chalmin F, Ladoire S, Bruchard ML, Chevriaux AL, Martin FO, Apetoh L, RéBé CD, Ghiringhelli FO (2010) Five-fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T Cell–dependent antitumor immunity. Cancer Res 70:3052–3061PubMedGoogle Scholar
  60. 60.
    Haynes NM, Van Der Most RG, Lake RA, Smyth MJ (2008) Immunogenic anti-cancer chemotherapy as an emerging concept. Curr Op Immunol 20:545–557Google Scholar
  61. 61.
    Aymeric L, Apetoh L, Ghiringhelli F, Tesniere A, Martins I, Kroemer G, Smyth M, Zitvogel L (2010) Tumor cell death and ATP release prime dendritic cells and efficient anticancer immunity. Cancer Res 70:855–858PubMedGoogle Scholar
  62. 62.
    Nowak A, Lake R, Marzo A, Scott B, Heath W, Collins E, Frelinger J, Robinson B (2003) Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T cells. J Immunol 170:4905–4913PubMedGoogle Scholar
  63. 63.
    Van Der Most RG, Currie A, Robinson BW, Lake RA (2006) Cranking the immunologic engine with chemotherapy: using context to drive tumor antigen cross-presentation towards useful antitumor immunity. Cancer Res 66:601–604PubMedGoogle Scholar
  64. 64.
    Van Der Most RG, Currie AJ, Cleaver AL, Salmons J, Nowak AK, Mahendran S, Larma I, Prosser A, Robinson BWS, Smyth MJ, Scalzo AA, Degli-Esposti MA, Lake RA (2009) Cyclophosphamide chemotherapy sensitizes tumor cells to TRAIL-Dependent CD8 T Cell-mediated immune attack resulting in suppression of tumor growth. PLoS ONE 4:e6982PubMedGoogle Scholar
  65. 65.
    Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8:59–73PubMedGoogle Scholar
  66. 66.
    Zhang B, Bowerman N, Salama J, Schmidt H, Spiotto M, Schietinger A, Yu P, Fu Y, Weichselbaum R, Rowley D, Kranz D, Schreiber H (2007) Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med 204:49–55PubMedGoogle Scholar
  67. 67.
    Mihich E (1969) Modification of tumor regression by immunologic means. Cancer Res 29:2345–2350PubMedGoogle Scholar
  68. 68.
    Mihich E (1969) Combined effects of chemotherapy and immunity against leukemia L1210 in DBA-2 mice. Cancer Res 29:848–854PubMedGoogle Scholar
  69. 69.
    Ferrer J, Mihich E (1967) Antitumor effects of kethoxal-bis(thiosemicarbazone) and 6-mercaptopurine in neonatally thymectomized mice. Proc Soc Exp Biol Med 124:939–944PubMedGoogle Scholar
  70. 70.
    Schwartz H, Grindey G (1973) Adriamycin and daunorubicin: a comparison of antitumor activities and tissue uptake in mice following immunosuppression. Cancer Res 33:1837–1844PubMedGoogle Scholar
  71. 71.
    Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, Vermaelen K, Panaretakis T, Mignot G, Ullrich E, Perfettini J-L, Schlemmer F, Tasdemir E, Uhl M, Genin P, Civas A, Ryffel B, Kanellopoulos J, Tschopp J, Andre F, Lidereau R, Mclaughlin N, Haynes N, Smyth M, Kroemer G, Zitvogel L (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1[beta]-dependent adaptive immunity against tumors. Nat Med 15:1170–1178PubMedGoogle Scholar
  72. 72.
    Casares N, Pequignot M, Tesniere A, Ghiringhelli F, Roux S, Chaput N, Schmitt E, Hamai A, Hervas-Stubbs S, Obeid M, Coutant F, Metivier D, Pichard E, Aucouturier P, Pierron G, Garrido C, Zitvogel L, Kroemer G (2005) Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 202:1691–1701PubMedGoogle Scholar
  73. 73.
    Le H, Graham L, Cha E, Morales J, Manjili Mh, Bear H (2009) Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4 T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. Int Immunopharm 9:900–909Google Scholar
  74. 74.
    Suzuki E, Sun J, Kapoor V, Jassar A, Albelda S (2007) Gemcitabine has significant immunomodulatory activity in murine tumor models independent of its cytotoxic effects. Cancer Biol Ther 6:880–885PubMedGoogle Scholar
  75. 75.
    Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri M, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat F, Saftig P, Levi F, Lidereau R, Nogues C, Mira J-P, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, Andre F, Delaloge S, Tursz T, Kroemer G, Zitvogel L (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059PubMedGoogle Scholar
  76. 76.
    Obeid M, Tesniere A, Ghiringhelli F, Fimia G, Apetoh L, Perfettini J-L, Castedo M, Mignot G, Panaretakis T, Casares N, Metivier D, Larochette N, Van Endert P, Ciccosanti F, Piacentini M, Zitvogel L, Kroemer G (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13:54–61PubMedGoogle Scholar
  77. 77.
    Spisek R, Charalambous A, Mazumder A, Vesole Dh, Jagannath S, Dhodapkar M (2007) Bortezomib enhances dendritic cell (DC) mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood 109:4839–4845PubMedGoogle Scholar
  78. 78.
    Panaretakis T, Joza N, Modjtahedi N, Tesniere A, Vitale I, Durchschlag M, Fimia G, Kepp O, Piacentini M, Froehlich Ku, Van Endert P, Zitvogel L, Madeo F, Kroemer G (2008) The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ 15:1499–1509PubMedGoogle Scholar
  79. 79.
    Ma Y, Kepp O, Ghiringhelli F, Apetoh L, Aymeric L, Locher C, Tesniere A, Martins I, Ly A, Haynes N, Smyth M, Kroemer G, Zitvogel L (2010) Chemotherapy and radiotherapy: Cryptic anticancer vaccines. Sem Immun 22:113–124Google Scholar
  80. 80.
    Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F, Aymeric L, Michaud M, Apetoh L, Barault L, Mendiboure J, Pignon J, Jooste V, Van Endert P, Ducreux M, Zitvogel L, Piard F, Kroemer G (2010) Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 29:482–491PubMedGoogle Scholar
  81. 81.
    Hu D-E, Moore A, Thomsen L, Brindle K (2004) Uric acid promotes tumor immune rejection. Cancer Res 64:5059–5062PubMedGoogle Scholar
  82. 82.
    Shi Y, Evans J, Rock K (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–521PubMedGoogle Scholar
  83. 83.
    Gasse P, Riteau N, Charron S, Girre S, Fick L, Petrilli V, Tschopp J, Lagente V, Quesniaux V, Ryffel B, Couillin I (2009) Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. Am J Respir Crit Care Med 179:903–913PubMedGoogle Scholar
  84. 84.
    Tanaka H, Matsushima H, Mizumoto N, Takashima A (2009) Classification of chemotherapeutic agents based on their differential in vitro effects on dendritic cells. Cancer Res 69:6978–6986PubMedGoogle Scholar
  85. 85.
    Tanaka H, Matsushima H, Nishibu A, Clausen B, Takashima A (2009) Dual therapeutic efficacy of vinblastine as a unique chemotherapeutic agent capable of inducing dendritic cell maturation. Cancer Res 69:6987–6994PubMedGoogle Scholar
  86. 86.
    Shurin G, Tourkova I, Kaneno R, Shurin M (2009) Chemotherapeutic agents in noncytotoxic concentrations increase antigen presentation by Dendritic Cells via an IL-12-dependent mechanism. J Immunol 183:137–144PubMedGoogle Scholar
  87. 87.
    Kaneno R, Shurin G, Tourkova I, Shurin M (2009) Chemomodulation of human dendritic cell function by antineoplastic agents in low noncytotoxic concentrations. J Trans Med 7:58Google Scholar
  88. 88.
    Gattinoni L, Finkelstein S, Klebanoff C, Antony P, Palmer D, Spiess P, Hwang L, Yu Z, Wrzesinski C, Heimann D, Surh C, Rosenberg S, Restifo N (2005) Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 202:907–912PubMedGoogle Scholar
  89. 89.
    Turtle C, Swanson H, Fujii N, Estey Eh, Riddell S (2009) A distinct subset of self-renewing human memory CD8+ T cells survives cytotoxic chemotherapy. Immunity 31:834–844PubMedGoogle Scholar
  90. 90.
    Rudge G, Barrett SP, Scott B, Van Driel IR (2007) Infiltration of a mesothelioma by IFN-gamma-producing cells and tumor rejection after depletion of regulatory T cells. J Immunol 178:4089–4096PubMedGoogle Scholar
  91. 91.
    Teng M, Ngiow S, Von Scheidt B, Mclaughlin N, Sparwasser T, Smyth M (2010) Conditional regulatory T-cell depletion releases adaptive immunity preventing carcinogenesis and suppressing established tumor growth. Cancer Res 70:7800–7809PubMedGoogle Scholar
  92. 92.
    Van Der Most R, Currie A, Mahendran S, Prosser A, Darabi A, Robinson B, Nowak A, Lake R (2009) Tumor eradication after cyclophosphamide depends on concurrent depletion of regulatory T cells: a role for cycling TNFR2-expressing effector-suppressor T cells in limiting effective chemotherapy. Cancer Immunol Immunother 58:1219–1228PubMedGoogle Scholar
  93. 93.
    Deng L, Zhang H, Luan Y, Zhang J, Xing Q, Dong S, Wu X, Liu M, Wang S (2010) Accumulation of foxp3+ T regulatory cells in draining lymph nodes correlates with disease progression and immune suppression in colorectal cancer patients. Clin Cancer Res 16:4105–4112PubMedGoogle Scholar
  94. 94.
    Liyanage U, Moore T, Joo H, Tanaka Y, Herrmann V, Doherty G, Drebin J, Strasberg S, Eberlein T, Goedegebuure P, Linehan D (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169:2756–2761PubMedGoogle Scholar
  95. 95.
    Shen L, Wang J, Shen D, Yuan X, Dong P, Li M, Xue J, Zhang F, Ge H, Xu D (2009) CD4(+)CD25(+)CD127(low/-) regulatory T cells express Foxp3 and suppress effector T cell proliferation and contribute to gastric cancers progression. Clin Immunol 131:109–118PubMedGoogle Scholar
  96. 96.
    Wolf A, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B (2003) Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 9:606–612PubMedGoogle Scholar
  97. 97.
    Kim J (2010) Molecular mechanisms of regulatory T cell development and suppressive function. Prog Mol Biol Transl Sci 92:279–314PubMedGoogle Scholar
  98. 98.
    Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C, Chauffert B, Solary E, Bonnotte B, Martin F (2004) CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34:336–344PubMedGoogle Scholar
  99. 99.
    Ghiringhelli F, Menard C, Puig P, Ladoire S, Roux S, Martin F, Solary E, Le Cesne A, Zitvogel L, Chauffert B (2007) Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56:641–648PubMedGoogle Scholar
  100. 100.
    Schiavoni G, Mattei F, Di Pucchio T, Santini S, Bracci L, Belardelli F, Proietti E (2000) Cyclophosphamide induces type I interferon and augments the number of CD44hi T lymphocytes in mice: implications for strategies of chemoimmunotherapy of cancer. Blood 95:2024–2030PubMedGoogle Scholar
  101. 101.
    Chen X, Subleski JJ, Kopf H, Howard OMZ, Mãnnel DN, Oppenheim JJ (2008) Cutting edge: expression of TNFR2 defines a maximally suppressive subset of mouse CD4+CD25+FoxP3+ T regulatory cells: applicability to tumor-infiltrating T regulatory cells. J Immunol 180:6467–6471PubMedGoogle Scholar
  102. 102.
    Herman A, Freeman G, Mathis D, Benoist C (2004) CD4+CD25+ T regulatory cells dependent on ICOS promote regulation of effector cells in the prediabetic lesion. J Exp Med 199:1479–1489PubMedGoogle Scholar
  103. 103.
    Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, Parizot C, Taflin C, Heike T, Valeyre D, Mathian A, Nakahata T, Yamaguchi T, Nomura T, Ono M, Amoura Z, Gorochov G, Sakaguchi S (2009) Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30:899–911PubMedGoogle Scholar
  104. 104.
    Radojcic V, Bezak K, Skarica M, Pletneva M, Yoshimura K, Schulick R, Luznik L (2010) Cyclophosphamide resets dendritic cell homeostasis and enhances antitumor immunity through effects that extend beyond regulatory T cell elimination. Cancer Immunol Immunother 59:137–148PubMedGoogle Scholar
  105. 105.
    Lutsiak M, Semnani R, De Pascalis R, Kashmiri S, Schlom J, Sabzevari H (2005) Inhibition of CD4 + 25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105:2862–2868PubMedGoogle Scholar
  106. 106.
    Loeffler M, KrãGer JRA, Reisfeld RA (2005) Immunostimulatory effects of low-dose cyclophosphamide are controlled by inducible nitric oxide synthase. Cancer Res 65:5027–5030PubMedGoogle Scholar
  107. 107.
    Zhao J, Cao Y, Lei Z, Yang Z, Zhang B, Huang B (2010) Selective depletion of CD4+CD25 + Foxp3+ regulatory T cells by low-dose cyclophosphamide is explained by reduced intracellular ATP levels. Cancer Res 70:4850–4858PubMedGoogle Scholar
  108. 108.
    Berd D, Mastrangelo M (1988) Effect of low dose cyclophosphamide on the immune system of cancer patients: depletion of CD4+, 2 H4+ suppressor-inducer T-cells. Cancer Res 48:1671–1675PubMedGoogle Scholar
  109. 109.
    Hoon D, Foshag L, Nizze A, Bohman R, Morton D (1990) Suppressor cell activity in a randomized trial of patients receiving active specific immunotherapy with melanoma cell vaccine and low dosages of cyclophosphamide. Cancer Res 50:5358–5364PubMedGoogle Scholar
  110. 110.
    Livingston PO, Cunningham-Rundles S, Marfleet G, Gnecco C, Wong GY, Schiffman G, Enker WE, Hoffman MK (1987) Inhibition of suppressor-cell activity by Cyclophosphamide in patients with Malignant Melanoma. J Immunother 6:392–403Google Scholar
  111. 111.
    Berd D, Maguire H, Mastrangelo M (1986) Induction of Cell-mediated Immunity to Autologous Melanoma Cells and Regression of Metastases after Treatment with a Melanoma Cell Vaccine Preceded by Cyclophosphamide. Cancer Res 46:2572–2577PubMedGoogle Scholar
  112. 112.
    Maclean G, Miles D, Rubens R, Reddish M, Longenecker B (1996) Enhancing the effect of THERATOPE STn-KLH cancer vaccine in patients with metastatic breast cancer by pretreatment with low-dose intravenous cyclophosphamide. J Immunother Emphasis Tumor Immunol 19:309–316PubMedGoogle Scholar
  113. 113.
    Greten T, Ormandy L, Fikuart A, Hochst B, Henschen S, Horning M, Manns M, Korangy F (2010) Low-dose cyclophosphamide treatment impairs regulatory T cells and unmasks AFP-specific CD4+ T-cell responses in patients with advanced HCC. J Immunother 33:211–218PubMedGoogle Scholar
  114. 114.
    Vicari A, Luu R, Zhang N, Patel S, Makinen S, Hanson D, Weeratna R, Krieg A (2009) Paclitaxel reduces regulatory T cell numbers and inhibitory function and enhances the anti-tumor effects of the TLR9 agonist PF-3512676 in the mouse. Cancer Immunol Immunother 58:615–628PubMedGoogle Scholar
  115. 115.
    Zhang L, Dermawan K, Jin M, Liu R, Zheng H, Xu L, Zhang Y, Cai Y, Chu Y, Xiong S (2008) Differential impairment of regulatory T cells rather than effector T cells by paclitaxel-based chemotherapy. Clin Immunol 129:219–229PubMedGoogle Scholar
  116. 116.
    Almand B, Clark J, Nikitina E, Van Beynen J, English N, Knight S, Carbone D, Gabrilovich D (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166:678–689PubMedGoogle Scholar
  117. 117.
    Diaz-Montero C, Salem M, Nishimura M, Garrett-Mayer E, Cole D, Montero A (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49–59PubMedGoogle Scholar
  118. 118.
    Rodriguez P, Ochoa A (2008) Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev 222:180–191PubMedGoogle Scholar
  119. 119.
    Srivastava M, Sinha P, Clements V, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70:68–77PubMedGoogle Scholar
  120. 120.
    Pan P, Ma G, Weber K, Ozao-Choy J, Wang G, Yin B, Divino C, Chen Sh (2010) Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res 70:99–108PubMedGoogle Scholar
  121. 121.
    Yang R, Cai Z, Zhang Y, Yutzy W, Roby K, Roden R (2006) CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1 + CD11b+ myeloid cells. Cancer Res 66:6807–6815PubMedGoogle Scholar
  122. 122.
    Huang B, Pan P, Li Q, Sato A, Levy D, Bromberg J, Divino C, Chen Sh (2006) Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66:1123–1131PubMedGoogle Scholar
  123. 123.
    Fridlender Z, Sun J, Singhal S, Kapoor V, Cheng G, Suzuki E, Albelda S (2010) Chemotherapy delivered after viral immunogene therapy augments antitumor efficacy via multiple immune-mediated mechanisms. Mol Ther 18:1947–1959PubMedGoogle Scholar
  124. 124.
    Ko H-J, Kim Y-J, Kim Y-S, Chang W-S, Ko S-Y, Chang S-Y, Sakaguchi S, Kang C-Y (2007) A Combination of Chemoimmunotherapies Can Efficiently Break Self-Tolerance and Induce Antitumor Immunity in a Tolerogenic Murine Tumor Model. Cancer Res 67:7477–7486PubMedGoogle Scholar
  125. 125.
    Sinha P, Clements V, Bunt S, Albelda S, Ostrand-Rosenberg S (2007) Cross-Talk between Myeloid-Derived Suppressor Cells and Macrophages Subverts Tumor Immunity toward a Type 2 Response. J Immunol 179:977–983PubMedGoogle Scholar
  126. 126.
    Suzuki E, Kapoor V, Jassar A, Kaiser L, Albelda S (2005) Gemcitabine Selectively Eliminates Splenic Gr-1+/CD11b+ Myeloid Suppressor Cells in Tumor-Bearing Animals and Enhances Antitumor Immune Activity. Clin Cancer Res 11:6713–6721PubMedGoogle Scholar
  127. 127.
    Nowak A, Robinson B, Lake R (2003) Synergy between Chemotherapy and Immunotherapy in the Treatment of Established Murine Solid Tumors. Cancer Res 63:4490–4496PubMedGoogle Scholar
  128. 128.
    Plate J, Plate A, Shott S, Bograd S, Harris J (2005) Effect of gemcitabine on immune cells in subjects with adenocarcinoma of the pancreas. Cancer Immunol Immunother 54:915–925PubMedGoogle Scholar
  129. 129.
    Soeda A, Morita-Hoshi Y, Makiyama H, Morizane C, Ueno H, Ikeda M, Okusaka T, Yamagata S, Takahashi N, Hyodo I, Takaue Y, Heike Y (2009) Regular dose of gemcitabine induces an increase in CD14+ Monocytes and CD11c+ dendritic cells in patients with advanced pancreatic cancer. Jap J Clin Oncol 39:797–806Google Scholar
  130. 130.
    Ugel S, Delpozzo F, Desantis G, Papalini F, Simonato F, Sonda N, Zilio S, Bronte V (2009) Therapeutic targeting of myeloid-derived suppressor cells. Curr Opin Pharmacol 9:470–481PubMedGoogle Scholar
  131. 131.
    Ko J, Zea Ah, Rini B, Ireland J, Elson P, Cohen P, Golshayan A, Rayman P, Wood L, Garcia J, Dreicer R, Bukowski R, Finke Jh (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 15:2148–2157PubMedGoogle Scholar
  132. 132.
    Bellone G, Novarino A, Vizio B, Brondino G, Addeo A, Prati A, Giacobino A, Campra D, Fronda G, Ciuffreda L (2009) Impact of surgery and chemotherapy on cellular immunity in pancreatic carcinoma patients in view of an integration of standard cancer treatment with immunotherapy. Int J Oncol 34:1701–1715PubMedGoogle Scholar
  133. 133.
    Coleman S, Clayton A, Mason M, Jasani B, Adams M, Tabi Z (2005) Recovery of CD8+ T-cell function during systemic chemotherapy in advanced ovarian cancer. Cancer Res 65:7000–7006PubMedGoogle Scholar
  134. 134.
    Lissoni P, Brivio F, Fumagalli L, Messina G, Meregalli S, Porro G, Rovelli F, Vigore L, Tisi E, D’amico G (2009) Effects of the conventional antitumor therapies surgery, chemotherapy, radiotherapy and immunotherapy on regulatory T lymphocytes in cancer patients. Anticancer Res 29:1847–1852PubMedGoogle Scholar
  135. 135.
    Wu X, Feng Q, Wang Y, Shi J, Ge H, Di W (2010) The immunologic aspects in advanced ovarian cancer patients treated with paclitaxel and carboplatin chemotherapy. Cancer Immunol Immunother 59:279–291PubMedGoogle Scholar
  136. 136.
    Miller JD, Van Der Most RG, Akondy RS, Glidewell JT, Albott S, Masopust D, Murali-Krishna K, Mahar PL, Edupuganti S, Lalor S, Germon S, Del Rio C, Mulligan MJ, Staprans SI, Altman JD, Feinberg MB, Ahmed R (2008) Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity 28:710–722PubMedGoogle Scholar
  137. 137.
    Kim P, Ahmed R (2010) Features of responding T cells in cancer and chronic infection. Curr Opin Immunol 22:223–230PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Alison M. McDonnell
    • 1
  • Anna K. Nowak
    • 1
  • Richard A. Lake
    • 1
  1. 1.National Centre for Asbestos-Related Diseases and School of Medicine and PharmacologyThe University of Western AustraliaPerthAustralia

Personalised recommendations