Seminars in Immunopathology

, Volume 33, Issue 5, pp 395–408

Bacterial outer membrane vesicles in disease and preventive medicine

Review

Abstract

Gram-negative bacteria have the ability to produce outer membrane-derived vesicles (OMVs) that are released into the extracellular milieu. Even though this intriguing phenomenon is well-known since many years, various aspects of bacterial OMVs are not fully described and are still in the process of being characterized in detail. One major reason for this is that depending on the bacterial species and its respective ecological niche, OMVs exhibit an enormous functional diversity. Research of the past years has clearly shown that OMVs of many pathogenic bacteria contribute to the virulence potential by enriching virulence factors and delivering them over long distances, superseding direct bacterial contact with their host. The subsequent interaction of OMVs with the host can occur at different levels regarding the type of immune response or the target cell type and may lead to different outcomes ranging from non-immunogenic activation or a pro-inflammatory response to cytotoxicity. In contrast to being virulence factors, OMVs are used for vaccination purposes in the combat against bacterial pathogens, and recent research thus is focused on to indirectly aim these versatile bacterial weapons against themselves.

Keywords

Cytotoxicity Immunomodulatory Outer membrane vesicles Pro-inflammatory response Vaccine 

Abbreviations

IL

Interleukin

LPS

Lipopolysaccharide

MHC

Major histocompatibility complex

OMV(s)

Outer membrane vesicle(s)

TIII or TIVSS

Type III or IV secretion system

TNF-α

Tumor necrosis factor-α

COPD

Chronic obstructive pulmonary disease

MCP-1

Macrophage chemoattractant protein-1

IFN-γ

Interferon-γ

References

  1. 1.
    Beveridge TJ (1999) Structures of Gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181(16):4725–4733PubMedGoogle Scholar
  2. 2.
    Bishop DG, Work E (1965) An extracellular glycolipid produced by Escherichia coli grown under lysine-limiting conditions. Biochem J 96(2):567–576PubMedGoogle Scholar
  3. 3.
    Chatterjee SN, Das J (1967) Electron microscopic observations on the excretion of cell-wall material by Vibrio cholerae. J Gen Microbiol 49(1):1–11PubMedGoogle Scholar
  4. 4.
    Knox KW, Vesk M, Work E (1966) Relation between excreted lipopolysaccharide complexes and surface structures of a lysine-limited culture of Escherichia coli. J Bacteriol 92(4):1206–1217PubMedGoogle Scholar
  5. 5.
    Rothfield L, Pearlman-Kothencz M (1969) Synthesis and assembly of bacterial membrane components. A lipopolysaccharide–phospholipid–protein complex excreted by living bacteria. J Mol Biol 44(3):477–492PubMedGoogle Scholar
  6. 6.
    Work E, Knox KW, Vesk M (1966) The chemistry and electron microscopy of an extracellular lipopolysaccharide from Escherichia coli. Ann NY Acad Sci 133(2):438–449PubMedGoogle Scholar
  7. 7.
    Ellis TN, Kuehn MJ (2010) Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev 74(1):81–94. doi:10.1128/MMBR.00031-09 PubMedGoogle Scholar
  8. 8.
    Mashburn-Warren L, McLean RJ, Whiteley M (2008) Gram-negative outer membrane vesicles: beyond the cell surface. Geobiology 6(3):214–219. doi:10.1111/j.1472-4669.2008.00157.x PubMedGoogle Scholar
  9. 9.
    Kulp A, Kuehn MJ (2010) Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol 64:163–184. doi:10.1146/annurev.micro.091208.073413 PubMedGoogle Scholar
  10. 10.
    Tetz VV, Rybalchenko OV, Savkova GA (1990) Ultrastructural features of microbial colony organization. J Basic Microbiol 30(8):597–607PubMedGoogle Scholar
  11. 11.
    Devoe IW, Gilchrist JE (1973) Release of endotoxin in the form of cell wall blebs during in vitro growth of Neisseria meningitidis. J Exp Med 138(5):1156–1167PubMedGoogle Scholar
  12. 12.
    Hozbor D, Rodriguez ME, Fernandez J, Lagares A, Guiso N, Yantorno O (1999) Release of outer membrane vesicles from Bordetella pertussis. Curr Microbiol 38(5):273–278PubMedGoogle Scholar
  13. 13.
    Shoberg RJ, Thomas DD (1995) Borrelia burgdorferi vesicle production occurs via a mechanism independent of immunoglobulin M involvement. Infect Immun 63(12):4857–4861PubMedGoogle Scholar
  14. 14.
    Wai SN, Takade A, Amako K (1995) The release of outer membrane vesicles from the strains of enterotoxigenic Escherichia coli. Microbiol Immunol 39(7):451–456PubMedGoogle Scholar
  15. 15.
    Schooling SR, Beveridge TJ (2006) Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol 188(16):5945–5957. doi:10.1128/JB.00257-06 PubMedGoogle Scholar
  16. 16.
    Yonezawa H, Osaki T, Kurata S, Fukuda M, Kawakami H, Ochiai K, Hanawa T, Kamiya S (2009) Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation. BMC Microbiol 9:197. doi:10.1186/1471-2180-9-197 PubMedGoogle Scholar
  17. 17.
    Galka F, Wai SN, Kusch H, Engelmann S, Hecker M, Schmeck B, Hippenstiel S, Uhlin BE, Steinert M (2008) Proteomic characterization of the whole secretome of Legionella pneumophila and functional analysis of outer membrane vesicles. Infect Immun 76(5):1825–1836. doi:10.1128/IAI.01396-07 PubMedGoogle Scholar
  18. 18.
    Brandtzaeg P, Bryn K, Kierulf P, Ovstebo R, Namork E, Aase B, Jantzen E (1992) Meningococcal endotoxin in lethal septic shock plasma studied by gas chromatography, mass-spectrometry, ultracentrifugation, and electron microscopy. J Clin Invest 89(3):816–823. doi:10.1172/JCI115660 PubMedGoogle Scholar
  19. 19.
    Hynes SO, Keenan JI, Ferris JA, Annuk H, Moran AP (2005) Lewis epitopes on outer membrane vesicles of relevance to Helicobacter pylori pathogenesis. Helicobacter 10(2):146–156. doi:10.1111/j.1523-5378.2005.00302.x PubMedGoogle Scholar
  20. 20.
    Stephens DS, Edwards KM, Morris F, McGee ZA (1982) Pili and outer membrane appendages on Neisseria meningitidis in the cerebrospinal fluid of an infant. J Infect Dis 146(4):568PubMedGoogle Scholar
  21. 21.
    Tan TT, Morgelin M, Forsgren A, Riesbeck K (2007) Haemophilus influenzae survival during complement-mediated attacks is promoted by Moraxella catarrhalis outer membrane vesicles. J Infect Dis 195(11):1661–1670. doi:10.1086/517611 PubMedGoogle Scholar
  22. 22.
    Kadurugamuwa JL, Beveridge TJ (1995) Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 177(14):3998–4008PubMedGoogle Scholar
  23. 23.
    Suzuki H, Nishimura Y, Yasuda S, Nishimura A, Yamada M, Hirota Y (1978) Murein-lipoprotein of Escherichia coli: a protein involved in the stabilization of bacterial cell envelope. Mol Gen Genet 167(1):1–9PubMedGoogle Scholar
  24. 24.
    Smalley JW, Birss AJ, McKee AS, Marsh PD (1991) Haemin-restriction influences haemin-binding, haemagglutination and protease activity of cells and extracellular membrane vesicles of Porphyromonas gingivalis W50. FEMS Microbiol Lett 69(1):63–67PubMedGoogle Scholar
  25. 25.
    Loeb MR (1974) Bacteriophage T4-mediated release of envelope components from Escherichia coli. J Virol 13(3):631–641PubMedGoogle Scholar
  26. 26.
    McBroom AJ, Kuehn MJ (2007) Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol Microbiol 63(2):545–558. doi:10.1111/j.1365-2958.2006.05522.x PubMedGoogle Scholar
  27. 27.
    Alaniz RC, Deatherage BL, Lara JC, Cookson BT (2007) Membrane vesicles are immunogenic facsimiles of Salmonella typhimurium that potently activate dendritic cells, prime B and T cell responses, and stimulate protective immunity in vivo. J Immunol 179(11):7692–7701PubMedGoogle Scholar
  28. 28.
    McBroom AJ, Johnson AP, Vemulapalli S, Kuehn MJ (2006) Outer membrane vesicle production by Escherichia coli is independent of membrane instability. J Bacteriol 188(15):5385–5392. doi:10.1128/JB.00498-06 PubMedGoogle Scholar
  29. 29.
    Wensink J, Witholt B (1981) Outer-membrane vesicles released by normally growing Escherichia coli contain very little lipoprotein. Eur J Biochem 116(2):331–335PubMedGoogle Scholar
  30. 30.
    de Leij L, Kingma J, Witholt B (1979) Nature of the regions involved in the insertion of newly synthesized protein into the outer membrane of Escherichia coli. Biochim Biophys Acta 553(2):224–234PubMedGoogle Scholar
  31. 31.
    Zhou L, Srisatjaluk R, Justus DE, Doyle RJ (1998) On the origin of membrane vesicles in Gram-negative bacteria. FEMS Microbiol Lett 163(2):223–228PubMedGoogle Scholar
  32. 32.
    Nguyen TT, Saxena A, Beveridge TJ (2003) Effect of surface lipopolysaccharide on the nature of membrane vesicles liberated from the Gram-negative bacterium Pseudomonas aeruginosa. J Electron Microsc (Tokyo) 52(5):465–469Google Scholar
  33. 33.
    Sabra W, Lunsdorf H, Zeng AP (2003) Alterations in the formation of lipopolysaccharide and membrane vesicles on the surface of Pseudomonas aeruginosa PAO1 under oxygen stress conditions. Microbiology 149(Pt 10):2789–2795PubMedGoogle Scholar
  34. 34.
    Hirota Y, Suzuki H, Nishimura Y, Yasuda S (1977) On the process of cellular division in Escherichia coli: a mutant of E. coli lacking a murein-lipoprotein. Proc Natl Acad Sci USA 74(4):1417–1420PubMedGoogle Scholar
  35. 35.
    Hoekstra D, van der Laan JW, de Leij L, Witholt B (1976) Release of outer membrane fragments from normally growing Escherichia coli. Biochim Biophys Acta 455(3):889–899PubMedGoogle Scholar
  36. 36.
    Sonntag I, Schwarz H, Hirota Y, Henning U (1978) Cell envelope and shape of Escherichia coli: multiple mutants missing the outer membrane lipoprotein and other major outer membrane proteins. J Bacteriol 136(1):280–285PubMedGoogle Scholar
  37. 37.
    Iwami J, Murakami Y, Nagano K, Nakamura H, Yoshimura F (2007) Further evidence that major outer membrane proteins homologous to OmpA in Porphyromonas gingivalis stabilize bacterial cells. Oral Microbiol Immunol 22(5):356–360. doi:10.1111/j.1399-302X.2007.00363.x PubMedGoogle Scholar
  38. 38.
    Deatherage BL, Lara JC, Bergsbaken T, Rassoulian Barrett SL, Lara S, Cookson BT (2009) Biogenesis of bacterial membrane vesicles. Mol Microbiol 72(6):1395–1407. doi:10.1111/j.1365-2958.2009.06731.x PubMedGoogle Scholar
  39. 39.
    Namork E, Brandtzaeg P (2002) Fatal meningococcal septicaemia with “Blebbing” Meningococcus. Lancet 360(9347):1741. doi:10.1016/S0140-6736(02)11721-1 PubMedGoogle Scholar
  40. 40.
    Vidakovics ML, Jendholm J, Morgelin M, Mansson A, Larsson C, Cardell LO, Riesbeck K (2010) B cell activation by outer membrane vesicles—a novel virulence mechanism. PLoS Pathog 6(1):e1000724. doi:10.1371/journal.ppat.1000724 PubMedGoogle Scholar
  41. 41.
    Alvarez-Martinez CE, Christie PJ (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73(4):775–808. doi:10.1128/MMBR.00023-09 PubMedGoogle Scholar
  42. 42.
    Cornelis GR (2000) Type III secretion: a bacterial device for close combat with cells of their eukaryotic host. Philos Trans R Soc Lond B Biol Sci 355(1397):681–693. doi:10.1098/rstb.2000.0608 PubMedGoogle Scholar
  43. 43.
    Kadurugamuwa JL, Beveridge TJ (1998) Delivery of the non-membrane-permeative antibiotic gentamicin into mammalian cells by using Shigella flexneri membrane vesicles. Antimicrob Agents Chemother 42(6):1476–1483PubMedGoogle Scholar
  44. 44.
    Olofsson A, Vallstrom A, Petzold K, Tegtmeyer N, Schleucher J, Carlsson S, Haas R, Backert S, Wai SN, Grobner G, Arnqvist A (2010) Biochemical and functional characterization of Helicobacter pylori vesicles. Mol Microbiol 77(6):1539–1555. doi:10.1111/j.1365-2958.2010.07307.x PubMedGoogle Scholar
  45. 45.
    Hoy B, Lower M, Weydig C, Carra G, Tegtmeyer N, Geppert T, Schroder P, Sewald N, Backert S, Schneider G, Wessler S (2010) Helicobacter pylori HtrA is a new secreted virulence factor that cleaves E-cadherin to disrupt intercellular adhesion. EMBO Rep 11(10):798–804. doi:10.1038/embor.2010.114 PubMedGoogle Scholar
  46. 46.
    Deich RA, Hoyer LC (1982) Generation and release of DNA-binding vesicles by Haemophilus influenzae during induction and loss of competence. J Bacteriol 152(2):855–864PubMedGoogle Scholar
  47. 47.
    Dorward DW, Garon CF (1989) DNA-binding proteins in cells and membrane blebs of Neisseria gonorrhoeae. J Bacteriol 171(8):4196–4201PubMedGoogle Scholar
  48. 48.
    Dorward DW, Garon CF (1990) DNA is packaged within membrane-derived vesicles of Gram-negative but not Gram-positive bacteria. Appl Environ Microbiol 56(6):1960–1962PubMedGoogle Scholar
  49. 49.
    Renelli M, Matias V, Lo RY, Beveridge TJ (2004) DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. Microbiology 150(Pt 7):2161–2169. doi:10.1099/mic.0.26841-0 PubMedGoogle Scholar
  50. 50.
    Dorward DW, Garon CF, Judd RC (1989) Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae. J Bacteriol 171(5):2499–2505PubMedGoogle Scholar
  51. 51.
    Beveridge TJ, Makin SA, Kadurugamuwa JL, Li Z (1997) Interactions between biofilms and the environment. FEMS Microbiol Rev 20(3–4):291–303PubMedGoogle Scholar
  52. 52.
    Olczak T, Wojtowicz H, Ciuraszkiewicz J, Olczak M (2010) Species specificity, surface exposure, protein expression, immunogenicity, and participation in biofilm formation of Porphyromonas gingivalis HmuY. BMC Microbiol 10:134. doi:10.1186/1471-2180-10-134 PubMedGoogle Scholar
  53. 53.
    Kulp A, Kuehn MJ (2010) Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol 64:163–184. doi:10.1146/annurev.micro.091208.073413 PubMedGoogle Scholar
  54. 54.
    MacDonald KL, Beveridge TJ (2002) Bactericidal effect of gentamicin-induced membrane vesicles derived from Pseudomonas aeruginosa PAO1 on Gram-positive bacteria. Can J Microbiol 48(9):810–820PubMedGoogle Scholar
  55. 55.
    Bomberger JM, Maceachran DP, Coutermarsh BA, Ye S, O’Toole GA, Stanton BA (2009) Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog 5(4):e1000382. doi:10.1371/journal.ppat.1000382 PubMedGoogle Scholar
  56. 56.
    Parker H, Chitcholtan K, Hampton MB, Keenan JI (2010) Uptake of Helicobacter pylori outer membrane vesicles by gastric epithelial cells. Infect Immun 78(12):5054–5061PubMedGoogle Scholar
  57. 57.
    Pike LJ (2003) Lipid rafts: bringing order to chaos. J Lipid Res 44(4):655–667. doi:10.1194/jlr.R200021-JLR200 PubMedGoogle Scholar
  58. 58.
    Schaar V, De Vries SP, Vidakovics ML, Bootsma HJ, Larsson L, Hermans PW, Bjartell A, Morgelin M, Riesbeck K (2010) Multicomponent Moraxella catarrhalis outer membrane vesicles induce an inflammatory response and are internalized by human epithelial cells. Cell Microbiol. doi:10.1111/j.1462-5822.2010.01546.x
  59. 59.
    Slevogt H, Zabel S, Opitz B, Hocke A, Eitel J, N’Guessan PD, Lucka L, Riesbeck K, Zimmermann W, Zweigner J, Temmesfeld-Wollbrueck B, Suttorp N, Singer BB (2008) CEACAM1 inhibits toll-like receptor 2-triggered antibacterial responses of human pulmonary epithelial cells. Nat Immunol 9(11):1270–1278. doi:10.1038/ni.1661 PubMedGoogle Scholar
  60. 60.
    Fernandez-Moreira E, Helbig JH, Swanson MS (2006) Membrane vesicles shed by Legionella pneumophila inhibit fusion of phagosomes with lysosomes. Infect Immun 74(6):3285–3295. doi:10.1128/IAI.01382-05 PubMedGoogle Scholar
  61. 61.
    Bauman SJ, Kuehn MJ (2009) Pseudomonas aeruginosa vesicles associate with and are internalized by human lung epithelial cells. BMC Microbiol 9:26. doi:10.1186/1471-2180-9-26 PubMedGoogle Scholar
  62. 62.
    Bishop AL, Schild S, Patimalla B, Klein B, Camilli A (2010) Mucosal immunization with Vibrio cholerae outer membrane vesicles provides maternal protection mediated by antilipopolysaccharide antibodies that inhibit bacterial motility. Infect Immun 78(10):4402–4420. doi:10.1128/IAI.00398-10 PubMedGoogle Scholar
  63. 63.
    Kim YR, Kim BU, Kim SY, Kim CM, Na HS, Koh JT, Choy HE, Rhee JH, Lee SE (2010) Outer membrane vesicles of Vibrio vulnificu deliver cytolysin-hemolysin VvhA into epithelial cells to induce cytotoxicity. Biochem Biophys Res Commun 399(4):607–612. doi:10.1016/j.bbrc.2010.07.122 PubMedGoogle Scholar
  64. 64.
    Shoberg RJ, Thomas DD (1993) Specific adherence of Borrelia burgdorferi extracellular vesicles to human endothelial cells in culture. Infect Immun 61(9):3892–3900PubMedGoogle Scholar
  65. 65.
    Kaparakis M, Turnbull L, Carneiro L, Firth S, Coleman HA, Parkington HC, Le Bourhis L, Karrar A, Viala J, Mak J, Hutton ML, Davies JK, Crack PJ, Hertzog PJ, Philpott DJ, Girardin SE, Whitchurch CB, Ferrero RL (2010) Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells. Cell Microbiol 12(3):372–385. doi:10.1111/j.1462-5822.2009.01404.x PubMedGoogle Scholar
  66. 66.
    Kesty NC, Mason KM, Reedy M, Miller SE, Kuehn MJ (2004) Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. EMBO J 23(23):4538–4549. doi:10.1038/sj.emboj.7600471 PubMedGoogle Scholar
  67. 67.
    Furuta N, Takeuchi H, Amano A (2009) Entry of Porphyromonas gingivalis outer membrane vesicles into epithelial cells causes cellular functional impairment. Infect Immun 77(11):4761–4770. doi:10.1128/IAI.00841-09 PubMedGoogle Scholar
  68. 68.
    Hallstrom T, Riesbeck K (2010) Haemophilus influenzae and the complement system. Trends Microbiol 18(6):258–265. doi:S0966-842X(10)00045-4 PubMedGoogle Scholar
  69. 69.
    Singh B, Su YC, Riesbeck K (2010) Vitronectin in bacterial pathogenesis: a host protein used in complement escape and cellular invasion. Mol Microbiol 78(3):545–560. doi:10.1111/j.1365-2958.2010.07373.x PubMedGoogle Scholar
  70. 70.
    Blom AM, Hallstrom T, Riesbeck K (2009) Complement evasion strategies of pathogens-acquisition of inhibitors and beyond. Mol Immunol 46(14):2808–2817. doi:10.1016/j.molimm.2009.04.025 PubMedGoogle Scholar
  71. 71.
    Zipfel PF, Skerka C (2009) Complement regulators and inhibitory proteins. Nat Rev Immunol 9(10):729–740. doi:10.1038/nri2620 PubMedGoogle Scholar
  72. 72.
    Nordstrom T, Blom AM, Forsgren A, Riesbeck K (2004) The emerging pathogen Moraxella catarrhalis interacts with complement inhibitor C4b binding protein through ubiquitous surface proteins A1 and A2. J Immunol 173(7):4598–4606PubMedGoogle Scholar
  73. 73.
    Nordstrom T, Blom AM, Tan TT, Forsgren A, Riesbeck K (2005) Ionic binding of C3 to the human pathogen Moraxella catarrhalis is a unique mechanism for combating innate immunity. J Immunol 175(6):3628–3636PubMedGoogle Scholar
  74. 74.
    Bergman MA, Cummings LA, Barrett SL, Smith KD, Lara JC, Aderem A, Cookson BT (2005) CD4+ T cells and toll-like receptors recognize Salmonella antigens expressed in bacterial surface organelles. Infect Immun 73(3):1350–1356. doi:10.1128/IAI.73.3.1350-1356.2005 PubMedGoogle Scholar
  75. 75.
    Appelmelk BJ, Simoons-Smit I, Negrini R, Moran AP, Aspinall GO, Forte JG, De Vries T, Quan H, Verboom T, Maaskant JJ, Ghiara P, Kuipers EJ, Bloemena E, Tadema TM, Townsend RR, Tyagarajan K, Crothers JM Jr, Monteiro MA, Savio A, De Graaff J (1996) Potential role of molecular mimicry between Helicobacter pylori lipopolysaccharide and host Lewis blood group antigens in autoimmunity. Infect Immun 64(6):2031–2040PubMedGoogle Scholar
  76. 76.
    Murphy TF, Parameswaran GI (2009) Moraxella catarrhalis, a human respiratory tract pathogen. Clin Infect Dis 49(1):124–131. doi:10.1086/599375 PubMedGoogle Scholar
  77. 77.
    Palliyil S, Broadbent ID (2009) Novel immunotherapeutic approaches to the treatment of infections caused by Gram-negative bacteria. Curr Opin Pharmacol 9(5):566–570. doi:10.1016/j.coph.2009.07.007 PubMedGoogle Scholar
  78. 78.
    Simon J, Kotloff K (2010) New and candidate vaccines for gastrointestinal infections. Curr Opin Gastroenterol 26(1):12–16. doi:10.1097/MOG.0b013e328333f8ee PubMedGoogle Scholar
  79. 79.
    Kaufmann SH (2007) The contribution of immunology to the rational design of novel antibacterial vaccines. Nat Rev Microbiol 5(7):491–504. doi:10.1038/nrmicro1688 PubMedGoogle Scholar
  80. 80.
    Raghunath D (2008) Emerging antibiotic resistance in bacteria with special reference to India. J Biosci 33(4):593–603PubMedGoogle Scholar
  81. 81.
    Frasch CE, Peppler MS (1982) Protection against group B Neisseria meningitidis disease: preparation of soluble protein and protein-polysaccharide immunogens. Infect Immun 37(1):271–280PubMedGoogle Scholar
  82. 82.
    Karch H, Nixdorff K (1980) Comparison of quantitative and qualitative antibody-producing cell responses to lipopolysaccharide in cell walls of the bacterial form and in membranes of the protoplast L-form of Proteus mirabilis. Infect Immun 30(2):349–352PubMedGoogle Scholar
  83. 83.
    Karch H, Nixdorff K (1981) Antibody-producing cell responses to an isolated outer membrane protein and to complexes of this antigen with lipopolysaccharide or with vesicles of phospholipids from Proteus mirabilis. Infect Immun 31(3):862–867PubMedGoogle Scholar
  84. 84.
    Wang LY, Frasch CE (1984) Development of a Neisseria meningitidis group B serotype 2b protein vaccine and evaluation in a mouse model. Infect Immun 46(2):408–414PubMedGoogle Scholar
  85. 85.
    Zollinger WD, Mandrell RE, Altieri P, Berman S, Lowenthal J, Artenstein MS (1978) Safety and immunogenicity of a Neisseria meningitidis type 2 protein vaccine in animals and humans. J Infect Dis 137(6):728–739PubMedGoogle Scholar
  86. 86.
    Girard MP, Preziosi MP, Aguado MT, Kieny MP (2006) A review of vaccine research and development: meningococcal disease. Vaccine 24(22):4692–4700. doi:10.1016/j.vaccine.2006.03.034 PubMedGoogle Scholar
  87. 87.
    Sadarangani M, Pollard AJ (2010) Serogroup B meningococcal vaccines-an unfinished story. Lancet Infect Dis 10(2):112–124. doi:10.1016/S1473-3099(09)70324-X PubMedGoogle Scholar
  88. 88.
    Miller E, Salisbury D, Ramsay M (2001) Planning, registration, and implementation of an immunisation campaign against meningococcal serogroup C disease in the UK: a success story. Vaccine 20(Suppl 1):S58–S67PubMedGoogle Scholar
  89. 89.
    Ramsay ME, Andrews N, Kaczmarski EB, Miller E (2001) Efficacy of meningococcal serogroup C conjugate vaccine in teenagers and toddlers in England. Lancet 357(9251):195–196. doi:10.1016/S0140-6736(00)03594-7 PubMedGoogle Scholar
  90. 90.
    Pichichero ME (2005) Meningococcal conjugate vaccine in adolescents and children. Clin Pediatr (Phila) 44(6):479–489Google Scholar
  91. 91.
    Pichichero M, Casey J, Blatter M, Rothstein E, Ryall R, Bybel M, Gilmet G, Papa T (2005) Comparative trial of the safety and immunogenicity of quadrivalent (A, C, Y, W-135) meningococcal polysaccharide-diphtheria conjugate vaccine versus quadrivalent polysaccharide vaccine in two- to ten-year-old children. Pediatr Infect Dis J 24(1):57–62PubMedGoogle Scholar
  92. 92.
    Shepard CW, Ortega-Sanchez IR, Scott RD 2nd, Rosenstein NE (2005) Cost-effectiveness of conjugate meningococcal vaccination strategies in the United States. Pediatrics 115(5):1220–1232. doi:10.1542/peds.2004-2514 PubMedGoogle Scholar
  93. 93.
    Wyle FA, Artenstein MS, Brandt BL, Tramont EC, Kasper DL, Altieri PL, Berman SL, Lowenthal JP (1972) Immunologic response of man to group B meningococcal polysaccharide vaccines. J Infect Dis 126(5):514–521PubMedGoogle Scholar
  94. 94.
    Jennings HJ, Lugowski C (1981) Immunochemistry of groups A, B, and C meningococcal polysaccharide-tetanus toxoid conjugates. J Immunol 127(3):1011–1018PubMedGoogle Scholar
  95. 95.
    Finne J, Leinonen M, Makela PH (1983) Antigenic similarities between brain components and bacteria causing meningitis. Implications for vaccine development and pathogenesis. Lancet 2(8346):355–357PubMedGoogle Scholar
  96. 96.
    Bovre K, Holten E, Vik-Mo H, Brondbo A, Bratlid D, Bjark P, Moe PJ (1977) Neisseria meningitidis infections in northern Norway: an epidemic in 1974–1975 due mainly to group b organisms. J Infect Dis 135(4):669–672PubMedGoogle Scholar
  97. 97.
    Kelly C, Arnold R, Galloway Y, O’Hallahan J (2007) A prospective study of the effectiveness of the New Zealand meningococcal B vaccine. Am J Epidemiol 166(7):817–823. doi:10.1093/aje/kwm147 PubMedGoogle Scholar
  98. 98.
    Sierra GV, Campa HC, Varcacel NM, Garcia IL, Izquierdo PL, Sotolongo PF, Casanueva GV, Rico CO, Rodriguez CR, Terry MH (1991) Vaccine against group B Neisseria meningitidis: protection trial and mass vaccination results in cuba. NIPH Ann 14(2):195–207, discussion 208–110PubMedGoogle Scholar
  99. 99.
    Martin DR, Walker SJ, Baker MG, Lennon DR (1998) New Zealand epidemic of meningococcal disease identified by a strain with phenotype B:4:P1.4. J Infect Dis 177(2):497–500PubMedGoogle Scholar
  100. 100.
    Holst J, Martin D, Arnold R, Huergo CC, Oster P, O’Hallahan J, Rosenqvist E (2009) Properties and clinical performance of vaccines containing outer membrane vesicles from Neisseria meningitidis. Vaccine 27(Suppl 2):B3–B12. doi:10.1016/j.vaccine.2009.04.071 PubMedGoogle Scholar
  101. 101.
    van de Waterbeemd B, Streefland M, van der Ley P, Zomer B, van Dijken H, Martens D, Wijffels R, van der Pol L (2010) Improved OMV vaccine against Neisseria meningitidis using genetically engineered strains and a detergent-free purification process. Vaccine 28(30):4810–4816. doi:10.1016/j.vaccine.2010.04.082 PubMedGoogle Scholar
  102. 102.
    Saunders NB, Brandt BL, Warren RL, Hansen BD, Zollinger WD (1998) Immunological and molecular characterization of three variant subtype P1.14 strains of Neisseria meningitidis. Infect Immun 66(7):3218–3222PubMedGoogle Scholar
  103. 103.
    Scholten RJ, Kuipers B, Valkenburg HA, Dankert J, Zollinger WD, Poolman JT (1994) Lipo-oligosaccharide immunotyping of Neisseria meningitidis by a whole-cell ELISA with monoclonal antibodies. J Med Microbiol 41(4):236–243PubMedGoogle Scholar
  104. 104.
    Urwin R, Russell JE, Thompson EA, Holmes EC, Feavers IM, Maiden MC (2004) Distribution of surface protein variants among hyperinvasive meningococci: implications for vaccine design. Infect Immun 72(10):5955–5962. doi:10.1128/IAI.72.10.5955-5962.2004 PubMedGoogle Scholar
  105. 105.
    Tondella ML, Popovic T, Rosenstein NE, Lake DB, Carlone GM, Mayer LW, Perkins BA (2000) Distribution of Neisseria meningitidis serogroup B serosubtypes and serotypes circulating in the United States. The active bacterial core surveillance team. J Clin Microbiol 38(9):3323–3328PubMedGoogle Scholar
  106. 106.
    Findlow J, Borrow R, Snape MD, Dawson T, Holland A, John TM, Evans A, Telford KL, Ypma E, Toneatto D, Oster P, Miller E, Pollard AJ (2010) Multicenter, open-label, randomized phase II controlled trial of an investigational recombinant meningococcal serogroup B vaccine with and without outer membrane vesicles, administered in infancy. Clin Infect Dis 51(10):1127–1137. doi:10.1086/656741 PubMedGoogle Scholar
  107. 107.
    Giuliani MM, Adu-Bobie J, Comanducci M, Arico B, Savino S, Santini L, Brunelli B, Bambini S, Biolchi A, Capecchi B, Cartocci E, Ciucchi L, Di Marcello F, Ferlicca F, Galli B, Luzzi E, Masignani V, Serruto D, Veggi D, Contorni M, Morandi M, Bartalesi A, Cinotti V, Mannucci D, Titta F, Ovidi E, Welsch JA, Granoff D, Rappuoli R, Pizza M (2006) A universal vaccine for serogroup B meningococcus. Proc Natl Acad Sci USA 103(29):10834–10839. doi:10.1073/pnas.0603940103 PubMedGoogle Scholar
  108. 108.
    Keiser PB, Gibbs BT, Coster TS, Moran EE, Stoddard MB, Labrie JE 3rd, Schmiel DH, Pinto V, Chen P, Zollinger WD (2010) A phase 1 study of a group B meningococcal native outer membrane vesicle vaccine made from a strain with deleted lpxL2 and synX and stable expression of opcA. Vaccine 28(43):6970–6976. doi:10.1016/j.vaccine.2010.08.048 PubMedGoogle Scholar
  109. 109.
    Zollinger WD, Donets MA, Schmiel DH, Pinto VB, Labrie JE 3rd, Moran EE, Brandt BL, Ionin B, Marques R, Wu M, Chen P, Stoddard MB, Keiser PB (2010) Design and evaluation in mice of a broadly protective meningococcal group B native outer membrane vesicle vaccine. Vaccine 28(31):5057–5067PubMedGoogle Scholar
  110. 110.
    Klugman KP, Gotschlich EC, Blake MS (1989) Sequence of the structural gene (rmpM) for the class 4 outer membrane protein of Neisseria meningitidis, homology of the protein to gonococcal protein III and Escherichia coli OmpA, and construction of meningococcal strains that lack class 4 protein. Infect Immun 57(7):2066–2071PubMedGoogle Scholar
  111. 111.
    Lee SR, Kim SH, Jeong KJ, Kim KS, Kim YH, Kim SJ, Kim E, Kim JW, Chang KT (2009) Multi-immunogenic outer membrane vesicles derived from an msbB-deficient Salmonella enterica serovar Typhimurium mutant. J Microbiol Biotechnol 19(10):1271–1279PubMedGoogle Scholar
  112. 112.
    Roy N, Barman S, Ghosh A, Pal A, Chakraborty K, Das SS, Saha DR, Yamasaki S, Koley H (2010) Immunogenicity and protective efficacy of Vibrio cholerae outer membrane vesicles in rabbit model. FEMS Immunol Med Microbiol. doi:10.1111/j.1574-695X.2010.00692.x Google Scholar
  113. 113.
    Schild S, Nelson EJ, Bishop AL, Camilli A (2009) Characterization of Vibrio cholerae outer membrane vesicles as a candidate vaccine for cholera. Infect Immun 77(1):472–484. doi:10.1128/IAI.01139-08 PubMedGoogle Scholar
  114. 114.
    Schild S, Nelson EJ, Camilli A (2008) Immunization with Vibrio cholerae outer membrane vesicles induces protective immunity in mice. Infect Immun 76(10):4554–4563. doi:10.1128/IAI.00532-08 PubMedGoogle Scholar
  115. 115.
    Shang ES, Champion CI, Wu XY, Skare JT, Blanco DR, Miller JN, Lovett MA (2000) Comparison of protection in rabbits against host-adapted and cultivated Borrelia burgdorferi following infection-derived immunity or immunization with outer membrane vesicles or outer surface protein A. Infect Immun 68(7):4189–4199PubMedGoogle Scholar
  116. 116.
    Roberts R, Moreno G, Bottero D, Gaillard ME, Fingermann M, Graieb A, Rumbo M, Hozbor D (2008) Outer membrane vesicles as acellular vaccine against pertussis. Vaccine 26(36):4639–4646. doi:10.1016/j.vaccine.2008.07.004 PubMedGoogle Scholar
  117. 117.
    Blanco DR, Champion CI, Lewinski MA, Shang ES, Simkins SG, Miller JN, Lovett MA (1999) Immunization with Treponema pallidum outer membrane vesicles induces high-titer complement-dependent treponemicidal activity and aggregation of T. pallidum rare outer membrane proteins (TROMPS). J Immunol 163(5):2741–2746PubMedGoogle Scholar
  118. 118.
    Demuth DR, James D, Kowashi Y, Kato S (2003) Interaction of Actinobacillus actinomycetemcomitans outer membrane vesicles with HL60 cells does not require leukotoxin. Cell Microbiol 5(2):111–121PubMedGoogle Scholar
  119. 119.
    Kato S, Kowashi Y, Demuth DR (2002) Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. Microb Pathog 32(1):1–13. doi:10.1006/mpat.2001.0474 PubMedGoogle Scholar
  120. 120.
    Hanson MS, Cassatt DR, Guo BP, Patel NK, McCarthy MP, Dorward DW, Hook M (1998) Active and passive immunity against Borrelia burgdorferi decorin binding protein A (DbpA) protects against infection. Infect Immun 66(5):2143–2153PubMedGoogle Scholar
  121. 121.
    Lindmark B, Rompikuntal PK, Vaitkevicius K, Song T, Mizunoe Y, Uhlin BE, Guerry P, Wai SN (2009) Outer membrane vesicle-mediated release of cytolethal distending toxin (CDT) from Campylobacter jejuni. BMC Microbiol 9:220. doi:10.1186/1471-2180-9-220 PubMedGoogle Scholar
  122. 122.
    Wai SN, Lindmark B, Soderblom T, Takade A, Westermark M, Oscarsson J, Jass J, Richter-Dahlfors A, Mizunoe Y, Uhlin BE (2003) Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell 115(1):25–35PubMedGoogle Scholar
  123. 123.
    Fiocca R, Necchi V, Sommi P, Ricci V, Telford J, Cover TL, Solcia E (1999) Release of Helicobacter pylori vacuolating cytotoxin by both a specific secretion pathway and budding of outer membrane vesicles. Uptake of released toxin and vesicles by gastric epithelium. J Pathol 188(2):220–226. doi:10.1002/(SICI)1096-9896(199906)188:2<220::AID-PATH307>3.0.CO;2-C PubMedGoogle Scholar
  124. 124.
    Kahnt J, Aguiluz K, Koch J, Treuner-Lange A, Konovalova A, Huntley S, Hoppert M, Sogaard-Andersen L, Hedderich R (2010) Profiling the outer membrane proteome during growth and development of the social bacterium Myxococcus xanthus by selective biotinylation and analyses of outer membrane vesicles. J Proteome Res 9(10):5197–5208. doi:10.1021/pr1004983 PubMedGoogle Scholar
  125. 125.
    Ram S, Cullinane M, Blom AM, Gulati S, McQuillen DP, Boden R, Monks BG, O’Connell C, Elkins C, Pangburn MK, Dahlback B, Rice PA (2001) C4bp binding to porin mediates stable serum resistance of Neisseria gonorrhoeae. Int Immunopharmacol 1(3):423–432PubMedGoogle Scholar
  126. 126.
    Massari P, Gunawardana J, Liu X, Wetzler LM (2010) Meningococcal porin PorB prevents cellular apoptosis in a toll-like receptor 2- and NF-κB-independent manner. Infect Immun 78(3):994–1003. doi:10.1128/IAI.00156-09 PubMedGoogle Scholar
  127. 127.
    Massari P, Ho Y, Wetzler LM (2000) Neisseria meningitidis porin PorB interacts with mitochondria and protects cells from apoptosis. Proc Natl Acad Sci USA 97(16):9070–9075PubMedGoogle Scholar
  128. 128.
    Orihuela CJ, Mahdavi J, Thornton J, Mann B, Wooldridge KG, Abouseada N, Oldfield NJ, Self T, Ala’Aldeen DA, Tuomanen EI (2009) Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models. J Clin Invest 119(6):1638–1646. doi:10.1172/JCI36759 PubMedGoogle Scholar
  129. 129.
    Sharma A, Novak EK, Sojar HT, Swank RT, Kuramitsu HK, Genco RJ (2000) Porphyromonas gingivalis platelet aggregation activity: outer membrane vesicles are potent activators of murine platelets. Oral Microbiol Immunol 15(6):393–396PubMedGoogle Scholar
  130. 130.
    Mashburn-Warren L, Howe J, Garidel P, Richter W, Steiniger F, Roessle M, Brandenburg K, Whiteley M (2008) Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation. Mol Microbiol 69(2):491–502PubMedGoogle Scholar
  131. 131.
    Ciofu O, Beveridge TJ, Kadurugamuwa J, Walther-Rasmussen J, Hoiby N (2000) Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J Antimicrob Chemother 45(1):9–13PubMedGoogle Scholar
  132. 132.
    Ellis TN, Leiman SA, Kuehn MJ (2010) Naturally produced outer membrane vesicles from Pseudomonas aeruginosa elicit a potent innate immune response via combined sensing of both lipopolysaccharide and protein components. Infect Immun 78(9):3822–3831. doi:10.1128/IAI.00433-10 PubMedGoogle Scholar
  133. 133.
    Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437(7057):422–425. doi:10.1038/nature03925 PubMedGoogle Scholar
  134. 134.
    Kitagawa R, Takaya A, Ohya M, Mizunoe Y, Takade A, Yoshida S, Isogai E, Yamamoto T (2010) Biogenesis of Salmonella enterica serovar Typhimurium membrane vesicles provoked by induction of pagc. J Bacteriol 192(21):5645–5656. doi:10.1128/JB.00590-10 PubMedGoogle Scholar
  135. 135.
    Dutta S, Iida K, Takade A, Meno Y, Nair GB, Yoshida S (2004) Release of shiga toxin by membrane vesicles in Shigella dysenteriae serotype 1 strains and in vitro effects of antimicrobials on toxin production and release. Microbiol Immunol 48(12):965–969PubMedGoogle Scholar
  136. 136.
    Gorringe A, Halliwell D, Matheson M, Reddin K, Finney M, Hudson M (2005) The development of a meningococcal disease vaccine based on Neisseria lactamica outer membrane vesicles. Vaccine 23(17–18):2210–2213. doi:10.1016/j.vaccine.2005.01.055 PubMedGoogle Scholar
  137. 137.
    Gorringe AR (2005) Can Neisseria lactamica antigens provide an effective vaccine to prevent meningococcal disease? Expert Rev Vaccines 4(3):373–379. doi:10.1586/14760584.4.3.373 PubMedGoogle Scholar
  138. 138.
    Sardinas G, Yero D, Climent Y, Caballero E, Cobas K, Niebla O (2009) Neisseria meningitidis antigen NMB0088: sequence variability, protein topology and vaccine potential. J Med Microbiol 58(Pt 2):196–208. doi:10.1099/jmm.0.004820-0 PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Can M. Ünal
    • 1
  • Viveka Schaar
    • 1
  • Kristian Riesbeck
    • 1
  1. 1.Medical Microbiology, Department of Laboratory Medicine Malmö, Skåne University HospitalLund UniversityMalmöSweden

Personalised recommendations