Seminars in Immunopathology

, Volume 32, Issue 4, pp 323–341 | Cite as

When autophagy meets viruses: a double-edged sword with functions in defense and offense

Review

Abstract

Autophagy is a ubiquitous catabolic process that ensures organism’s well-being by sequestering a wide array of undesired intracellular constituents into double-membrane vesicles termed autophagosomes for lysosomal degradation. Interest in autophagy research has recently gained momentum as it is increasingly being recognized to play fundamental roles in diverse aspects of human pathophysiology including virus infection and its subsequent complications. This review discusses recent advances in autophagy studies with respect to virus infection and pathogenesis. A growing body of evidence suggests that the autophagy pathway and/or autophagy genes play pleiotropic functions in the host’s intrinsic, innate, and adaptive immune response against viruses. However, some viruses have evolved to encode virulence factors that evade or counteract the execution of autophagy. Furthermore, certain viruses are equipped to enhance autophagy or exploit the autophagy machinery for their replication and pathogenesis. A comprehensive understanding of the roles of autophagy pathway and autophagy genes during viral infection may enable the discovery of novel antiviral drug targets.

Keywords

Autophagy Antiviral host defense Viral infection Viral replication Viral pathogenesis 

References

  1. 1.
    Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8:931–937PubMedCrossRefGoogle Scholar
  2. 2.
    Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42PubMedCrossRefGoogle Scholar
  3. 3.
    Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, Guan JL, Oshiro N, Mizushima N (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20:1981–1991PubMedCrossRefGoogle Scholar
  4. 4.
    Yan Y, Flinn RJ, Wu H, Schnur RS, Backer JM (2009) hVps15, but not Ca2+/CaM, is required for the activity and regulation of hVps34 in mammalian cells. Biochem J 417:747–755PubMedCrossRefGoogle Scholar
  5. 5.
    Lindmo K, Stenmark H (2006) Regulation of membrane traffic by phosphoinositide 3-kinases. J Cell Sci 119:605–614PubMedCrossRefGoogle Scholar
  6. 6.
    Suzuki K, Kubota Y, Sekito T, Ohsumi Y (2007) Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12:209–218PubMedCrossRefGoogle Scholar
  7. 7.
    Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, Yoshimori T (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11:385–396PubMedCrossRefGoogle Scholar
  8. 8.
    Sun Q, Fan W, Chen K, Ding X, Chen S, Zhong Q (2008) Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 105:19211–19216PubMedCrossRefGoogle Scholar
  9. 9.
    Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH, Jung JU (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8:688–699PubMedCrossRefGoogle Scholar
  10. 10.
    Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, Liang C, Jung JU, Cheng JQ, Mule JJ, Pledger WJ, Wang HG (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9:1142–1151PubMedCrossRefGoogle Scholar
  11. 11.
    Cecconi F, Di Bartolomeo S, Nardacci R, Fuoco C, Corazzari M, Giunta L, Romagnoli A, Stoykova A, Chowdhury K, Fimia GM, Piacentini M (2007) A novel role for autophagy in neurodevelopment. Autophagy 3:506–508PubMedGoogle Scholar
  12. 12.
    Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676PubMedCrossRefGoogle Scholar
  13. 13.
    Noda T, Fujita N, Yoshimori T (2008) The Ubi brothers reunited. Autophagy 4:540–541PubMedGoogle Scholar
  14. 14.
    Nakatogawa H, Ichimura Y, Ohsumi Y (2007) Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130:165–178PubMedCrossRefGoogle Scholar
  15. 15.
    Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, Komatsu M, Otsu K, Tsujimoto Y, Shimizu S (2009) Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461:654–658PubMedCrossRefGoogle Scholar
  16. 16.
    Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118:7–18PubMedCrossRefGoogle Scholar
  17. 17.
    Jager S, Bucci C, Tanida I, Ueno T, Kominami E, Saftig P, Eskelinen EL (2004) Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci 117:4837–4848PubMedCrossRefGoogle Scholar
  18. 18.
    Nara A, Mizushima N, Yamamoto A, Kabeya Y, Ohsumi Y, Yoshimori T (2002) SKD1 AAA ATPase-dependent endosomal transport is involved in autolysosome formation. Cell Struct Funct 27:29–37PubMedCrossRefGoogle Scholar
  19. 19.
    Tamai K, Tanaka N, Nara A, Yamamoto A, Nakagawa I, Yoshimori T, Ueno Y, Shimosegawa T, Sugamura K (2007) Role of Hrs in maturation of autophagosomes in mammalian cells. Biochem Biophys Res Commun 360:721–727PubMedCrossRefGoogle Scholar
  20. 20.
    Surpin M, Zheng H, Morita MT, Saito C, Avila E, Blakeslee JJ, Bandyopadhyay A, Kovaleva V, Carter D, Murphy A, Tasaka M, Raikhel N (2003) The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways. Plant Cell 15:2885–2899PubMedCrossRefGoogle Scholar
  21. 21.
    Liang C, Lee JS, Inn KS, Gack MU, Li Q, Roberts EA, Vergne I, Deretic V, Feng P, Akazawa C, Jung JU (2008) Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol 10:776–787PubMedCrossRefGoogle Scholar
  22. 22.
    Levine B (2005) Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120:159–162PubMedGoogle Scholar
  23. 23.
    Virgin HW, Levine B (2009) Autophagy genes in immunity. Nat Immunol 10:461–470PubMedCrossRefGoogle Scholar
  24. 24.
    Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9:1004–1010PubMedCrossRefGoogle Scholar
  25. 25.
    Bieniasz PD (2004) Intrinsic immunity: a front-line defense against viral attack. Nat Immunol 5:1109–1115PubMedCrossRefGoogle Scholar
  26. 26.
    Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G, Herman B, Levine B (1998) Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol 72:8586–8596PubMedGoogle Scholar
  27. 27.
    Orvedahl A, Alexander D, Talloczy Z, Sun Q, Wei Y, Zhang W, Burns D, Leib DA, Levine B (2007) HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 1:23–35PubMedCrossRefGoogle Scholar
  28. 28.
    Djavaheri-Mergny M, Maiuri MC, Kroemer G (2010) Cross talk between apoptosis and autophagy by caspase-mediated cleavage of Beclin 1. Oncogene 29:1717–1719PubMedCrossRefGoogle Scholar
  29. 29.
    Talloczy Z, Jiang W, HWt V, Leib DA, Scheuner D, Kaufman RJ, Eskelinen EL, Levine B (2002) Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc Natl Acad Sci USA 99:190–195PubMedCrossRefGoogle Scholar
  30. 30.
    Talloczy Z, HWt V, Levine B (2006) PKR-dependent autophagic degradation of herpes simplex virus type 1. Autophagy 2:24–29PubMedGoogle Scholar
  31. 31.
    Markovitz NS, Baunoch D, Roizman B (1997) The range and distribution of murine central nervous system cells infected with the gamma(1)34.5- mutant of herpes simplex virus 1. J Virol 71:5560–5569PubMedGoogle Scholar
  32. 32.
    Mohr I, Sternberg D, Ward S, Leib D, Mulvey M, Gluzman Y (2001) A herpes simplex virus type 1 gamma34.5 second-site suppressor mutant that exhibits enhanced growth in cultured glioblastoma cells is severely attenuated in animals. J Virol 75:5189–5196PubMedCrossRefGoogle Scholar
  33. 33.
    Soosaar JL, Burch-Smith TM, Dinesh-Kumar SP (2005) Mechanisms of plant resistance to viruses. Nat Rev Microbiol 3:789–798PubMedCrossRefGoogle Scholar
  34. 34.
    Liu Y, Schiff M, Czymmek K, Talloczy Z, Levine B, Dinesh-Kumar SP (2005) Autophagy regulates programmed cell death during the plant innate immune response. Cell 121:567–577PubMedCrossRefGoogle Scholar
  35. 35.
    Shelly S, Lukinova N, Bambina S, Berman A, Cherry S (2009) Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunity 30:588–598PubMedCrossRefGoogle Scholar
  36. 36.
    Georgel P, Jiang Z, Kunz S, Janssen E, Mols J, Hoebe K, Bahram S, Oldstone MB, Beutler B (2007) Vesicular stomatitis virus glycoprotein G activates a specific antiviral Toll-like receptor 4-dependent pathway. Virology 362:304–313PubMedCrossRefGoogle Scholar
  37. 37.
    Xu Y, Jagannath C, Liu XD, Sharafkhaneh A, Kolodziejska KE, Eissa NT (2007) Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27:135–144PubMedCrossRefGoogle Scholar
  38. 38.
    Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A (2007) Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315:1398–1401PubMedCrossRefGoogle Scholar
  39. 39.
    Jounai N, Takeshita F, Kobiyama K, Sawano A, Miyawaki A, Xin KQ, Ishii KJ, Kawai T, Akira S, Suzuki K, Okuda K (2007) The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc Natl Acad Sci USA 104:14050–14055PubMedCrossRefGoogle Scholar
  40. 40.
    Tal MC, Sasai M, Lee HK, Yordy B, Shadel GS, Iwasaki A (2009) Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc Natl Acad Sci USA 106:2770–2775PubMedCrossRefGoogle Scholar
  41. 41.
    English L, Chemali M, Duron J, Rondeau C, Laplante A, Gingras D, Alexander D, Leib D, Norbury C, Lippe R, Desjardins M (2009) Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nat Immunol 10:480–487PubMedCrossRefGoogle Scholar
  42. 42.
    English L, Chemali M, Desjardins M (2009) Nuclear membrane-derived autophagy, a novel process that participates in the presentation of endogenous viral antigens during HSV-1 infection. Autophagy 5:1026–1029PubMedCrossRefGoogle Scholar
  43. 43.
    Li Y, Wang LX, Yang G, Hao F, Urba WJ, Hu HM (2008) Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res 68:6889–6895PubMedCrossRefGoogle Scholar
  44. 44.
    Dengjel J, Schoor O, Fischer R, Reich M, Kraus M, Muller M, Kreymborg K, Altenberend F, Brandenburg J, Kalbacher H, Brock R, Driessen C, Rammensee HG, Stevanovic S (2005) Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci USA 102:7922–7927PubMedCrossRefGoogle Scholar
  45. 45.
    Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, Tuschl T, Munz C (2005) Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307:593–596PubMedCrossRefGoogle Scholar
  46. 46.
    Munz C, Bickham KL, Subklewe M, Tsang ML, Chahroudi A, Kurilla MG, Zhang D, O'Donnell M, Steinman RM (2000) Human CD4(+) T lymphocytes consistently respond to the latent Epstein–Barr virus nuclear antigen EBNA1. J Exp Med 191:1649–1660PubMedCrossRefGoogle Scholar
  47. 47.
    Schmid D, Pypaert M, Munz C (2007) Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 26:79–92PubMedCrossRefGoogle Scholar
  48. 48.
    Mulvey M, Poppers J, Sternberg D, Mohr I (2003) Regulation of eIF2alpha phosphorylation by different functions that act during discrete phases in the herpes simplex virus type 1 life cycle. J Virol 77:10917–10928PubMedCrossRefGoogle Scholar
  49. 49.
    Mulvey M, Arias C, Mohr I (2007) Maintenance of endoplasmic reticulum (ER) homeostasis in herpes simplex virus type 1-infected cells through the association of a viral glycoprotein with PERK, a cellular ER stress sensor. J Virol 81:3377–3390PubMedCrossRefGoogle Scholar
  50. 50.
    Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274PubMedCrossRefGoogle Scholar
  51. 51.
    Yorimitsu T, Nair U, Yang Z, Klionsky DJ (2006) Endoplasmic reticulum stress triggers autophagy. J Biol Chem 281:30299–30304PubMedCrossRefGoogle Scholar
  52. 52.
    Bernales S, McDonald KL, Walter P (2006) Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4:e423PubMedCrossRefGoogle Scholar
  53. 53.
    Isler JA, Skalet AH, Alwine JC (2005) Human cytomegalovirus infection activates and regulates the unfolded protein response. J Virol 79:6890–6899PubMedCrossRefGoogle Scholar
  54. 54.
    Chaumorcel M, Souquere S, Pierron G, Codogno P, Esclatine A (2008) Human cytomegalovirus controls a new autophagy-dependent cellular antiviral defense mechanism. Autophagy 4:46–53PubMedGoogle Scholar
  55. 55.
    Kudchodkar SB, Yu Y, Maguire TG, Alwine JC (2004) Human cytomegalovirus infection induces rapamycin-insensitive phosphorylation of downstream effectors of mTOR kinase. J Virol 78:11030–11039PubMedCrossRefGoogle Scholar
  56. 56.
    Cuconati A, White E (2002) Viral homologs of BCL-2: role of apoptosis in the regulation of virus infection. Genes Dev 16:2465–2478PubMedCrossRefGoogle Scholar
  57. 57.
    Cheng EH, Nicholas J, Bellows DS, Hayward GS, Guo HG, Reitz MS, Hardwick JM (1997) A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc Natl Acad Sci USA 94:690–694PubMedCrossRefGoogle Scholar
  58. 58.
    Sarid R, Sato T, Bohenzky RA, Russo JJ, Chang Y (1997) Kaposi’s sarcoma-associated herpesvirus encodes a functional bcl-2 homologue. Nat Med 3:293–298PubMedCrossRefGoogle Scholar
  59. 59.
    Ojala PM, Tiainen M, Salven P, Veikkola T, Castanos-Velez E, Sarid R, Biberfeld P, Makela TP (1999) Kaposi’s sarcoma-associated herpesvirus-encoded v-cyclin triggers apoptosis in cells with high levels of cyclin-dependent kinase 6. Cancer Res 59:4984–4989PubMedGoogle Scholar
  60. 60.
    Wang GH, Garvey TL, Cohen JI (1999) The murine gammaherpesvirus-68 M11 protein inhibits Fas- and TNF-induced apoptosis. J Gen Virol 80(Pt 10):2737–2740PubMedGoogle Scholar
  61. 61.
    Loh J, Huang Q, Petros AM, Nettesheim D, van Dyk LF, Labrada L, Speck SH, Levine B, Olejniczak ET, HWt V (2005) A surface groove essential for viral Bcl-2 function during chronic infection in vivo. PLoS Pathog 1:e10PubMedCrossRefGoogle Scholar
  62. 62.
    Sinha S, Colbert CL, Becker N, Wei Y, Levine B (2008) Molecular basis of the regulation of Beclin 1-dependent autophagy by the gamma-herpesvirus 68 Bcl-2 homolog M11. Autophagy 4:989–997PubMedGoogle Scholar
  63. 63.
    Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939PubMedCrossRefGoogle Scholar
  64. 64.
    Ku B, Woo JS, Liang C, Lee KH, Hong HS, Xiaofei E, Kim KS, Jung JU, Oh BH (2008) Structural and biochemical bases for the inhibition of autophagy and apoptosis by viral BCL-2 of murine gamma-herpesvirus 68. PLoS Pathog 4:e25PubMedCrossRefGoogle Scholar
  65. 65.
    Wei Y, Pattingre S, Sinha S, Bassik M, Levine B (2008) JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30:678–688PubMedCrossRefGoogle Scholar
  66. 66.
    Xiaofei E, Hwang S, Oh S, Lee JS, Jeong JH, Gwack Y, Kowalik TF, Sun R, Jung JU, Liang C (2009) Viral Bcl-2-mediated evasion of autophagy aids chronic infection of gammaherpesvirus 68. PLoS Pathog 5:e1000609CrossRefGoogle Scholar
  67. 67.
    Roy DJ, Ebrahimi BC, Dutia BM, Nash AA, Stewart JP (2000) Murine gammaherpesvirus M11 gene product inhibits apoptosis and is expressed during virus persistence. Arch Virol 145:2411–2420PubMedCrossRefGoogle Scholar
  68. 68.
    Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752PubMedCrossRefGoogle Scholar
  69. 69.
    Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M, Kondo S, Dumont DJ, Gutterman JU, Walker CL, Slingerland JM, Mills GB (2007) The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 9:218–224PubMedCrossRefGoogle Scholar
  70. 70.
    Barton ES, Lutzke ML, Rochford R, HWt V (2005) Alpha/beta interferons regulate murine gammaherpesvirus latent gene expression and reactivation from latency. J Virol 79:14149–14160PubMedCrossRefGoogle Scholar
  71. 71.
    Steed AL, Barton ES, Tibbetts SA, Popkin DL, Lutzke ML, Rochford R, HWt V (2006) Gamma interferon blocks gammaherpesvirus reactivation from latency. J Virol 80:192–200PubMedCrossRefGoogle Scholar
  72. 72.
    Djerbi M, Screpanti V, Catrina AI, Bogen B, Biberfeld P, Grandien A (1999) The inhibitor of death receptor signaling, FLICE-inhibitory protein defines a new class of tumor progression factors. J Exp Med 190:1025–1032PubMedCrossRefGoogle Scholar
  73. 73.
    Garvey TL, Bertin J, Siegel RM, Wang GH, Lenardo MJ, Cohen JI (2002) Binding of FADD and caspase-8 to molluscum contagiosum virus MC159 v-FLIP is not sufficient for its antiapoptotic function. J Virol 76:697–706PubMedCrossRefGoogle Scholar
  74. 74.
    Lee JS, Li Q, Lee JY, Lee SH, Jeong JH, Lee HR, Chang H, Zhou FC, Gao SJ, Liang C, Jung JU (2009) FLIP-mediated autophagy regulation in cell death control. Nat Cell Biol 11:1355–1362PubMedCrossRefGoogle Scholar
  75. 75.
    Izzedine H, Wirden M, Launay-Vacher V (2005) Viral load and HIV-associated nephropathy. N Engl J Med 353:1072–1074PubMedCrossRefGoogle Scholar
  76. 76.
    Sin SH, Roy D, Wang L, Staudt MR, Fakhari FD, Patel DD, Henry D, Harrington WJ Jr, Damania BA, Dittmer DP (2007) Rapamycin is efficacious against primary effusion lymphoma (PEL) cell lines in vivo by inhibiting autocrine signaling. Blood 109:2165–2173PubMedCrossRefGoogle Scholar
  77. 77.
    Espert L, Denizot M, Grimaldi M, Robert-Hebmann V, Gay B, Varbanov M, Codogno P, Biard-Piechaczyk M (2006) Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J Clin Invest 116:2161–2172PubMedCrossRefGoogle Scholar
  78. 78.
    Denizot M, Varbanov M, Espert L, Robert-Hebmann V, Sagnier S, Garcia E, Curriu M, Mamoun R, Blanco J, Biard-Piechaczyk M (2008) HIV-1 gp41 fusogenic function triggers autophagy in uninfected cells. Autophagy 4:998–1008PubMedGoogle Scholar
  79. 79.
    Espert L, Varbanov M, Robert-Hebmann V, Sagnier S, Robbins I, Sanchez F, Lafont V, Biard-Piechaczyk M (2009) Differential role of autophagy in CD4 T cells and macrophages during X4 and R5 HIV-1 infection. PLoS ONE 4:e5787PubMedCrossRefGoogle Scholar
  80. 80.
    Zhou D, Spector SA (2008) Human immunodeficiency virus type-1 infection inhibits autophagy. AIDS 22:695–699PubMedCrossRefGoogle Scholar
  81. 81.
    Kyei GB, Dinkins C, Davis AS, Roberts E, Singh SB, Dong C, Wu L, Kominami E, Ueno T, Yamamoto A, Federico M, Panganiban A, Vergne I, Deretic V (2009) Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J Cell Biol 186:255–268PubMedCrossRefGoogle Scholar
  82. 82.
    Blanchet FP, Moris A, Nikolic DS, Lehmann M, Cardinaud S, Stalder R, Garcia E, Dinkins C, Leuba F, Wu L, Schwartz O, Deretic V, Piguet V (2010) Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity 32:654–669PubMedCrossRefGoogle Scholar
  83. 83.
    Winslow AR, Rubinsztein DC (2008) Autophagy in neurodegeneration and development. Biochim Biophys Acta 1782:723–729PubMedGoogle Scholar
  84. 84.
    Gannage M, Dormann D, Albrecht R, Dengjel J, Torossi T, Ramer PC, Lee M, Strowig T, Arrey F, Conenello G, Pypaert M, Andersen J, Garcia-Sastre A, Munz C (2009) Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell Host Microbe 6:367–380PubMedCrossRefGoogle Scholar
  85. 85.
    Chen BJ, Leser GP, Jackson D, Lamb RA (2008) The influenza virus M2 protein cytoplasmic tail interacts with the M1 protein and influences virus assembly at the site of virus budding. J Virol 82:10059–10070PubMedCrossRefGoogle Scholar
  86. 86.
    Zhou Z, Jiang X, Liu D, Fan Z, Hu X, Yan J, Wang M, Gao GF (2009) Autophagy is involved in influenza A virus replication. Autophagy 5:321–328PubMedCrossRefGoogle Scholar
  87. 87.
    Salonen A, Ahola T, Kaariainen L (2005) Viral RNA replication in association with cellular membranes. Curr Top Microbiol Immunol 285:139–173PubMedCrossRefGoogle Scholar
  88. 88.
    Jackson WT, Giddings TH Jr, Taylor MP, Mulinyawe S, Rabinovitch M, Kopito RR, Kirkegaard K (2005) Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol 3:e156PubMedCrossRefGoogle Scholar
  89. 89.
    Wong J, Zhang J, Si X, Gao G, Mao I, McManus BM, Luo H (2008) Autophagosome supports coxsackievirus B3 replication in host cells. J Virol 82:9143–9153PubMedCrossRefGoogle Scholar
  90. 90.
    Sir D, Chen WL, Choi J, Wakita T, Yen TS, Ou JH (2008) Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology 48:1054–1061PubMedCrossRefGoogle Scholar
  91. 91.
    Ait-Goughoulte M, Kanda T, Meyer K, Ryerse JS, Ray RB, Ray R (2008) Hepatitis C virus genotype 1a growth and induction of autophagy. J Virol 82:2241–2249PubMedCrossRefGoogle Scholar
  92. 92.
    Dreux M, Gastaminza P, Wieland SF, Chisari FV (2009) The autophagy machinery is required to initiate hepatitis C virus replication. Proc Natl Acad Sci USA 106:14046–14051PubMedCrossRefGoogle Scholar
  93. 93.
    Debatin KM, Fahrig-Faissner A, Enenkel-Stoodt S, Kreuz W, Benner A, Krammer PH (1994) High expression of APO-1 (CD95) on T lymphocytes from human immunodeficiency virus-1-infected children. Blood 83:3101–3103PubMedGoogle Scholar
  94. 94.
    Carter CA, Ehrlich LS (2008) Cell biology of HIV-1 infection of macrophages. Annu Rev Microbiol 62:425–443PubMedCrossRefGoogle Scholar
  95. 95.
    Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, Lieberman J, Elledge SJ (2008) Identification of host proteins required for HIV infection through a functional genomic screen. Science 319:921–926PubMedCrossRefGoogle Scholar
  96. 96.
    Lee DY, Sugden B (2008) The latent membrane protein 1 oncogene modifies B-cell physiology by regulating autophagy. Oncogene 27:2833–2842PubMedCrossRefGoogle Scholar
  97. 97.
    Lee DY, Sugden B (2008) The LMP1 oncogene of EBV activates PERK and the unfolded protein response to drive its own synthesis. Blood 111:2280–2289PubMedCrossRefGoogle Scholar
  98. 98.
    Takahashi MN, Jackson W, Laird DT, Culp TD, Grose C, Haynes JI 2nd, Benetti L (2009) Varicella-zoster virus infection induces autophagy in both cultured cells and human skin 83(11):5466–5476Google Scholar
  99. 99.
    Wen HJ, Yang Z, Zhou Y, Wood C (2010) Enhancement of autophagy during lytic replication by KSHV replication and transcription activator/RTA. J Virol 84(15):7448–7458PubMedCrossRefGoogle Scholar
  100. 100.
    Bird PI, Trapani JA, Villadangos JA (2009) Endolysosomal proteases and their inhibitors in immunity. Nat Rev Immunol 9:871–882PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Molecular Microbiology and Immunology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations