Seminars in Immunopathology

, Volume 32, Issue 4, pp 343–353 | Cite as

Autophagy and lipids: tightening the knot

  • Jose Antonio Rodriguez-Navarro
  • Ana Maria Cuervo


The degradation of intracellular components in lysosomes, also known as autophagy, participates in a broad range of cellular functions from cellular quality control to cellular remodeling or as mechanism of defense against cellular aggressors. In this review, we focus on the role of autophagy as an alternative source of cellular energy, particularly important when nutrients are scarce. Almost since the discovery of autophagy, it has been known that amino acids obtained through the breakdown of proteins in lysosomes are essential to maintaining the cellular energetic balance during starvation. However, it is only recently that the ability of autophagy to mobilize intracellular lipid stores as an additional source of energy has been described. Autophagy contributes thus to modulating the amount of cellular lipids and allows cells to adapt to lipogenic stimuli. Interestingly, this interplay between autophagy and lipid metabolism is bidirectional, as changes in the intracellular lipid content also contribute to modulating autophagic activity. In this review, we describe the recent findings on the contribution of autophagy to lipid metabolism in different tissues and the consequences that impairments in autophagy have on cellular physiology. In addition, we comment on the regulatory role that lipid molecules and their modifying enzymes play on different steps of the autophagic process.


Cholesterol Lipid droplets Lipid metabolism Lipolysis Lysosomes Vesicular fusion 



The authors thank Dr. Susmita Kaushik and Ms. Samantha J. Orenstein for critically reviewing this manuscript. Work in our laboratory is supported by National Institute of Health grants from National Institute on Aging (AG021904, AG031782), National Institute of Diabetes and Digestive and Kidney Diseases (DK041918), National Institute of Neurological Disorders and Stroke (NS038370), a Glenn Foundation Award, and a Hirsch/Weill-Caulier Career Scientist Award.


  1. 1.
    Mizushima N, Levine B, Cuervo A, Klionsky D (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075CrossRefPubMedGoogle Scholar
  2. 2.
    Cuervo AM (2008) Autophagy and aging: keeping that old broom working. Trends Genet 24:604–612CrossRefPubMedGoogle Scholar
  3. 3.
    He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93CrossRefPubMedGoogle Scholar
  4. 4.
    Mizushima N (2005) The pleiotropic role of autophagy: from protein metabolism to bactericide. Cell Death Differ 12:1535–1541CrossRefPubMedGoogle Scholar
  5. 5.
    Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M et al (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135CrossRefPubMedGoogle Scholar
  6. 6.
    Mizushima N, Ohsumi Y, Yoshimori T (2002) Autophagosome formation in mammalian cells. Cell Struct Funct 27:421–429CrossRefPubMedGoogle Scholar
  7. 7.
    Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell JH (2009) The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol 183:5909–5916CrossRefPubMedGoogle Scholar
  8. 8.
    Okamoto K, Kondo-Okamoto N, Ohsumi Y (2009) Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 17:87–97CrossRefPubMedGoogle Scholar
  9. 9.
    Noda NN, Kumeta H, Nakatogawa H, Satoo K, Adachi W, Ishii J et al (2008) Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13:1211–1218CrossRefPubMedGoogle Scholar
  10. 10.
    Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV et al (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539–545CrossRefPubMedGoogle Scholar
  11. 11.
    Geng J, Klionsky DJ (2010) Determining Atg protein stoichiometry at the phagophore assembly site by fluorescence microscopy. Autophagy 6:144–147CrossRefPubMedGoogle Scholar
  12. 12.
    Yang Z, Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335:1–32CrossRefPubMedGoogle Scholar
  13. 13.
    Noda NN, Ohsumi Y, Inagaki F (2009) ATG systems from the protein structural point of view. Chem Rev 109:1587–1598CrossRefPubMedGoogle Scholar
  14. 14.
    Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889CrossRefPubMedGoogle Scholar
  15. 15.
    Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884CrossRefPubMedGoogle Scholar
  16. 16.
    Mortimore GE, Lardeux BR, Adams CE (1988) Regulation of microautophagy and basal protein turnover in rat liver. Effects of short-term starvation. J Biol Chem 263:2506–2512PubMedGoogle Scholar
  17. 17.
    Sakai Y, Koller A, Rangell LK, Keller GA, Subramani S (1998) Peroxisome degradation by microautophagy in Pichia pastoris: identification of specific steps and morphological intermediates. J Cell Biol 141:625–636CrossRefPubMedGoogle Scholar
  18. 18.
    Cuervo AM (2010) Chaperone-mediated autophagy: selectivity pays off. Trends Endocrinol Metab 21:142–150CrossRefPubMedGoogle Scholar
  19. 19.
    Dice J (2007) Chaperone-mediated autophagy. Autophagy 3:295–299PubMedGoogle Scholar
  20. 20.
    Cuervo A, Dice J (1996) A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273:501–503CrossRefPubMedGoogle Scholar
  21. 21.
    Agarraberes F, Terlecky S, Dice J (1997) An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J Cell Biol 137:825–834CrossRefPubMedGoogle Scholar
  22. 22.
    Salvador N, Aguado C, Horst M, Knecht E (2000) Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state. J Biol Chem 275:27447–27456PubMedGoogle Scholar
  23. 23.
    Mortimore GE, Pösö AR (1987) Intracellular protein catabolism and its control during nutrient deprivation and supply. Ann Rev Nutr 7:539–564CrossRefGoogle Scholar
  24. 24.
    Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T et al (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036CrossRefPubMedGoogle Scholar
  25. 25.
    Walther TC, Farese RV Jr (2009) The life of lipid droplets. Biochim Biophys Acta 1791:459–466PubMedGoogle Scholar
  26. 26.
    Olofsson SO, Bostrom P, Andersson L, Rutberg M, Perman J, Boren J (2009) Lipid droplets as dynamic organelles connecting storage and efflux of lipids. Biochim Biophys Acta 1791:448–458PubMedGoogle Scholar
  27. 27.
    Koga H, Kaushik S, Cuervo AM (2010) Altered lipid content inhibits autophagic vesicular fusion. FASEB J 24:3052–3065Google Scholar
  28. 28.
    Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, de Vries R, et al (2010) Cargo recognition failure is responsible for inefficient autophagy in Huntington’s Disease. Nat Neurosci 13:567–576Google Scholar
  29. 29.
    Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S (2009) Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci USA 106:19860–19865PubMedGoogle Scholar
  30. 30.
    Singh R, Xiang Y, Wang Y, Baikati K, Cuervo AM, Luu YK et al (2009) Autophagy regulates adipose mass and differentiation in mice. J Clin Invest 119:3329–3339CrossRefPubMedGoogle Scholar
  31. 31.
    Shibata M, Yoshimura K, Tamura H, Ueno T, Nishimura T, Inoue T et al (2010) LC3, a microtubule-associated protein1A/B light chain3, is involved in cytoplasmic lipid droplet formation. Biochem Biophys Res Commun 393:274–279CrossRefPubMedGoogle Scholar
  32. 32.
    Nice DC, Sato TK, Stromhaug PE, Emr SD, Klionsky DJ (2002) Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy. J Biol Chem 277:30198–30207CrossRefPubMedGoogle Scholar
  33. 33.
    Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A et al (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182:685–701CrossRefPubMedGoogle Scholar
  34. 34.
    Gillooly DJ, Morrow IC, Lindsay M, Gould R, Bryant NJ, Gaullier JM et al (2000) Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J 19:4577–4588CrossRefPubMedGoogle Scholar
  35. 35.
    Obara K, Ohsumi Y (2008) Dynamics and function of PtdIns(3)P in autophagy. Autophagy 4:952–954PubMedGoogle Scholar
  36. 36.
    Obara K, Sekito T, Niimi K, Ohsumi Y (2008) The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J Biol Chem 283:23972–23980CrossRefPubMedGoogle Scholar
  37. 37.
    Obara K, Sekito T, Ohsumi Y (2006) Assortment of phosphatidylinositol 3-kinase complexes–Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae. Mol Biol Cell 17:1527–1539CrossRefPubMedGoogle Scholar
  38. 38.
    Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A (2010) Electron tomography reveals the endoplasmic reticulum as a membrane source for autophagosome formation. Autophagy 6:301–303CrossRefPubMedGoogle Scholar
  39. 39.
    Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11:1433–1437CrossRefPubMedGoogle Scholar
  40. 40.
    Seglen P, Gordon P (1982) 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated hepatocytes. Proc Nat Acad Sci USA 79:1889–1892CrossRefPubMedGoogle Scholar
  41. 41.
    Lindmo K, Stenmark H (2006) Regulation of membrane traffic by phosphoinositide 3-kinases. J Cell Sci 119:605–614CrossRefPubMedGoogle Scholar
  42. 42.
    Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P (2000) Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275:992–998CrossRefPubMedGoogle Scholar
  43. 43.
    Juhasz G, Hill JH, Yan Y, Sass M, Baehrecke EH, Backer JM et al (2008) The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J Cell Biol 181:655–666CrossRefPubMedGoogle Scholar
  44. 44.
    Simonsen A, Tooze SA (2009) Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. J Cell Biol 186:773–782CrossRefPubMedGoogle Scholar
  45. 45.
    Itakura E, Kishi C, Inoue K, Mizushima N (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19:5360–5372CrossRefPubMedGoogle Scholar
  46. 46.
    Pattingre S, Tassa A, Qu X, Garuti R, Huan Liang X, Mizushima N et al (2005) Bcl-2 Antiapoptotic Proteins Inhibit Beclin 1-Dependent Autophagy. Cell 122:927–939CrossRefPubMedGoogle Scholar
  47. 47.
    Miller S, Tavshanjian B, Oleksy A, Perisic O, Houseman BT, Shokat KM et al (2010) Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science 327:1638–1642CrossRefPubMedGoogle Scholar
  48. 48.
    Clague MJ, Lorenzo O (2005) The myotubularin family of lipid phosphatases. Traffic 6:1063–1069CrossRefPubMedGoogle Scholar
  49. 49.
    Lorenzo O, Urbe S, Clague MJ (2005) Analysis of phosphoinositide binding domain properties within the myotubularin-related protein MTMR3. J Cell Sci 118:2005–2012CrossRefPubMedGoogle Scholar
  50. 50.
    Vergne I, Roberts E, Elmaoued RA, Tosch V, Delgado MA, Proikas-Cezanne T et al (2009) Control of autophagy initiation by phosphoinositide 3-phosphatase jumpy. EMBO J 28:2244–2258CrossRefPubMedGoogle Scholar
  51. 51.
    Taguchi-Atarashi N, Hamasaki M, Matsunaga K, Omori H, Ktistakis NT, Yoshimori T et al (2010) Modulation of local PtdIns3P levels by the PI phosphatase MTMR3 regulates constitutive autophagy. Traffic 11:468–478CrossRefPubMedGoogle Scholar
  52. 52.
    Nair U, Cao Y, Xie Z, Klionsky DJ (2010) The roles of the lipid-binding motifs of Atg18 and Atg21 in the cytoplasm to vacuole targeting pathway and autophagy. J Biol Chem 285:11476–11488CrossRefPubMedGoogle Scholar
  53. 53.
    Stromhaug PE, Reggiori F, Guan J, Wang CW, Klionsky DJ (2004) Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol Biol Cell 15:3553–3566CrossRefPubMedGoogle Scholar
  54. 54.
    Proikas-Cezanne T, Waddell S, Gaugel A, Frickey T, Lupas A, Nordheim A (2004) WIPI-1alpha (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene 23:9314–9325CrossRefPubMedGoogle Scholar
  55. 55.
    Jeffries TR, Dove SK, Michell RH, Parker PJ (2004) PtdIns-specific MPR pathway association of a novel WD40 repeat protein, WIPI49. Mol Biol Cell 15:2652–2663CrossRefPubMedGoogle Scholar
  56. 56.
    Pankiv S, Alemu EA, Brech A, Bruun JA, Lamark T, Overvatn A, et al (2010) FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J Cell Biol 188:253–269Google Scholar
  57. 57.
    Ano Y, Hattori T, Oku M, Mukaiyama H, Baba M, Ohsumi Y et al (2005) A sorting nexin PpAtg24 regulates vacuolar membrane dynamics during pexophagy via binding to phosphatidylinositol-3-phosphate. Mol Biol Cell 16:446–457CrossRefPubMedGoogle Scholar
  58. 58.
    Clausen TH, Lamark T, Isakson P, Finley K, Larsen KB, Brech A, et al (2010) p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy. Autophagy 6:330–344Google Scholar
  59. 59.
    Simonsen A, Birkeland HC, Gillooly DJ, Mizushima N, Kuma A, Yoshimori T et al (2004) Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes. J Cell Sci 117:4239–4251CrossRefPubMedGoogle Scholar
  60. 60.
    Dove SK, Dong K, Kobayashi T, Williams FK, Michell RH (2009) Phosphatidylinositol 3, 5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function. Biochem J 419:1–13CrossRefPubMedGoogle Scholar
  61. 61.
    Jin N, Chow CY, Liu L, Zolov SN, Bronson R, Davisson M et al (2008) VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3, 5)P(2) in yeast and mouse. EMBO J 27:3221–3234CrossRefPubMedGoogle Scholar
  62. 62.
    Duex JE, Tang F, Weisman LS (2006) The Vac14p-Fig4p complex acts independently of Vac7p and couples PI3, 5P2 synthesis and turnover. J Cell Biol 172:693–704CrossRefPubMedGoogle Scholar
  63. 63.
    de Lartigue J, Polson H, Feldman M, Shokat K, Tooze SA, Urbe S et al (2009) PIKfyve regulation of endosome-linked pathways. Traffic 10:883–893CrossRefPubMedGoogle Scholar
  64. 64.
    Ferguson CJ, Lenk GM, Meisler MH (2009) Defective autophagy in neurons and astrocytes from mice deficient in PI(3, 5)P2. Hum Mol Genet 18:4868–4878CrossRefPubMedGoogle Scholar
  65. 65.
    Bi X, Liao G (2007) Autophagic-lysosomal dysfunction and neurodegeneration in Niemann-Pick Type C mice: lipid starvation or indigestion? Autophagy 3:646–648PubMedGoogle Scholar
  66. 66.
    Liao G, Yao Y, Liu J, Yu Z, Cheung S, Xie A et al (2007) Cholesterol accumulation is associated with lysosomal dysfunction and autophagic stress in Npc1 -/- mouse brain. Am J Pathol 171:962–975CrossRefPubMedGoogle Scholar
  67. 67.
    Pacheco CD, Kunkel R, Lieberman AP (2007) Autophagy in Niemann-Pick C disease is dependent upon Beclin-1 and responsive to lipid trafficking defects. Hum Mol Genet 16:1495–1503CrossRefPubMedGoogle Scholar
  68. 68.
    Cheng J, Ohsaki Y, Tauchi-Sato K, Fujita A, Fujimoto T (2006) Cholesterol depletion induces autophagy. Biochem Biophys Res Commun 351:246–252CrossRefPubMedGoogle Scholar
  69. 69.
    Kaushik S, Massey AC, Cuervo AM (2006) Lysosome membrane lipid microdomains: novel regulators of chaperone-mediated autophagy. EMBO J 25:3921–3933CrossRefPubMedGoogle Scholar
  70. 70.
    Cuervo AM, Mann L, Bonten E, d’Azzo A, Dice J (2003) Cathepsin A regulates chaperone-mediated autophagy through cleavage of the lysosomal receptor. EMBO J 22:12–19CrossRefGoogle Scholar
  71. 71.
    Kiffin R, Kaushik S, Zeng M, Bandyopadhyay U, Zhang C, Massey AC et al (2007) Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age. J Cell Sci 120:782–791CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jose Antonio Rodriguez-Navarro
    • 1
  • Ana Maria Cuervo
    • 1
    • 2
  1. 1.Department of Developmental and Molecular Biology and Institute for Aging StudiesAlbert Einstein College of MedicineNew YorkUSA
  2. 2.Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineNew YorkUSA

Personalised recommendations