Advertisement

Seminars in Immunopathology

, Volume 32, Issue 2, pp 127–136 | Cite as

Lymphoid tyrosine phosphatase and autoimmunity: human genetics rediscovers tyrosine phosphatases

  • Stephanie M. Stanford
  • Tomas M. Mustelin
  • Nunzio BottiniEmail author
Review

Abstract

A relatively large number of protein tyrosine phosphatases (PTPs) are known to regulate signaling through the T cell receptor (TCR). Recent human genetics studies have shown that several of these PTPs are encoded by major autoimmunity genes. Here, we will focus on the lymphoid tyrosine phosphatase (LYP), a critical negative modulator of TCR signaling encoded by the PTPN22 gene. The functional analysis of autoimmune-associated PTPN22 genetic variants suggests that genetic variability of TCR signal transduction contributes to the pathogenesis of autoimmunity in humans.

Keywords

PTPN22 LYP Pep Csk Lck TCR signaling Tyrosine phosphatase Autoimmunity 

Notes

Acknowledgements

This work was supported by NIH grant R01AI070544 to N.B. This is publication #1257 from the La Jolla Institute for Allergy and Immunology.

References

  1. 1.
    Mustelin T, Tasken K (2003) Positive and negative regulation of T-cell activation through kinases and phosphatases. Biochem J 371(Pt 1):15–27PubMedCrossRefGoogle Scholar
  2. 2.
    Alonso A, Sasin J, Bottini N et al (2004) Protein tyrosine phosphatases in the human genome. Cell 117(6):699–711PubMedCrossRefGoogle Scholar
  3. 3.
    Mustelin T, Alonso A, Bottini N et al (2004) Protein tyrosine phosphatases in T cell physiology. Mol Immunol 41(6–7):687–700PubMedCrossRefGoogle Scholar
  4. 4.
    Kozlowski M, Mlinaric-Rascan I, Feng GS et al (1993) Expression and catalytic activity of the tyrosine phosphatase PTP1C is severely impaired in motheaten and viable motheaten mice. J Exp Med 178(6):2157–2163PubMedCrossRefGoogle Scholar
  5. 5.
    Tsui FW, Tsui HW (1994) Molecular basis of the motheaten phenotype. Immunol Rev 138:185–206PubMedCrossRefGoogle Scholar
  6. 6.
    Koretzky GA, Picus J, Schultz T, Weiss A (1991) Tyrosine phosphatase CD45 is required for T-cell antigen receptor and CD2-mediated activation of a protein tyrosine kinase and interleukin 2 production. Proc Natl Acad Sci USA 88(6):2037–2041PubMedCrossRefGoogle Scholar
  7. 7.
    Majeti R, Xu Z, Parslow TG et al (2000) An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity. Cell 103(7):1059–1070PubMedCrossRefGoogle Scholar
  8. 8.
    Bottini N, Musumeci L, Alonso A et al (2004) A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 36(4):337–338PubMedCrossRefGoogle Scholar
  9. 9.
    The Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14, 000 cases of seven common diseases and 3, 000 shared controls. Nature 447(7145):661–678CrossRefGoogle Scholar
  10. 10.
    Todd JA, Walker NM, Cooper JD et al (2007) Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 39(7):857–864PubMedCrossRefGoogle Scholar
  11. 11.
    Hennig BJ, Fry AE, Hirai K et al (2008) PTPRC (CD45) variation and disease association studied using single nucleotide polymorphism tagging. Tissue antigens 71(5):458–463PubMedCrossRefGoogle Scholar
  12. 12.
    Julia A, Ballina J, Canete JD et al (2008) Genome-wide association study of rheumatoid arthritis in the Spanish population: KLF12 as a risk locus for rheumatoid arthritis susceptibility. Arthritis Rheum 58(8):2275–2286PubMedCrossRefGoogle Scholar
  13. 13.
    Concannon P, Onengut-Gumuscu S, Todd JA et al (2008) A human type 1 diabetes susceptibility locus maps to chromosome 21q22.3. Diabetes 57(10):2858–2861PubMedCrossRefGoogle Scholar
  14. 14.
    Raychaudhuri S, Thomson BP, Remmers EF et al (2009) Genetic variants at CD28, PRDM1 and CD2/CD58 are associated with rheumatoid arthritis risk. Nat Genet 41(12):1313–1318PubMedCrossRefGoogle Scholar
  15. 15.
    Carpino N, Turner S, Mekala D et al (2004) Regulation of ZAP-70 activation and TCR signaling by two related proteins, Sts-1 and Sts-2. Immunity 20(1):37–46PubMedCrossRefGoogle Scholar
  16. 16.
    Irie-Sasaki J, Sasaki T, Penninger JM (2003) CD45 regulated signaling pathways. Curr Top Med Chem 3(7):783–796PubMedCrossRefGoogle Scholar
  17. 17.
    Hermiston ML, Xu Z, Weiss A (2003) CD45: a critical regulator of signaling thresholds in immune cells. Annu Rev Immunol 21:107–137PubMedCrossRefGoogle Scholar
  18. 18.
    Andersen JN, Jansen PG, Echwald SM et al (2004) A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage. Faseb J 18(1):8–30PubMedCrossRefGoogle Scholar
  19. 19.
    Matthews RJ, Bowne DB, Flores E, Thomas ML (1992) Characterization of hematopoietic intracellular protein tyrosine phosphatases: description of a phosphatase containing an SH2 domain and another enriched in proline-, glutamic acid-, serine-, and threonine-rich sequences. Mol Cell Biol 12(5):2396–2405PubMedGoogle Scholar
  20. 20.
    Cohen S, Dadi H, Shaoul E, Sharfe N, Roifman CM (1999) Cloning and characterization of a lymphoid-specific, inducible human protein tyrosine phosphatase, Lyp. Blood 93(6):2013–2024PubMedGoogle Scholar
  21. 21.
    Cloutier JF, Veillette A (1996) Association of inhibitory tyrosine protein kinase p50csk with protein tyrosine phosphatase PEP in T cells and other hemopoietic cells. Embo J 15(18):4909–4918PubMedGoogle Scholar
  22. 22.
    Begovich AB, Carlton VE, Honigberg LA et al (2004) A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 75(2):330–337PubMedCrossRefGoogle Scholar
  23. 23.
    Vang T, Congia M, Macis MD et al (2005) Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet 37(12):1317–1319PubMedCrossRefGoogle Scholar
  24. 24.
    Hill RJ, Zozulya S, Lu YL et al (2002) The lymphoid protein tyrosine phosphatase Lyp interacts with the adaptor molecule Grb2 and functions as a negative regulator of T-cell activation. Exp Hematol 30(3):237–244PubMedCrossRefGoogle Scholar
  25. 25.
    Cloutier JF, Veillette A (1999) Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. J Exp Med 189(1):111–121PubMedCrossRefGoogle Scholar
  26. 26.
    Gjorloff-Wingren A, Saxena M, Williams S, Hammi D, Mustelin T (1999) Characterization of TCR-induced receptor-proximal signaling events negatively regulated by the protein tyrosine phosphatase PEP. Eur J Immunol 29(12):3845–3854PubMedCrossRefGoogle Scholar
  27. 27.
    Wu J, Katrekar A, Honigberg LA et al (2006) Identification of substrates of human protein-tyrosine phosphatase PTPN22. J Biol Chem 281(16):11002–11010PubMedCrossRefGoogle Scholar
  28. 28.
    Gregorieff A, Cloutier JF, Veillette A (1998) Sequence requirements for association of protein-tyrosine phosphatase PEP with the Src homology 3 domain of inhibitory tyrosine protein kinase p50(csk). J Biol Chem 273(21):13217–13222PubMedCrossRefGoogle Scholar
  29. 29.
    Ghose R, Shekhtman A, Goger MJ, Ji H, Cowburn D (2001) A novel, specific interaction involving the Csk SH3 domain and its natural ligand. Nat Struct Biol 8(11):998–1004PubMedCrossRefGoogle Scholar
  30. 30.
    Davidson D, Bakinowski M, Thomas ML, Horejsi V, Veillette A (2003) Phosphorylation-dependent regulation of T-cell activation by PAG/Cbp, a lipid raft-associated transmembrane adaptor. Mol Cell Biol 23(6):2017–2028PubMedCrossRefGoogle Scholar
  31. 31.
    Yu X, Sun JP, He Y et al (2007) Structure, inhibitor, and regulatory mechanism of Lyp, a lymphoid-specific tyrosine phosphatase implicated in autoimmune diseases. Proc Natl Acad Sci USA 104(50):19767–19772PubMedCrossRefGoogle Scholar
  32. 32.
    Liu Y, Stanford SM, Jog SP et al (2009) Regulation of lymphoid tyrosine phosphatase activity: inhibition of the catalytic domain by the proximal interdomain. Biochemistry 48(31):7525–7532PubMedCrossRefGoogle Scholar
  33. 33.
    Tsai SJ, Sen U, Zhao L et al (2009) Crystal structure of the human lymphoid tyrosine phosphatase catalytic domain: insights into redox regulation. Biochemistry 48(22):4838–4845PubMedCrossRefGoogle Scholar
  34. 34.
    Hasegawa K, Martin F, Huang G et al (2004) PEST domain-enriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Science (New York, NY) 303(5658):685–689Google Scholar
  35. 35.
    Zikherman J, Hermiston M, Steiner D et al (2009) PTPN22 deficiency cooperates with the CD45 E613R allele to break tolerance on a non-autoimmune background. J Immunol 182(7):4093–4106PubMedCrossRefGoogle Scholar
  36. 36.
    Rieck M, Arechiga A, Onengut-Gumuscu S et al (2007) Genetic variation in PTPN22 corresponds to altered function of T and B lymphocytes. J Immunol 179(7):4704–4710PubMedGoogle Scholar
  37. 37.
    Wu C, Orozco C, Boyer J et al (2009) BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 10(11):R130PubMedCrossRefGoogle Scholar
  38. 38.
    Kyogoku C, Langefeld CD, Ortmann WA et al (2004) Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am J Hum Genet 75(3):504–507PubMedCrossRefGoogle Scholar
  39. 39.
    Smyth D, Cooper JD, Collins JE et al (2004) Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes 53(11):3020–3023PubMedCrossRefGoogle Scholar
  40. 40.
    Orozco G, Sanchez E, Gonzalez-Gay MA et al (2005) Association of a functional single-nucleotide polymorphism of PTPN22, encoding lymphoid protein phosphatase, with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Rheum 52(1):219–224PubMedCrossRefGoogle Scholar
  41. 41.
    Plenge RM, Padyukov L, Remmers EF et al (2005) Replication of putative candidate-gene associations with rheumatoid arthritis in >4, 000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am J Hum Genet 77(6):1044–1060PubMedCrossRefGoogle Scholar
  42. 42.
    Skorka A, Bednarczuk T, Bar-Andziak E, Nauman J, Ploski R (2005) Lymphoid tyrosine phosphatase (PTPN22/LYP) variant and Graves' disease in a Polish population: association and gene dose-dependent correlation with age of onset. Clin Endocrinol 62(6):679–682CrossRefGoogle Scholar
  43. 43.
    Heward JM, Brand OJ, Barrett JC et al (2007) Association of PTPN22 haplotypes with Graves' disease. J Clin Endocrinol Metab 92(2):685–690PubMedCrossRefGoogle Scholar
  44. 44.
    Velaga MR, Wilson V, Jennings CE et al (2004) The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves' disease. J Clin Endocrinol Metab 89(11):5862–5865PubMedCrossRefGoogle Scholar
  45. 45.
    Skinningsrud B, Husebye ES, Gervin K et al (2008) Mutation screening of PTPN22: association of the 1858T-allele with Addison's disease. Eur J Hum Genet 16(8):977–982PubMedCrossRefGoogle Scholar
  46. 46.
    Canton I, Akhtar S, Gavalas NG et al (2005) A single-nucleotide polymorphism in the gene encoding lymphoid protein tyrosine phosphatase (PTPN22) confers susceptibility to generalised vitiligo. Genes Immun 6(7):584–587PubMedCrossRefGoogle Scholar
  47. 47.
    LaBerge GS, Bennett DC, Fain PR, Spritz RA (2008) PTPN22 is genetically associated with risk of generalized vitiligo, but CTLA4 is not. J Invest Dermatol 128(7):1757–1762PubMedCrossRefGoogle Scholar
  48. 48.
    Vandiedonck C, Capdevielle C, Giraud M et al (2006) Association of the PTPN22*R620W polymorphism with autoimmune myasthenia gravis. Ann Neurol 59(2):404–407PubMedCrossRefGoogle Scholar
  49. 49.
    Greve B, Hoffmann P, Illes Z et al (2009) The autoimmunity-related polymorphism PTPN22 1858C/T is associated with anti-titin antibody-positive myasthenia gravis. Hum Immunol 70(7):540–542PubMedCrossRefGoogle Scholar
  50. 50.
    Chuang WY, Strobel P, Belharazem D et al (2009) The PTPN22(gain-of-function)+1858T(+) genotypes correlate with low IL-2 expression in thymomas and predispose to myasthenia gravis. Genes Immun 10(8):667–672PubMedCrossRefGoogle Scholar
  51. 51.
    Gourh P, Tan FK, Assassi S et al (2006) Association of the PTPN22 R620W polymorphism with anti-topoisomerase I- and anticentromere antibody-positive systemic sclerosis. Arthritis Rheum 54(12):3945–3953PubMedCrossRefGoogle Scholar
  52. 52.
    Bottini N, Vang T, Cucca F, Mustelin T (2006) Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Semin Immunol 18(4):207–213PubMedCrossRefGoogle Scholar
  53. 53.
    Gregersen PK, Lee HS, Batliwalla F, Begovich AB (2006) PTPN22: setting thresholds for autoimmunity. Semin Immunol 18(4):214–223PubMedCrossRefGoogle Scholar
  54. 54.
    Kaufman KM, Kelly JA, Herring BJ et al (2006) Evaluation of the genetic association of the PTPN22 R620W polymorphism in familial and sporadic systemic lupus erythematosus. Arthritis Rheum 54(8):2533–2540PubMedCrossRefGoogle Scholar
  55. 55.
    Chelala C, Duchatelet S, Joffret ML et al (2007) PTPN22 R620W functional variant in type 1 diabetes and autoimmunity related traits. Diabetes 56(2):522–526PubMedCrossRefGoogle Scholar
  56. 56.
    Ladner MB, Bottini N, Valdes AM, Noble JA (2005) Association of the single nucleotide polymorphism C1858T of the PTPN22 gene with type 1 diabetes. Hum Immunol 66(1):60–64PubMedCrossRefGoogle Scholar
  57. 57.
    Zheng W, She JX (2005) Genetic association between a lymphoid tyrosine phosphatase (PTPN22) and type 1 diabetes. Diabetes 54(3):906–908PubMedCrossRefGoogle Scholar
  58. 58.
    Saccucci P, Del Duca E, Rapini N et al (2008) Association between PTPN22 C1858T and type 1 diabetes: a replication in continental Italy. Tissue antigens 71(3):234–237PubMedCrossRefGoogle Scholar
  59. 59.
    Kahles H, Ramos-Lopez E, Lange B et al (2005) Sex-specific association of PTPN22 1858T with type 1 diabetes but not with Hashimoto's thyroiditis or Addison's disease in the German population. Eur J Endocrinol 153(6):895–899PubMedCrossRefGoogle Scholar
  60. 60.
    Santiago JL, Martinez A, de la Calle H et al (2007) Susceptibility to type 1 diabetes conferred by the PTPN22 C1858T polymorphism in the Spanish population. BMC Med Genet 8:54PubMedCrossRefGoogle Scholar
  61. 61.
    Douroudis K, Prans E, Haller K et al (2008) Protein tyrosine phosphatase non-receptor type 22 gene variants at position 1858 are associated with type 1 and type 2 diabetes in Estonian population. Tissue antigens 72(5):425–430PubMedCrossRefGoogle Scholar
  62. 62.
    Fedetz M, Matesanz F, Caro-Maldonado A et al (2006) The 1858T PTPN22 gene variant contributes to a genetic risk of type 1 diabetes in a Ukrainian population. Tissue antigens 67(5):430–433PubMedCrossRefGoogle Scholar
  63. 63.
    Mori M, Yamada R, Kobayashi K, Kawaida R, Yamamoto K (2005) Ethnic differences in allele frequency of autoimmune-disease-associated SNPs. J Hum Genet 50(5):264–266PubMedCrossRefGoogle Scholar
  64. 64.
    Ikegami H, Kawabata Y, Noso S, Fujisawa T, Ogihara T (2007) Genetics of type 1 diabetes in Asian and Caucasian populations. Diabetes Res Clin Pract 77(Suppl 1):S116–S121PubMedCrossRefGoogle Scholar
  65. 65.
    Zhang ZH, Chen F, Zhang XL et al (2008) PTPN22 allele polymorphisms in 15 Chinese populations. Int J Immunogenet 35(6):433–437PubMedCrossRefGoogle Scholar
  66. 66.
    Lee HS, Korman BD, Le JM et al (2009) Genetic risk factors for rheumatoid arthritis differ in Caucasian and Korean populations. Arthritis Rheum 60(2):364–371PubMedCrossRefGoogle Scholar
  67. 67.
    McPartland JM, Norris RW, Kilpatrick CW (2007) Tempo and mode in the endocannaboinoid system. J Mol Evol 65(3):267–276PubMedCrossRefGoogle Scholar
  68. 68.
    Chapman SJ, Khor CC, Vannberg FO et al (2006) PTPN22 and invasive bacterial disease. Nat Genet 38(5):499–500PubMedCrossRefGoogle Scholar
  69. 69.
    Azarian M, Busson M, Rocha V et al (2008) The PTPN22 R620W polymorphism is associated with severe bacterial infections after human leukocyte antigen geno-identical haematopoietic stem-cell transplantations. Transplantation 85(12):1859–1862PubMedCrossRefGoogle Scholar
  70. 70.
    Gomez LM, Anaya JM, Martin J (2005) Genetic influence of PTPN22 R620W polymorphism in tuberculosis. Hum Immunol 66(12):1242–1247PubMedCrossRefGoogle Scholar
  71. 71.
    Lamsyah H, Rueda B, Baassi L et al (2009) Association of PTPN22 gene functional variants with development of pulmonary tuberculosis in Moroccan population. Tissue antigens 74(3):228–232PubMedCrossRefGoogle Scholar
  72. 72.
    Criswell LA, Pfeiffer KA, Lum RF et al (2005) Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620 W allele associates with multiple autoimmune phenotypes. Am J Hum Genet 76(4):561–571PubMedCrossRefGoogle Scholar
  73. 73.
    Rueda B, Nunez C, Orozco G et al (2005) C1858T functional variant of PTPN22 gene is not associated with celiac disease genetic predisposition. Hum Immunol 66(7):848–852PubMedCrossRefGoogle Scholar
  74. 74.
    Zhernakova A, Eerligh P, Wijmenga C et al (2005) Differential association of the PTPN22 coding variant with autoimmune diseases in a Dutch population. Genes Immun 6(6):459–461PubMedCrossRefGoogle Scholar
  75. 75.
    Lee YH, Rho YH, Choi SJ et al (2007) The PTPN22 C1858T functional polymorphism and autoimmune diseases—a meta-analysis. Rheumatology (Oxford, England) 46(1):49–56CrossRefGoogle Scholar
  76. 76.
    Smyth DJ, Plagnol V, Walker NM et al (2008) Shared and distinct genetic variants in type 1 diabetes and celiac disease. N Engl J Med 359(26):2767–2777PubMedCrossRefGoogle Scholar
  77. 77.
    van Oene M, Wintle RF, Liu X et al (2005) Association of the lymphoid tyrosine phosphatase R620W variant with rheumatoid arthritis, but not Crohn's disease, in Canadian populations. Arthritis Rheum 52(7):1993–1998PubMedCrossRefGoogle Scholar
  78. 78.
    Prescott NJ, Fisher SA, Onnie C et al (2005) A general autoimmunity gene (PTPN22) is not associated with inflammatory bowel disease in a British population. Tissue antigens 66(4):318–320PubMedCrossRefGoogle Scholar
  79. 79.
    Barrett JC, Hansoul S, Nicolae DL et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet 40(8):955–962PubMedCrossRefGoogle Scholar
  80. 80.
    Baranathan V, Stanford MR, Vaughan RW et al (2007) The association of the PTPN22 620W polymorphism with Behcet's disease. Ann Rheum Dis 66(11):1531–1533PubMedCrossRefGoogle Scholar
  81. 81.
    Huffmeier U, Reis A, Steffens M et al (2006) Male restricted genetic association of variant R620W in PTPN22 with psoriatic arthritis. J Invest Dermatol 126(4):932–935PubMedCrossRefGoogle Scholar
  82. 82.
    Butt C, Peddle L, Greenwood C et al (2006) Association of functional variants of PTPN22 and tp53 in psoriatic arthritis: a case-control study. Arthritis Res Ther 8(1):R27PubMedCrossRefGoogle Scholar
  83. 83.
    Huffmeier U, Steffens M, Burkhardt H et al (2006) Evidence for susceptibility determinant(s) to psoriasis vulgaris in or near PTPN22 in German patients. J Med Genet 43(6):517–522PubMedCrossRefGoogle Scholar
  84. 84.
    Smith RL, Warren RB, Eyre S et al (2008) Polymorphisms in the PTPN22 region are associated with psoriasis of early onset. Br J Dermatol 158(5):962–968PubMedCrossRefGoogle Scholar
  85. 85.
    McGonagle D, Aziz A, Dickie LJ, McDermott MF (2009) An integrated classification of pediatric inflammatory diseases, based on the concepts of autoinflammation and the immunological disease continuum. Pediatr Res 65(5 Pt 2):38R–45RPubMedCrossRefGoogle Scholar
  86. 86.
    Kallberg H, Padyukov L, Plenge RM et al (2007) Gene-gene and gene-environment interactions involving HLA-DRB1, PTPN22, and smoking in two subsets of rheumatoid arthritis. Am J Hum Genet 80(5):867–875PubMedCrossRefGoogle Scholar
  87. 87.
    Onengut-Gumuscu S, Ewens KG, Spielman RS, Concannon P (2004) A functional polymorphism (1858C/T) in the PTPN22 gene is linked and associated with type I diabetes in multiplex families. Genes Immun 5(8):678–680PubMedCrossRefGoogle Scholar
  88. 88.
    Carlton VE, Hu X, Chokkalingam AP et al (2005) PTPN22 genetic variation: evidence for multiple variants associated with rheumatoid arthritis. Am J Hum Genet 77(4):567–581PubMedCrossRefGoogle Scholar
  89. 89.
    Michou L, Lasbleiz S, Rat AC et al (2007) Linkage proof for PTPN22, a rheumatoid arthritis susceptibility gene and a human autoimmunity gene. Proc Natl Acad Sci USA 104(5):1649–1654PubMedCrossRefGoogle Scholar
  90. 90.
    Zoledziewska M, Perra C, Orru V et al (2008) Further evidence of a primary, causal association of the PTPN22 620 W variant with type 1 diabetes. Diabetes 57(1):229–234PubMedCrossRefGoogle Scholar
  91. 91.
    Smyth DJ, Cooper JD, Howson JM et al (2008) PTPN22 Trp620 explains the association of chromosome 1p13 with type 1 diabetes and shows a statistical interaction with HLA class II genotypes. Diabetes 57(6):1730–1737PubMedCrossRefGoogle Scholar
  92. 92.
    Orru V, Tsai SJ, Rueda B et al (2009) A loss-of-function variant of PTPN22 is associated with reduced risk of systemic lupus erythematosus. Hum Mol Genet 18(3):569–579PubMedCrossRefGoogle Scholar
  93. 93.
    Kawasaki E, Awata T, Ikegami H et al (2006) Systematic search for single nucleotide polymorphisms in a lymphoid tyrosine phosphatase gene (PTPN22): association between a promoter polymorphism and type 1 diabetes in Asian populations. Am J Med Genet 140(6):586–593PubMedCrossRefGoogle Scholar
  94. 94.
    Cinek O, Hradsky O, Ahmedov G et al (2007) No independent role of the -1123 G > C and +2740 A > G variants in the association of PTPN22 with type 1 diabetes and juvenile idiopathic arthritis in two Caucasian populations. Diabetes Res Clin Pract 76(2):297–303PubMedCrossRefGoogle Scholar
  95. 95.
    Steck AK, Liu SY, McFann K et al (2006) Association of the PTPN22/LYP gene with type 1 diabetes. Pediatr Diabetes 7(5):274–278PubMedCrossRefGoogle Scholar
  96. 96.
    Morgan AW, Thomson W, Martin SG et al (2009) Reevaluation of the interaction between HLA-DRB1 shared epitope alleles, PTPN22, and smoking in determining susceptibility to autoantibody-positive and autoantibody-negative rheumatoid arthritis in a large UK Caucasian population. Arthritis Rheum 60(9):2565–2576PubMedCrossRefGoogle Scholar
  97. 97.
    Costenbader KH, Chang SC, De Vivo I, Plenge R, Karlson EW (2008) Genetic polymorphisms in PTPN22, PADI-4, and CTLA-4 and risk for rheumatoid arthritis in two longitudinal cohort studies: evidence of gene-environment interactions with heavy cigarette smoking. Arthritis Res Ther 10(3):R52PubMedCrossRefGoogle Scholar
  98. 98.
    Mahdi H, Fisher BA, Kallberg H et al (2009) Specific interaction between genotype, smoking and autoimmunity to citrullinated alpha-enolase in the etiology of rheumatoid arthritis. Nat Genet 41(12):1319–1324PubMedCrossRefGoogle Scholar
  99. 99.
    Lempainen J, Vaarala O, Makela M et al (2009) Interplay between PTPN22 C1858T polymorphism and cow's milk formula exposure in type 1 diabetes. J Autoimmun 33(2):155–164PubMedCrossRefGoogle Scholar
  100. 100.
    Pierer M, Kaltenhauser S, Arnold S et al (2006) Association of PTPN22 1858 single-nucleotide polymorphism with rheumatoid arthritis in a German cohort: higher frequency of the risk allele in male compared to female patients. Arthritis Res Ther 8(3):R75PubMedCrossRefGoogle Scholar
  101. 101.
    Lie BA, Viken MK, Odegard S et al (2007) Associations between the PTPN22 1858C->T polymorphism and radiographic joint destruction in patients with rheumatoid arthritis: results from a 10-year longitudinal study. Ann Rheum Dis 66(12):1604–1609PubMedCrossRefGoogle Scholar
  102. 102.
    Hermann R, Lipponen K, Kiviniemi M et al (2006) Lymphoid tyrosine phosphatase (LYP/PTPN22) Arg620Trp variant regulates insulin autoimmunity and progression to type 1 diabetes. Diabetologia 49(6):1198–1208PubMedCrossRefGoogle Scholar
  103. 103.
    Butty V, Campbell C, Mathis D, Benoist C (2008) Impact of diabetes susceptibility loci on progression from pre-diabetes to diabetes in at-risk individuals of the diabetes prevention trial-type 1 (DPT-1). Diabetes 57(9):2348–2359PubMedCrossRefGoogle Scholar
  104. 104.
    Steck AK, Baschal EE, Jasinski JM, Boehm BO, Bottini N, Concannon P, Julier C, Morahan G, Noble JA, Polychronakos C, She JX, Eisenbarth GS; Type I Diabetes Genetics Consortium (2009) Rs2476601 T allele (R620W) defines high-risk PTPN22 type I diabetesassociated haplotypes with preliminary evidence for an additional protective haplotype. Genes Immun Suppl 1:S21–S26PubMedCrossRefGoogle Scholar
  105. 105.
    Aarnisalo J, Treszl A, Svec P et al (2008) Reduced CD4(+)T cell activation in children with type 1 diabetes carrying the PTPN22/Lyp 620Trp variant. J Autoimmun 31(1):13–21PubMedCrossRefGoogle Scholar
  106. 106.
    Lefvert AK, Zhao Y, Ramanujam R et al (2008) PTPN22 R620W promotes production of anti-AChR autoantibodies and IL-2 in myasthenia gravis. J Neuroimmunol 197(2):110–113PubMedCrossRefGoogle Scholar
  107. 107.
    Nielsen C, Barington T, Husby S, Lillevang ST (2007) Expression of human PTPN22 alleles. Genes Immun 8(2):131–137PubMedCrossRefGoogle Scholar
  108. 108.
    Zhang J, Salojin K, Delovitch TL (1998) Sequestration of CD4-associated Lck from the TCR complex may elicit T cell hyporesponsiveness in nonobese diabetic mice. J Immunol 160(3):1148–1157PubMedGoogle Scholar
  109. 109.
    Buchs AE, Rapoport MJ (2000) T cell signaling and autoimmune diabetes. J Pediatr Endocrinol Metab 13(9):1549–1554PubMedGoogle Scholar
  110. 110.
    Sakaguchi N, Takahashi T, Hata H et al (2003) Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426(6965):454–460PubMedCrossRefGoogle Scholar
  111. 111.
    Siggs OM, Miosge LA, Yates AL et al (2007) Opposing functions of the T cell receptor kinase ZAP-70 in immunity and tolerance differentially titrate in response to nucleotide substitutions. Immunity 27(6):912–926PubMedCrossRefGoogle Scholar
  112. 112.
    Hsu LY, Tan YX, Xiao Z, Malissen M, Weiss A (2009) A hypomorphic allele of ZAP-70 reveals a distinct thymic threshold for autoimmune disease versus autoimmune reactivity. J Exp Med 206(11):2527–2541PubMedCrossRefGoogle Scholar
  113. 113.
    Marson A, Kretschmer K, Frampton GM et al (2007) Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445(7130):931–935PubMedCrossRefGoogle Scholar
  114. 114.
    Setoguchi R, Hori S, Takahashi T, Sakaguchi S (2005) Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med 201(5):723–735PubMedCrossRefGoogle Scholar
  115. 115.
    Yamanouchi J, Rainbow D, Serra P et al (2007) Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nat Genet 39(3):329–337PubMedCrossRefGoogle Scholar
  116. 116.
    Tang Q, Adams JY, Penaranda C et al (2008) Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28(5):687–697PubMedCrossRefGoogle Scholar
  117. 117.
    Xie Y, Liu Y, Gong G et al (2008) Discovery of a novel submicromolar inhibitor of the lymphoid specific tyrosine phosphatase. Bioorg Med Chem Lett 18(9):2840–2844PubMedCrossRefGoogle Scholar
  118. 118.
    Wu S, Bottini M, Rickert RC, Mustelin T, Tautz L (2009) In silico screening for PTPN22 inhibitors: active hits from an inactive phosphatase conformation. ChemMedChem 4(3):440–444PubMedCrossRefGoogle Scholar
  119. 119.
    Sfar I, Gorgi Y, Aouadi H et al (2009) The PTPN22 C1858T (R620W) functional polymorphism in kidney transplantation. Transplant Proc 41(2):657–659PubMedCrossRefGoogle Scholar
  120. 120.
    Chatenoud L, Thervet E, Primo J, Bach JF (1994) Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc Natl Acad Sci USA 91(1):123–127PubMedCrossRefGoogle Scholar
  121. 121.
    Chatenoud L (2006) CD3-specific antibodies as promising tools to aim at immune tolerance in the clinic. Int Rev Immunol 25(3–4):215–233PubMedCrossRefGoogle Scholar
  122. 122.
    Hermiston ML, Zikherman J, Tan AL et al (2009) Differential impact of the CD45 juxtamembrane wedge on central and peripheral T cell receptor responses. Proc Natl Acad Sci USA 106(2):546–551PubMedCrossRefGoogle Scholar
  123. 123.
    Hermiston ML, Tan AL, Gupta VA, Majeti R, Weiss A (2005) The juxtamembrane wedge negatively regulates CD45 function in B cells. Immunity 23(6):635–647PubMedCrossRefGoogle Scholar
  124. 124.
    Gupta VA, Hermiston ML, Cassafer G, Daikh DI, Weiss A (2008) B cells drive lymphocyte activation and expansion in mice with the CD45 wedge mutation and Fas deficiency. J Exp Med 205(12):2755–2761PubMedCrossRefGoogle Scholar
  125. 125.
    Liossis SN, Kovacs B, Dennis G, Kammer GM, Tsokos GC (1996) B cells from patients with systemic lupus erythematosus display abnormal antigen receptor-mediated early signal transduction events. J Clin Invest 98(11):2549–2557PubMedCrossRefGoogle Scholar
  126. 126.
    Kammer GM, Perl A, Richardson BC, Tsokos GC (2002) Abnormal T cell signal transduction in systemic lupus erythematosus. Arthritis Rheum 46(5):1139–1154PubMedCrossRefGoogle Scholar
  127. 127.
    Khan IU, Tsokos GC, Kammer GM (2003) Abnormal B cell signal transduction in systemic lupus erythematosus. Curr Dir Autoimmun 6:89–104PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Stephanie M. Stanford
    • 1
  • Tomas M. Mustelin
    • 2
  • Nunzio Bottini
    • 1
    Email author
  1. 1.Division of Cell BiologyLa Jolla Institute for Allergy and ImmunologyLa JollaUSA
  2. 2.Sanford-Burnham Medical Research Institute, Infectious and Inflammatory Disease CenterLa JollaUSA

Personalised recommendations