Seminars in Immunopathology

, Volume 32, Issue 1, pp 3–16 | Cite as

Development, regulation and functional capacities of Th17 cells



T helper (Th) 17 cells have been classified as a new lineage, distinct from Th1, Th2 and Treg. Their development requires a unique combination of cytokines and depends on distinct intracellular events, resulting in the production of the signature cytokines interleukin (IL)-17A, IL-17F and IL-22. The differential cytokine expression patterns in Th cells suggest a division of labour in the response against a variety of pathogens. Th17 have an important function in the host-defense-response against extracellular pathogens, but they also have become notorious for their role in the pathogenesis of many autoimmune and allergic disorders. Animal models of autoimmune disorders have shown that Th17 effector molecules and transcription factors play a crucial role in both development and maintenance of the disease. The discovery of Th17 not only enhanced our insight into these disorders but also placed a Th subset at the interface between the innate and adoptive immune systems with the potential to regulate subsequent immunity against pathogens.


Th17 IL-17 Plasticity Cytokines Transcription factors T cell differentiation 


  1. 1.
    Parish CR (1971) Immune response to chemically modified flagellin. II. Evidence for a fundamental relationship between humoral and cell-mediated immunity. J Exp Med 134:21–47PubMedCrossRefGoogle Scholar
  2. 2.
    Mosmann TR, Cherwinski H, Bond MW et al (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357PubMedGoogle Scholar
  3. 3.
    Perrigoue JG, Saenz SA, Siracusa MC et al (2009) MHC class II-dependent basophil-CD4(+) T cell interactions promote T(H)2 cytokine-dependent immunity. Nat Immunol 10:697–705PubMedCrossRefGoogle Scholar
  4. 4.
    Sokol CL, Chu NQ, Yu S et al (2009) Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat Immunol 10:713–720PubMedCrossRefGoogle Scholar
  5. 5.
    Yoshimoto T, Yasuda K, Tanaka H et al (2009) Basophils contribute to T(H)2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4(+) T cells. Nat Immunol 10:706–712PubMedCrossRefGoogle Scholar
  6. 6.
    Charles N, Watford WT, Ramos HL et al (2009) Lyn kinase controls basophil GATA-3 transcription factor expression and induction of Th2 cell differentiation. Immunity 30:533–543PubMedCrossRefGoogle Scholar
  7. 7.
    Itoh M, Takahashi T, Sakaguchi N et al (1999) Thymus and autoimmunity: production of CD25 + CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol 162:5317–5326PubMedGoogle Scholar
  8. 8.
    Sakaguchi S, Yamaguchi T, Nomura T et al (2008) Regulatory T cells and immune tolerance. Cell 133:775–787PubMedCrossRefGoogle Scholar
  9. 9.
    Chen W, Jin W, Hardegen N et al (2003) Conversion of peripheral CD4 + CD25- naive T cells to CD4 + CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875–1886PubMedCrossRefGoogle Scholar
  10. 10.
    Dardalhon V, Awasthi A, Kwon H et al (2008) IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(-) effector T cells. Nat Immunol 9:1347–1355PubMedCrossRefGoogle Scholar
  11. 11.
    Veldhoen M, Uyttenhove C, van Snick J et al (2008) Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9:1341–1346PubMedCrossRefGoogle Scholar
  12. 12.
    Faulkner H, Humphreys N, Renauld JC et al (1997) Interleukin-9 is involved in host protective immunity to intestinal nematode infection. Eur J Immunol 27:2536–2540PubMedCrossRefGoogle Scholar
  13. 13.
    Temann UA, Geba GP, Rankin JA et al (1998) Expression of interleukin 9 in the lungs of transgenic mice causes airway inflammation, mast cell hyperplasia, and bronchial hyperresponsiveness. J Exp Med 188:1307–1320PubMedCrossRefGoogle Scholar
  14. 14.
    Breitfeld D, Ohl L, Kremmer E et al (2000) Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med 192:1545–1552PubMedCrossRefGoogle Scholar
  15. 15.
    Reinhardt RL, Liang HE, Locksley RM (2009) Cytokine-secreting follicular T cells shape the antibody repertoire. Nat Immunol 10:385–393PubMedCrossRefGoogle Scholar
  16. 16.
    Vogelzang A, McGuire HM, Yu D et al (2008) A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity 29:127–137PubMedCrossRefGoogle Scholar
  17. 17.
    Bauquet AT, Jin H, Paterson AM et al (2009) The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat Immunol 10:167–175PubMedCrossRefGoogle Scholar
  18. 18.
    Oppmann B, Lesley R, Blom B et al (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13:715–725PubMedCrossRefGoogle Scholar
  19. 19.
    Cua DJ, Sherlock J, Chen Y et al (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748PubMedCrossRefGoogle Scholar
  20. 20.
    Langrish CL, Chen Y, Blumenschein WM et al (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240PubMedCrossRefGoogle Scholar
  21. 21.
    Harrington LE, Hatton RD, Mangan PR et al (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132PubMedCrossRefGoogle Scholar
  22. 22.
    Park H, Li Z, Yang XO et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141PubMedCrossRefGoogle Scholar
  23. 23.
    Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4 + CD25+ T cell-mediated suppression by dendritic cells. Science 299:1033–1036PubMedCrossRefGoogle Scholar
  24. 24.
    Veldhoen M, Hocking RJ, Atkins CJ et al (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24:179–189PubMedCrossRefGoogle Scholar
  25. 25.
    Bettelli E, Carrier Y, Gao W et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238PubMedCrossRefGoogle Scholar
  26. 26.
    Mangan PR, Harrington LE, O'Quinn DB et al (2006) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441:231–234PubMedCrossRefGoogle Scholar
  27. 27.
    Asseman C, Mauze S, Leach MW et al (1999) An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 190:995–1004PubMedCrossRefGoogle Scholar
  28. 28.
    Powrie F, Carlino J, Leach MW et al (1996) A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J Exp Med 183:2669–2674PubMedCrossRefGoogle Scholar
  29. 29.
    Chen CH, Seguin-Devaux C, Burke NA et al (2003) Transforming growth factor beta blocks Tec kinase phosphorylation, Ca2+ influx, and NFATc translocation causing inhibition of T cell differentiation. J Exp Med 197:1689–1699PubMedCrossRefGoogle Scholar
  30. 30.
    Gorelik L, Constant S, Flavell RA (2002) Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation. J Exp Med 195:1499–1505PubMedCrossRefGoogle Scholar
  31. 31.
    Gorelik L, Flavell RA (2000) Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12:171–181PubMedCrossRefGoogle Scholar
  32. 32.
    Heath VL, Murphy EE, Crain C et al (2000) TGF-beta1 down-regulates Th2 development and results in decreased IL-4-induced STAT6 activation and GATA-3 expression. Eur J Immunol 30:2639–2649PubMedCrossRefGoogle Scholar
  33. 33.
    Lin JT, Martin SL, Xia L et al (2005) TGF-beta 1 uses distinct mechanisms to inhibit IFN-gamma expression in CD4+ T cells at priming and at recall: differential involvement of Stat4 and T-bet. J Immunol 174:5950–5958PubMedGoogle Scholar
  34. 34.
    Li MO, Wan YY, Flavell RA (2007) T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 26:579–591PubMedCrossRefGoogle Scholar
  35. 35.
    Kulkarni AB, Huh CG, Becker D et al (1993) Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A 90:770–774PubMedCrossRefGoogle Scholar
  36. 36.
    Shull MM, Ormsby I, Kier AB et al (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359:693–699PubMedCrossRefGoogle Scholar
  37. 37.
    Allen JB, Manthey CL, Hand AR et al (1990) Rapid onset synovial inflammation and hyperplasia induced by transforming growth factor beta. J Exp Med 171:231–247PubMedCrossRefGoogle Scholar
  38. 38.
    Wahl SM, Allen JB, Costa GL et al (1993) Reversal of acute and chronic synovial inflammation by anti-transforming growth factor beta. J Exp Med 177:225–230PubMedCrossRefGoogle Scholar
  39. 39.
    McKarns SC, Kaminski NE (2000) TGF-beta 1 differentially regulates IL-2 expression and [3H]-thymidine incorporation in CD3 epsilon mAb- and CD28 mAb-activated splenocytes and thymocytes. Immunopharmacology 48:101–115PubMedCrossRefGoogle Scholar
  40. 40.
    Veldhoen M, Hocking RJ, Flavell RA et al (2006) Signals mediated by transforming growth factor-beta initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat Immunol 7:1151–1156PubMedCrossRefGoogle Scholar
  41. 41.
    Taga T, Kishimoto T (1997) Gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol 15:797–819PubMedCrossRefGoogle Scholar
  42. 42.
    Alonzi T, Fattori E, Lazzaro D et al (1998) Interleukin 6 is required for the development of collagen-induced arthritis. J Exp Med 187:461–468PubMedCrossRefGoogle Scholar
  43. 43.
    Eugster HP, Frei K, Kopf M et al (1998) IL-6-deficient mice resist myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. Eur J Immunol 28:2178–2187PubMedCrossRefGoogle Scholar
  44. 44.
    Ohshima S, Saeki Y, Mima T et al (1998) Interleukin 6 plays a key role in the development of antigen-induced arthritis. Proc Natl Acad Sci U S A 95:8222–8226PubMedCrossRefGoogle Scholar
  45. 45.
    Okuda Y, Sakoda S, Bernard CC et al (1998) IL-6-deficient mice are resistant to the induction of experimental autoimmune encephalomyelitis provoked by myelin oligodendrocyte glycoprotein. Int Immunol 10:703–708PubMedCrossRefGoogle Scholar
  46. 46.
    Hata H, Sakaguchi N, Yoshitomi H et al (2004) Distinct contribution of IL-6, TNF-alpha, IL-1, and IL-10 to T cell-mediated spontaneous autoimmune arthritis in mice. J Clin Invest 114:582–588PubMedGoogle Scholar
  47. 47.
    Chabaud M, Fossiez F, Taupin JL et al (1998) Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines. J Immunol 161:409–414PubMedGoogle Scholar
  48. 48.
    Korn T, Bettelli E, Gao W et al (2007) IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448:484–487PubMedCrossRefGoogle Scholar
  49. 49.
    Nurieva R, Yang XO, Martinez G et al (2007) Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448:480–483PubMedCrossRefGoogle Scholar
  50. 50.
    Zhou L, Ivanov II, Spolski R et al (2007) IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 8:967–974PubMedCrossRefGoogle Scholar
  51. 51.
    Chtanova T, Tangye SG, Newton R et al (2004) T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J Immunol 173:68–78PubMedGoogle Scholar
  52. 52.
    Nurieva RI, Chung Y, Hwang D et al (2008) Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29:138–149PubMedCrossRefGoogle Scholar
  53. 53.
    Suto A, Kashiwakuma D, Kagami S et al (2008) Development and characterization of IL-21-producing CD4+ T cells. J Exp Med 205:1369–1379PubMedCrossRefGoogle Scholar
  54. 54.
    Coquet JM, Chakravarti S, Smyth MJ et al (2008) Cutting edge: IL-21 is not essential for Th17 differentiation or experimental autoimmune encephalomyelitis. J Immunol 180:7097–7101PubMedGoogle Scholar
  55. 55.
    Liu R, Bai Y, Vollmer TL et al (2008) IL-21 receptor expression determines the temporal phases of experimental autoimmune encephalomyelitis. Exp Neurol 211:14–24PubMedCrossRefGoogle Scholar
  56. 56.
    Piao WH, Jee YH, Liu RL et al (2008) IL-21 modulates CD4+ CD25+ regulatory T-cell homeostasis in experimental autoimmune encephalomyelitis. Scand J Immunol 67:37–46PubMedCrossRefGoogle Scholar
  57. 57.
    Sonderegger I, Kisielow J, Meier R et al (2008) IL-21 and IL-21R are not required for development of Th17 cells and autoimmunity in vivo. Eur J Immunol 38:1833–1838PubMedCrossRefGoogle Scholar
  58. 58.
    Saraiva M, Christensen JR, Veldhoen M et al (2009) Interleukin-10 Production by Th1 cells requires interleukin-12-induced STAT4 transcription factor and ERK MAP kinase activation by high antigen dose. Immunity 31:209–219PubMedCrossRefGoogle Scholar
  59. 59.
    Murphy CA, Langrish CL, Chen Y et al (2003) Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 198:1951–1957PubMedCrossRefGoogle Scholar
  60. 60.
    Awasthi A, Riol-Blanco L, Jager A et al (2009) Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J Immunol 182:5904–5908PubMedCrossRefGoogle Scholar
  61. 61.
    Chen Y, Langrish CL, McKenzie B et al (2006) Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 116:1317–1326PubMedCrossRefGoogle Scholar
  62. 62.
    Uhlig HH, McKenzie BS, Hue S et al (2006) Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 25:309–318PubMedCrossRefGoogle Scholar
  63. 63.
    McGeachy MJ, Chen Y, Tato CM et al (2009) The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol 10:314–324PubMedCrossRefGoogle Scholar
  64. 64.
    Massague J (2000) How cells read TGF-beta signals. Nat Rev Mol Cell Biol 1:169–178PubMedCrossRefGoogle Scholar
  65. 65.
    Tanabe O, Akira S, Kamiya T et al (1988) Genomic structure of the murine IL-6 gene. High degree conservation of potential regulatory sequences between mouse and human. J Immunol 141:3875–3881PubMedGoogle Scholar
  66. 66.
    Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A et al (2007) Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 8:942–949PubMedCrossRefGoogle Scholar
  67. 67.
    Chen Z, Tato CM, Muul L et al (2007) Distinct regulation of interleukin-17 in human T helper lymphocytes. Arthritis Rheum 56:2936–2946PubMedCrossRefGoogle Scholar
  68. 68.
    Evans HG, Suddason T, Jackson I et al (2007) Optimal induction of T helper 17 cells in humans requires T cell receptor ligation in the context of Toll-like receptor-activated monocytes. Proc Natl Acad Sci U S A 104:17034–17039PubMedCrossRefGoogle Scholar
  69. 69.
    van Beelen AJ, Zelinkova Z, Taanman-Kueter EW et al (2007) Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 27:660–669PubMedCrossRefGoogle Scholar
  70. 70.
    Wilson NJ, Boniface K, Chan JR et al (2007) Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8:950–957PubMedCrossRefGoogle Scholar
  71. 71.
    Manel N, Unutmaz D, Littman DR (2008) The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol 9:641–649PubMedCrossRefGoogle Scholar
  72. 72.
    Volpe E, Servant N, Zollinger R et al (2008) A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol 9:650–657PubMedCrossRefGoogle Scholar
  73. 73.
    Yang L, Anderson DE, Baecher-Allan C et al (2008) IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 454:350–352PubMedCrossRefGoogle Scholar
  74. 74.
    Ivanov II, McKenzie BS, Zhou L et al (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121–1133PubMedCrossRefGoogle Scholar
  75. 75.
    Yang XO, Pappu BP, Nurieva R et al (2008) T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 28:29–39PubMedCrossRefGoogle Scholar
  76. 76.
    Veldhoen M, Hirota K, Westendorf AM et al (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453:106–109PubMedCrossRefGoogle Scholar
  77. 77.
    Kimura A, Naka T, Nohara K et al (2008) Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proc Natl Acad Sci U S A 105:9721–9726PubMedCrossRefGoogle Scholar
  78. 78.
    Veldhoen M, Hirota K, Christensen J et al (2009) Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. J Exp Med 206:43–49PubMedCrossRefGoogle Scholar
  79. 79.
    Wincent E, Amini N, Luecke S et al (2009) The suggested physiologic aryl hydrocarbon receptor activator and cytochrome P4501 substrate 6-formylindolo[3, 2-b]carbazole is present in humans. J Biol Chem 284:2690–2696PubMedCrossRefGoogle Scholar
  80. 80.
    Quintana FJ, Basso AS, Iglesias AH et al (2008) Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453:65–71PubMedCrossRefGoogle Scholar
  81. 81.
    Poland A, Palen D, Glover E (1994) Analysis of the four alleles of the murine aryl hydrocarbon receptor. Mol Pharmacol 46:915–921PubMedGoogle Scholar
  82. 82.
    Schraml BU, Hildner K, Ise W et al (2009) The AP-1 transcription factor Batf controls T(H)17 differentiation. Nature 460:405–409PubMedGoogle Scholar
  83. 83.
    Adamson AS, Collins K, Laurence A et al (2009) The current STATus of lymphocyte signaling: new roles for old players. Curr Opin Immunol 21:161–166PubMedCrossRefGoogle Scholar
  84. 84.
    Yang XO, Panopoulos AD, Nurieva R et al (2007) STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem 282:9358–9363PubMedCrossRefGoogle Scholar
  85. 85.
    Yang XO, Nurieva R, Martinez GJ et al (2008) Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29:44–56PubMedCrossRefGoogle Scholar
  86. 86.
    Qin H, Wang L, Feng T et al (2009) TGF-{beta} promotes Th17 cell development through inhibition of SOCS3. J Immunol 183:97–105PubMedCrossRefGoogle Scholar
  87. 87.
    Brustle A, Heink S, Huber M et al (2007) The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4. Nat Immunol 8:958–966PubMedCrossRefGoogle Scholar
  88. 88.
    Chen Q, Yang W, Gupta S et al (2008) IRF-4-binding protein inhibits interleukin-17 and interleukin-21 production by controlling the activity of IRF-4 transcription factor. Immunity 29:899–911PubMedCrossRefGoogle Scholar
  89. 89.
    de Beaucoudrey L, Puel A, Filipe-Santos O et al (2008) Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells. J Exp Med 205:1543–1550PubMedCrossRefGoogle Scholar
  90. 90.
    Minegishi Y, Saito M, Tsuchiya S et al (2007) Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 448:1058–1062PubMedCrossRefGoogle Scholar
  91. 91.
    Ma CS, Chew GY, Simpson N et al (2008) Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J Exp Med 205:1551–1557PubMedCrossRefGoogle Scholar
  92. 92.
    Milner JD, Brenchley JM, Laurence A et al (2008) Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452:773–776PubMedCrossRefGoogle Scholar
  93. 93.
    Ichiyama K, Yoshida H, Wakabayashi Y et al (2008) Foxp3 inhibits RORgammat-mediated IL-17A mRNA transcription through direct interaction with RORgammat. J Biol Chem 283:17003–17008PubMedCrossRefGoogle Scholar
  94. 94.
    Zhou L, Lopes JE, Chong MM et al (2008) TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453:236–240PubMedCrossRefGoogle Scholar
  95. 95.
    Lochner M, Peduto L, Cherrier M et al (2008) In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORgamma t + T cells. J Exp Med 205:1381–1393PubMedCrossRefGoogle Scholar
  96. 96.
    Ono M, Yaguchi H, Ohkura N et al (2007) Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446:685–689PubMedCrossRefGoogle Scholar
  97. 97.
    Zhang F, Meng G, Strober W (2008) Interactions among the transcription factors Runx1, RORgammat and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat Immunol 9:1297–1306PubMedCrossRefGoogle Scholar
  98. 98.
    Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945PubMedCrossRefGoogle Scholar
  99. 99.
    Delgoffe GM, Kole TP, Zheng Y et al (2009) The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30:832–844PubMedCrossRefGoogle Scholar
  100. 100.
    Denning TL, Wang YC, Patel SR et al (2007) Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol 8:1086–1094PubMedCrossRefGoogle Scholar
  101. 101.
    Mucida D, Park Y, Kim G et al (2007) Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317:256–260PubMedCrossRefGoogle Scholar
  102. 102.
    Torchinsky MB, Garaude J, Martin AP et al (2009) Innate immune recognition of infected apoptotic cells directs T(H)17 cell differentiation. Nature 458:78–82PubMedCrossRefGoogle Scholar
  103. 103.
    Uematsu S, Fujimoto K, Jang MH et al (2008) Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat Immunol 9:769–776PubMedCrossRefGoogle Scholar
  104. 104.
    Hall JA, Bouladoux N, Sun CM et al (2008) Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 29:637–649PubMedCrossRefGoogle Scholar
  105. 105.
    Atarashi K, Nishimura J, Shima T et al (2008) ATP drives lamina propria T(H)17 cell differentiation. Nature 455:808–812PubMedCrossRefGoogle Scholar
  106. 106.
    Voo KS, Wang YH, Santori FR et al (2009) Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc Natl Acad Sci U S A 106:4793–4798PubMedCrossRefGoogle Scholar
  107. 107.
    Du J, Huang C, Zhou B et al (2008) Isoform-specific inhibition of ROR alpha-mediated transcriptional activation by human FOXP3. J Immunol 180:4785–4792PubMedGoogle Scholar
  108. 108.
    Guo S, Cobb D, Smeltz RB (2009) T-bet inhibits the in vivo differentiation of parasite-specific CD4+ Th17 cells in a T cell-intrinsic manner. J Immunol 182:6179–6186PubMedCrossRefGoogle Scholar
  109. 109.
    Batten M, Li J, Yi S et al (2006) Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat Immunol 7:929–936PubMedCrossRefGoogle Scholar
  110. 110.
    Stumhofer JS, Laurence A, Wilson EH et al (2006) Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol 7:937–945PubMedCrossRefGoogle Scholar
  111. 111.
    Shinohara ML, Kim JH, Garcia VA et al (2008) Engagement of the type I interferon receptor on dendritic cells inhibits T helper 17 cell development: role of intracellular osteopontin. Immunity 29:68–78PubMedCrossRefGoogle Scholar
  112. 112.
    Guo B, Chang EY, Cheng G (2008) The type I IFN induction pathway constrains Th17-mediated autoimmune inflammation in mice. J Clin Invest 118:1680–1690PubMedCrossRefGoogle Scholar
  113. 113.
    Liang SC, Long AJ, Bennett F et al (2007) An IL-17F/A heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment. J Immunol 179:7791–7799PubMedGoogle Scholar
  114. 114.
    Claudio E, Sonder SU, Saret S et al (2009) The adaptor protein CIKS/Act1 is essential for IL-25-mediated allergic airway inflammation. J Immunol 182:1617–1630PubMedCrossRefGoogle Scholar
  115. 115.
    Gaffen SL (2009) Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 9:556–567PubMedCrossRefGoogle Scholar
  116. 116.
    Ishigame H, Kakuta S, Nagai T et al (2009) Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30:108–119PubMedCrossRefGoogle Scholar
  117. 117.
    Yao Z, Fanslow WC, Seldin MF et al (1995) Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3:811–821PubMedCrossRefGoogle Scholar
  118. 118.
    Toy D, Kugler D, Wolfson M et al (2006) Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J Immunol 177:36–39PubMedGoogle Scholar
  119. 119.
    Haudenschild D, Moseley T, Rose L et al (2002) Soluble and transmembrane isoforms of novel interleukin-17 receptor-like protein by RNA splicing and expression in prostate cancer. J Biol Chem 277:4309–4316PubMedCrossRefGoogle Scholar
  120. 120.
    Kuestner RE, Taft DW, Haran A et al (2007) Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F. J Immunol 179:5462–5473PubMedGoogle Scholar
  121. 121.
    Dumoutier L, Louahed J, Renauld JC (2000) Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. J Immunol 164:1814–1819PubMedGoogle Scholar
  122. 122.
    Dumoutier L, Van Roost E, Colau D et al (2000) Human interleukin-10-related T cell-derived inducible factor: molecular cloning and functional characterization as an hepatocyte-stimulating factor. Proc Natl Acad Sci U S A 97:10144–10149PubMedCrossRefGoogle Scholar
  123. 123.
    Kotenko SV, Izotova LS, Mirochnitchenko OV et al (2001) Identification, cloning, and characterization of a novel soluble receptor that binds IL-22 and neutralizes its activity. J Immunol 166:7096–7103PubMedGoogle Scholar
  124. 124.
    Kotenko SV, Izotova LS, Mirochnitchenko OV et al (2001) Identification of the functional interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-10Rbeta) is a common chain of both the IL-10 and IL-22 (IL-10-related T cell-derived inducible factor, IL-TIF) receptor complexes. J Biol Chem 276:2725–2732PubMedCrossRefGoogle Scholar
  125. 125.
    Liang SC, Tan XY, Luxenberg DP et al (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203:2271–2279PubMedCrossRefGoogle Scholar
  126. 126.
    Aujla SJ, Chan YR, Zheng M et al (2008) IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med 14:275–281PubMedCrossRefGoogle Scholar
  127. 127.
    Zheng Y, Valdez PA, Danilenko DM et al (2008) Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 14:282–289PubMedCrossRefGoogle Scholar
  128. 128.
    Pan H, Hong F, Radaeva S et al (2004) Hydrodynamic gene delivery of interleukin-22 protects the mouse liver from concanavalin A-, carbon tetrachloride-, and Fas ligand-induced injury via activation of STAT3. Cell Mol Immunol 1:43–49PubMedGoogle Scholar
  129. 129.
    Radaeva S, Sun R, Pan HN et al (2004) Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology 39:1332–1342PubMedCrossRefGoogle Scholar
  130. 130.
    Zenewicz LA, Yancopoulos GD, Valenzuela DM et al (2007) Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity 27:647–659PubMedCrossRefGoogle Scholar
  131. 131.
    Pickert G, Neufert C, Leppkes M et al (2009) STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med 206:1465–1472PubMedCrossRefGoogle Scholar
  132. 132.
    Zheng Y, Danilenko DM, Valdez P et al (2007) Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445:648–651PubMedCrossRefGoogle Scholar
  133. 133.
    Kleinewietfeld M, Puentes F, Borsellino G et al (2005) CCR6 expression defines regulatory effector/memory-like cells within the CD25(+)CD4+ T-cell subset. Blood 105:2877–2886PubMedCrossRefGoogle Scholar
  134. 134.
    Charbonnier AS, Kohrgruber N, Kriehuber E et al (1999) Macrophage inflammatory protein 3alpha is involved in the constitutive trafficking of epidermal langerhans cells. J Exp Med 190:1755–1768PubMedCrossRefGoogle Scholar
  135. 135.
    Dieu-Nosjean MC, Massacrier C, Homey B et al (2000) Macrophage inflammatory protein 3alpha is expressed at inflamed epithelial surfaces and is the most potent chemokine known in attracting Langerhans cell precursors. J Exp Med 192:705–718PubMedCrossRefGoogle Scholar
  136. 136.
    Iwasaki A, Kelsall BL (2000) Localization of distinct Peyer's patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3alpha, MIP-3beta, and secondary lymphoid organ chemokine. J Exp Med 191:1381–1394PubMedCrossRefGoogle Scholar
  137. 137.
    Le Borgne M, Etchart N, Goubier A et al (2006) Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo. Immunity 24:191–201PubMedCrossRefGoogle Scholar
  138. 138.
    Liao F, Rabin RL, Smith CS et al (1999) CC-chemokine receptor 6 is expressed on diverse memory subsets of T cells and determines responsiveness to macrophage inflammatory protein 3 alpha. J Immunol 162:186–194PubMedGoogle Scholar
  139. 139.
    Varona R, Villares R, Carramolino L et al (2001) CCR6-deficient mice have impaired leukocyte homeostasis and altered contact hypersensitivity and delayed-type hypersensitivity responses. J Clin Invest 107:R37–R45PubMedCrossRefGoogle Scholar
  140. 140.
    Hirota K, Yoshitomi H, Hashimoto M et al (2007) Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J Exp Med 204:2803–2812PubMedCrossRefGoogle Scholar
  141. 141.
    Yamazaki T, Yang XO, Chung Y et al (2008) CCR6 regulates the migration of inflammatory and regulatory T cells. J Immunol 181:8391–8401PubMedGoogle Scholar
  142. 142.
    Reboldi A, Coisne C, Baumjohann D et al (2009) C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 10:514–523PubMedCrossRefGoogle Scholar
  143. 143.
    Annunziato F, Cosmi L, Santarlasci V et al (2007) Phenotypic and functional features of human Th17 cells. J Exp Med 204:1849–1861PubMedCrossRefGoogle Scholar
  144. 144.
    Kleinschek MA, Boniface K, Sadekova S et al (2009) Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation. J Exp Med 206:525–534PubMedCrossRefGoogle Scholar
  145. 145.
    Fisher SA, Tremelling M, Anderson CA et al (2008) Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn's disease. Nat Genet 40:710–712PubMedCrossRefGoogle Scholar
  146. 146.
    Nair RP, Duffin KC, Helms C et al (2009) Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet 41:199–204PubMedCrossRefGoogle Scholar
  147. 147.
    Cosmi L, De Palma R, Santarlasci V et al (2008) Human interleukin 17-producing cells originate from a CD161 + CD4+ T cell precursor. J Exp Med 205:1903–1916PubMedCrossRefGoogle Scholar
  148. 148.
    Zhu J, Davidson TS, Wei G et al (2009) Down-regulation of Gfi-1 expression by TGF-beta is important for differentiation of Th17 and CD103+ inducible regulatory T cells. J Exp Med 206:329–341PubMedCrossRefGoogle Scholar
  149. 149.
    Bending D, De La Pena H, Veldhoen M et al (2009) Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J Clin Invest 119:565–572CrossRefGoogle Scholar
  150. 150.
    Lee YK, Turner H, Maynard CL et al (2009) Late developmental plasticity in the T helper 17 lineage. Immunity 30:92–107PubMedCrossRefGoogle Scholar
  151. 151.
    Lexberg MH, Taubner A, Forster A et al (2008) Th memory for interleukin-17 expression is stable in vivo. Eur J Immunol 38:2654–2664PubMedCrossRefGoogle Scholar
  152. 152.
    Nurieva R, Yang XO, Chung Y et al (2009) Cutting edge: in vitro generated Th17 cells maintain their cytokine expression program in normal but not lymphopenic hosts. J Immunol 182:2565–2568PubMedCrossRefGoogle Scholar
  153. 153.
    Wei G, Wei L, Zhu J et al (2009) Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30:155–167PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Division of Molecular ImmunologyMRC National Institute for Medical ResearchLondonUK

Personalised recommendations