Seminars in Immunopathology

, Volume 31, Issue 4, pp 439–453 | Cite as

The pathological spectrum of CNS inflammatory demyelinating diseases

Review

Abstract

Inflammatory demyelinating diseases of the central nervous system (CNS) occur throughout the world and are the leading cause of nontraumatic neurological disability in young adults. They represent a broad spectrum of disorders that vary in their clinical course, regional distribution, and pathology. However, there can be a considerable overlap between at least some of these disorders, leading to misdiagnoses or diagnostic uncertainty. Multiple sclerosis (MS), the most common inflammatory demyelinating CNS disease affecting approximately one million adults, shares the basic pathological hallmark of CNS inflammatory demyelination. Advances based on recent systematic clinicopathologic-serologic correlative approaches have led to novel insights with respect to the classification of this disorder, the pathologic substrate of disability, a better understanding of the underlying pathogenic mechanisms involved in lesion formation, as well as the clinical relevance of cortical demyelination and normal appearing white matter pathology. In addition to prototypic MS, these diseases include Marburg variant of acute MS, Balo’s concentric sclerosis, neuromyelitis optica, acute disseminated encephalomyelitis, and tumefactive MS. The last decade has seen a resurgence of interest in examining the lesions of these inflammatory demyelinating CNS disorders with newer and more sophisticated immunological and molecular tools. Herein, we review the clinicopathologic features of these CNS inflammatory demyelinating disorders and discuss recent advances in understanding their immunopathogenesis.

Keywords

Multiple sclerosis Demyelinating disease Pathology Neuromyelitis optica Acute disseminated encephalomyelitis Balo’s concentric sclerosis 

References

  1. 1.
    Carswell R (1838) Pathological anatomy: illustrations on elementary forms of disease. Logman, LondonGoogle Scholar
  2. 2.
    Charcot J (1880) Lecons sur les maladies du systeme nerveux faites a la salpetriere. Cert et fils, ParisGoogle Scholar
  3. 3.
    Charcot JM (1848) Histologie de la sclérose en plaques. Gaz Hop Civ Mil 41:554–566Google Scholar
  4. 4.
    Cruveilier J (1880) Anatomie pathologique du corps humain. JB Paris, Bailliere pp 1829–1842Google Scholar
  5. 5.
    Traugott U (1983) Multiple sclerosis: relevance of class I and class II MHC- expressing cells to lesion development. J Neuroimmunol 16:283–302Google Scholar
  6. 6.
    Anderson DW, Ellenberg JH, Leventhal CM et al (1992) Revised estimate of the prevalence of multiple sclerosis in the United States. Ann Neurol 31:333–336PubMedGoogle Scholar
  7. 7.
    Mayr WT, Pittock SJ, McClelland RL et al (1373) Incidence and prevalence of multiple sclerosis in Olmsted County, Minnesota, 1985–2000. Neurology 61:1373–1377Google Scholar
  8. 8.
    Bruck W, Porada P, Poser S et al (1995) Monocyte-macrophage differentiation in early multiple sclerosis lesions. Ann Neurol 38:788–796PubMedGoogle Scholar
  9. 9.
    Prineas JW, Kwon EE, Cho ES et al (2001) Immunopathology of secondary-progressive multiple sclerosis. Ann Neurol 50:646–657PubMedGoogle Scholar
  10. 10.
    Genain CP, Cannella B, Hauser SL, Raine CS (1999) Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med 5:170–175PubMedGoogle Scholar
  11. 11.
    Aboul-Enein F, Rauschka H, Kornek B et al (2003) Preferential loss of myelin-associated glycoprotein reflects hypoxia-like white matter damage in stroke and inflammatory brain diseases. J Neuropathol Exp Neurol 62:25–33PubMedGoogle Scholar
  12. 12.
    Lucchinetti CF, Bruck W, Parisi J et al (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717PubMedGoogle Scholar
  13. 13.
    Lucchinetti CF, Bruck W, Lassmann H (2004) Evidence for pathogenic heterogeneity in multiple sclerosis. Ann Neurol 56:308PubMedGoogle Scholar
  14. 14.
    Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55:458–468PubMedGoogle Scholar
  15. 15.
    Barnett MH, Prineas JW (2004) Pathological heterogeneity in multiple sclerosis: a reflection of lesion stage? Ann Neurol 56:309Google Scholar
  16. 16.
    Barnett MH, Parratt JD, Cho ES, Prineas JW (2009) Immunoglobulins and complement in postmortem multiple sclerosis tissue. Ann Neurol 65:32–46PubMedGoogle Scholar
  17. 17.
    Breij EC, Brink BP, Veerhuis R et al (2008) Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann Neurol 63:16–25PubMedGoogle Scholar
  18. 18.
    Mahad DJ, Trebst C, Kivisakk P et al (2004) Expression of chemokine receptors CCR1 and CCR5 reflects differential activation of mononuclear phagocytes in pattern II and pattern III multiple sclerosis lesions. J Neuropathol Exp Neurol 63:262–273PubMedGoogle Scholar
  19. 19.
    Quintana FJ, Farez MF, Viglietta V et al (2008) Antigen microarrays identify unique serum autoantibody signatures in clinical and pathologic subtypes of multiple sclerosis. Proc Natl Acad Sci U S A 105:18889–18894PubMedGoogle Scholar
  20. 20.
    Mahad D, Ziabreva I, Lassmann H, Turnbull D (2008) Mitochondrial defects in acute multiple sclerosis lesions. Brain 131:1722–1735PubMedGoogle Scholar
  21. 21.
    Marik C, Felts PA, Bauer J, Lassmann H, Smith KJ (2007) Lesion genesis in a subset of patients with multiple sclerosis: a role for innate immunity? Brain 130:2800–2815PubMedGoogle Scholar
  22. 22.
    Keegan M, Konig F, McClelland R et al (2005) Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange. Lancet 366:579–582PubMedGoogle Scholar
  23. 23.
    Haupts MR, Schimrigk SK, Brune N et al (2008) Fulminant tumefactive multiple sclerosis: therapeutic implications of histopathology. J Neurol 255:1272–1273PubMedGoogle Scholar
  24. 24.
    Allen IV, Glover G, Anderson R (1981) Abnormalities in the macroscopically normal white matter in cases of mild or spinal multiple sclerosis. Acta Neuropathol Suppl (Berl) VII:176–181Google Scholar
  25. 25.
    Allen IV, McQuaid S, Mirakhur M, Nevin G (2001) Pathological abnormalities in the normal-appearing white matter in multiple sclerosis. Neurol Sci 22:141–144PubMedGoogle Scholar
  26. 26.
    Fu L, Matthews PM, De Stefano N et al (1998) Imaging axonal damage of normal-appearing white matter in multiple sclerosis. Brain 121(Pt 1):103–113PubMedGoogle Scholar
  27. 27.
    Kutzelnigg A, Lucchinetti C, Stadelmann C et al (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128:2705–2712PubMedGoogle Scholar
  28. 28.
    Graumann U, Reynolds R, Steck AJ, Schaeren-Wiemers N (2003) Molecular changes in normal appearing white matter in multiple sclerosis are characteristic of neuroprotective mechanisms against hypoxic insult. Brain Pathol 13:554–573PubMedGoogle Scholar
  29. 29.
    Zeis T, Graumann U, Reynolds R, Schaeren-Wiemers N (2008) Normal-appearing white matter in multiple sclerosis is in a subtle balance between inflammation and neuroprotection. Brain 131:288–303PubMedGoogle Scholar
  30. 30.
    Montes M, Zhang X, Berthelot L et al (2009) Oligoclonal myelin-reactive T-cell infiltrates derived from multiple sclerosis lesions are enriched in Th17 cells. Clin Immunol 130:133–144PubMedGoogle Scholar
  31. 31.
    Wheeler D, Bandaru VV, Calabresi PA, Nath A, Haughey NJ (2008) A defect of sphingolipid metabolism modifies the properties of normal appearing white matter in multiple sclerosis. Brain 131:3092–3102PubMedGoogle Scholar
  32. 32.
    Pirko I, Lucchinetti CF, Sriram S, Bakshi R (2007) Gray matter involvement in multiple sclerosis. Neurology 68:634–642PubMedGoogle Scholar
  33. 33.
    Wegner C, Esiri MM, Chance SA, Palace J, Matthews PM (2006) Neocortical neuronal, synaptic, and glial loss in multiple sclerosis. Neurology 67:960–967PubMedGoogle Scholar
  34. 34.
    Vercellino M, Plano F, Votta B et al (2005) Grey matter pathology in multiple sclerosis. J Neuropathol Exp Neurol 64:1101–1107PubMedGoogle Scholar
  35. 35.
    Peterson JW, Bo L, Mork S, Chang A, Trapp BD (2001) Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 50:389–400PubMedGoogle Scholar
  36. 36.
    Calabrese M, Filippi M, Rovaris M et al (2009) Evidence for relative cortical sparing in benign multiple sclerosis: a longitudinal magnetic resonance imaging study. Mult Scler 15:36–41PubMedGoogle Scholar
  37. 37.
    Calabrese M, De Stefano N, Atzori M et al (2008) Extensive cortical inflammation is associated with epilepsy in multiple sclerosis. J Neurol 255:581–586PubMedGoogle Scholar
  38. 38.
    Kidd D, Barkhof F, McConnell R, Algra PR, Allen IV, Revesz T (1999) Cortical lesions in multiple sclerosis. Brain 122:17–26PubMedGoogle Scholar
  39. 39.
    Bo L, Vedeler C, Nyland H, Trapp B, Mork S (2003) Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol 62:723–732PubMedGoogle Scholar
  40. 40.
    Bo L, Vedeler C, Nyland H, Trapp B, Mork S (2003) Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Mult Scler 9:323–331PubMedGoogle Scholar
  41. 41.
    Kutzelnigg A, Faber-Rod J, Bauer J, Lucchinetti CF et al (2007) Windespread demyelination in the cerebellar cortex in multiple sclerosis. Brain Pathol 17:38–44PubMedGoogle Scholar
  42. 42.
    Moll NM, Rietsch AM, Ransohoff AJ et al (2008) Cortical demyelination in PML and MS: Similarities and differences. Neurology 70:336–343PubMedGoogle Scholar
  43. 43.
    Serafini B et al (2004) Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 14:164–174PubMedCrossRefGoogle Scholar
  44. 44.
    Magliozzi R, Howell O, Vora A, Serafini B et al (2007) Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130:1089–1104PubMedGoogle Scholar
  45. 45.
    Serafini B, Rosicarelli B, Franciotta D et al (2007) Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. J Exp Med 204(12):2899–2912PubMedGoogle Scholar
  46. 46.
    van Horssen J, Brink BP, de Vries HE, van der Valk P, Bo L (2007) The blood-brain barrier in cortical multiple sclerosis lesions. J Neuropathol Exp Neurol 66:321–328PubMedGoogle Scholar
  47. 47.
    Albert M, ANtel J, Bruck W, Stadelmann C (2007) Extensive cortical remeylination in patients with chronic multiple sclerosis. Brain Pathol 17:129–138PubMedGoogle Scholar
  48. 48.
    Vercellino M, Merola A, Piacentino C et al (2007) Altered glutamate reuptake in relapsing-remitting and secondary progressive multiple sclerosis cortex: correlation with microglia infiltration, demyelination, and neuronal and synaptic damage. J Neuropathol Exp Neurol 66:732–739PubMedGoogle Scholar
  49. 49.
    Dal Bianco A, Bradl M, Frischer J et al (2008) Multiple sclerosis and Alzheimer’s disease. Ann Neurol 63:174–183PubMedGoogle Scholar
  50. 50.
    Geurts JJ, Barkhof F (2008) Grey matter pathology in multiple sclerosis. Lancet Neurol 7:841–851PubMedGoogle Scholar
  51. 51.
    Oppenheimer DR (1976) Demyelinating diseases. In: Blackwood W, Corsellis JAN (eds) Greenfield’s neuropathology. Edward Arnold Ltd, London, pp 470–499Google Scholar
  52. 52.
    Gilmore CP, Donaldson I, Bo L et al (2009) Regional variations in the extent and pattern of grey matter demyelination in multiple sclerosis: a comparison between the cerebral cortex, cerebellar cortex, deep grey matter nuclei and the spinal cord. J Neurol Neurosurg Psychiatry 80:182–187PubMedGoogle Scholar
  53. 53.
    Gilmore CP, Deluca GC, Bo L et al (2008) Spinal cord neuronal pathology in multiple sclerosis. Brain Pathol 19(4):642–649PubMedGoogle Scholar
  54. 54.
    Tallantyre EC, Bo L, Al-Rawashdeh O et al (2009) Greater loss of axons in primary progressive multiple sclerosis plaques compared to secondary progressive disease. Brain 132:1190–1199PubMedGoogle Scholar
  55. 55.
    Frischer JM, Bramow S, Dal-Bianco A et al (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132:1175–1189PubMedGoogle Scholar
  56. 56.
    Marburg O (1906) Die sogenannte “akute multiple sklerose”. J Psychiatr Neurol 27:211–312Google Scholar
  57. 57.
    Capello E, Roccataglioata L, Pagano F, Mancardi G (2001) Tumor-like multiple sclerosis (MS) lesions: neuropathological clues. J Neurosci 22:S113–S116Google Scholar
  58. 58.
    Balo J (1928) Encephalitis periaxalis concentrica. Arch Neurol 19:242–263Google Scholar
  59. 59.
    Courville C (1970) Concentric sclerosis. In: Bruyn PVaG (ed) Handbood of clinical neurology. Elsevier, AmsterdamGoogle Scholar
  60. 60.
    Lucchinetti CF, Gavrilova RH, Metz I et al (2008) Clinical and radiographic spectrum of pathologically-confirmed tumefactive multiple sclerosis. Brain 131(Pt 7):1759–1775PubMedGoogle Scholar
  61. 61.
    Yao DL, Webster H, Hudson LD et al (1994) Concentric sclerosis (Balo): morphometric and in situ hybridization study of lesions in six patients. Ann Neurol 35:18–30PubMedGoogle Scholar
  62. 62.
    Stadelmann C, Ludwin SK, Tabira T et al (2005) Hypoxic preconditioning explains concentric lesions in Balo’s type of multiple sclerosis. Brain 128:979–987PubMedGoogle Scholar
  63. 63.
    Devic C (1894) Myelite subaigue compliquee de nevrite optique. Bull Med 35:18–30Google Scholar
  64. 64.
    Wingerchuk DM, Lennon V, Lucchinetti CF, Pittock SJ, Weinshenker BG (2007) The spectrum of neuromyelitis optica. Lancet Neurol 6:805–815PubMedGoogle Scholar
  65. 65.
    Lucchinetti CF, Mandler RN, McGavern D et al (2002) A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain 125:1450–1461PubMedGoogle Scholar
  66. 66.
    Mandler RN, Davis LE, Jeffery DR, Kornfeld M (1993) Devic’s neuromyelitis optica: a clinicopathological study of 8 patients. Ann Neurol 34:162–168PubMedGoogle Scholar
  67. 67.
    Lennon VA, Wingerchuk DM, Kryzer TJ et al (2004) A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364:2106–2112PubMedGoogle Scholar
  68. 68.
    Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR (2005) IgG marker of optic-spinal MS binds to the aquaporin-4 water channel. J Exp Med 202:473–477PubMedGoogle Scholar
  69. 69.
    Amiry-Moghaddam M, Otsuka T, Hurn PD et al (2003) An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci U S A 100:2106–2111PubMedGoogle Scholar
  70. 70.
    Nicchia GP, Nico B, Camassa LMA et al (2004) The role of aquaporin-4 in blood-brain barrier development and integrity: studies in animal and cell culture models. Neuroscience 129:935–945PubMedGoogle Scholar
  71. 71.
    Roemer SF, Parisi JE, Lennon VA et al (2007) Pattern specific loss of aquaporin 4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain 130:1194–1205PubMedGoogle Scholar
  72. 72.
    Sinclair C, Kirk J, Herron B, Fitzgerald U, McQuaid S (2007) Absence of aquaporin-4 expression in lesions of neuromyelitis optica but increased expression in multiple sclerosis lesions and normal-appearing white matter. Acta Neuropathol (Berl) 113(2):187–194Google Scholar
  73. 73.
    Misu T, Fujihara K, Nakamura M et al (2006) Loss of aquaporin-4 in active perivascular lesions in neuromyelitis optica: a case report. Tohoku J Exp Med 209:269–275PubMedGoogle Scholar
  74. 74.
    Hinson SR, Pittock SJ, Lucchinetti CF et al (2007) Pathologic potential of IgG binding to water channel exrtacellular domain in neuromyelitis optica. Neurology 69:1–11Google Scholar
  75. 75.
    Hinson SR, Roemer SF, Lucchinetti CF et al (2008) Aquaporin-4 binding autoantibodies in patients with neuromyelitis optica impair glutamate transport by down-regulating EAAT2. J Exp Med 205(11):2473–2481PubMedGoogle Scholar
  76. 76.
    Wingerchuk DM (2006) The clinical course of acute disseminated encephalomyelitis. Neurol Res 28:341–347PubMedGoogle Scholar
  77. 77.
    Hart M, Earle K (1975) Haemorrhagic and perivenous encephalitis: a clinical-pathological review of 38 cases. J Neurol Neurosurg Psychiatry 38:585–591PubMedGoogle Scholar
  78. 78.
    Van Bogaert L (1950) Post-infectious encephalomyelitis and multiple sclerosis; the significance of perivenous encephalomyelitis. J Neuropathol Exp Neurol 9:219–249Google Scholar
  79. 79.
    Malhotra HS, Jain KK, Agarwal A et al (2009) Characterization of tumefactive demyelinating lesions using MR imaging and in-vivo proton MR spectroscopy. Mult Scler 15:193–203PubMedGoogle Scholar
  80. 80.
    Masdeu JC, Quinto C, Olivera C et al (2000) Open-ring imaging sign: highly specific for atypical brain demyelination. Neurology 54:1427–1433PubMedGoogle Scholar
  81. 81.
    Masdeu JC, Moreira J, Trasi S et al (1996) The open ring. A new imaging sign in demyelinating disease. J Neuroimaging 6:104–107PubMedGoogle Scholar
  82. 82.
    Kepes J (1993) Large focal tumor-like demyelinating lesions of the brain: intermediate entity between multiple sclerosis and acute disseminated encephalomyelitis: a study of 31 patients. Ann Neurol 33:18–27PubMedGoogle Scholar
  83. 83.
    Brinar VV (2004) Non-MS recurrent demyelinating diseases. Clin Neurol Neurosurg 106:197–210PubMedGoogle Scholar
  84. 84.
    Poser S, Luer W, Bruhn H et al (1992) Acute demyelinating disease. Classification and non-invasive diagnosis. Acta Neurol Scand 86:579–585PubMedGoogle Scholar
  85. 85.
    Chen C, Ro L, Wang L, Wong Y (1996) Balo’s concentric sclerosis: MRI. Neuroradiology 38:322–324PubMedGoogle Scholar
  86. 86.
    Pittock SJ, Weinshenker BG, Lucchinetti CF et al (2006) Neuromyelitis optica brain lesions localized at sites of high aquaporin 4 expression. Arch Neurol 63:964–968PubMedGoogle Scholar
  87. 87.
    Magana SM, Matiello M, Pittock SJ et al (2009) Posterior reversible encephalopathy syndrome in neuromyelitis optica spectrum disorders. Neurology 72:712–717PubMedGoogle Scholar
  88. 88.
    Morales Y, Parisi J, Lucchinetti CF (2006) The pathology of multiple sclerosis: evidence for heterogeneity. Adv Neurol 98:27–45Google Scholar
  89. 89.
    Weinshenker BG (1995) The natural history of multiple sclerosis. Neurol Clin 13:119–146PubMedGoogle Scholar
  90. 90.
    Lucchinetti CF, Brück W, Lassmann H (2003) Pathology and pathogenesis of multiple sclerosis, 2nd edn. Elsevier Science, USAGoogle Scholar
  91. 91.
    Lucchinetti CF, Brück W, Noseworthy J (2001) Multiple sclerosis: recent developments in neuropathology, pathogenesis, magnetic resonance imaging studies and treatment. Curr Opin Neurol 14:259–269PubMedGoogle Scholar
  92. 92.
    Storch MK, Piddlesden S, Haltia M et al (1998) Multiple sclerosis: in situ evidence for antibody- and complement-mediated demyelination. Ann Neurol 43:465–471PubMedGoogle Scholar
  93. 93.
    Karaarslan E, Altintas A, Senol U et al (2001) Balo’s concentric sclerosis: clinical and radiologic features of five cases. Am J Neuroradiol 22:1362–1367PubMedGoogle Scholar
  94. 94.
    Gallucci M, Caulo M, Cerone G, Masciocchi C (2001) Acquired inflammatory white matter disease. Childs Nerv Syst 17:202–210PubMedGoogle Scholar
  95. 95.
    Wingerchuk DM (2003) Postinfectious encephalomyelitis. Curr Neurol Neurosci Rep 3:256–264PubMedGoogle Scholar
  96. 96.
    de Seze J, Stojkovic T, Ferriby D et al (2002) Devic’s neuromyelitis optica: clinical, laboratory, MRI and outcome profile. J Neurol Sci 197:57–61PubMedGoogle Scholar
  97. 97.
    Fardet L, Genereau T, Mikaeloff Y et al (2003) Devic’s neuromyelitis optica: study of nine cases. Acta Neurol Scand 108:193–200PubMedGoogle Scholar
  98. 98.
    Lucchinetti CF, Mandler R, McGavern D, Bruck W, Gleich G, Ransohoff RM, Trebst C, Weinshenker B, Wingerchuk D, Parisi JE, Lassmann H (2002) A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain 125:1450–1461PubMedGoogle Scholar
  99. 99.
    Wingerchuk DM, Hogancamp WF, O’Brien PC, Weinshenker BG (1999) The clinical course of neuromyelitis optica (Devic’s syndrome). Neurology 53:1107–1114PubMedGoogle Scholar
  100. 100.
    Lucchinetti C (2006) The pathology of multiple sclerosis. What may it tell us? In: Cook SD (ed) Handbook of multiple sclerosis. Taylor and Francis, New YorkGoogle Scholar
  101. 101.
    Lucchinetti C (2008) Pathological heterogeneity of idiopathic central nervous system. In: Rodriguez M (ed) Advances in multiple sclerosis. Springer-Verlag, HeidelbergGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of NeurologyMayo Clinic College of MedicineRochesterUSA

Personalised recommendations