Seminars in Immunopathology

, Volume 31, Issue 4, pp 497–511 | Cite as

The blood–brain and the blood–cerebrospinal fluid barriers: function and dysfunction

  • Britta EngelhardtEmail author
  • Lydia SorokinEmail author


The central nervous system (CNS) is tightly sealed from the changeable milieu of blood by the blood–brain barrier (BBB) and the blood–cerebrospinal fluid (CSF) barrier (BCSFB). While the BBB is considered to be localized at the level of the endothelial cells within CNS microvessels, the BCSFB is established by choroid plexus epithelial cells. The BBB inhibits the free paracellular diffusion of water-soluble molecules by an elaborate network of complex tight junctions (TJs) that interconnects the endothelial cells. Combined with the absence of fenestrae and an extremely low pinocytotic activity, which inhibit transcellular passage of molecules across the barrier, these morphological peculiarities establish the physical permeability barrier of the BBB. In addition, a functional BBB is manifested by a number of permanently active transport mechanisms, specifically expressed by brain capillary endothelial cells that ensure the transport of nutrients into the CNS and exclusion of blood-borne molecules that could be detrimental to the milieu required for neural transmission. Finally, while the endothelial cells constitute the physical and metabolic barrier per se, interactions with adjacent cellular and acellular layers are prerequisites for barrier function. The fully differentiated BBB consists of a complex system comprising the highly specialized endothelial cells and their underlying basement membrane in which a large number of pericytes are embedded, perivascular antigen-presenting cells, and an ensheathment of astrocytic endfeet and associated parenchymal basement membrane. Endothelial cell morphology, biochemistry, and function thus make these brain microvascular endothelial cells unique and distinguishable from all other endothelial cells in the body. Similar to the endothelial barrier, the morphological correlate of the BCSFB is found at the level of unique apical tight junctions between the choroid plexus epithelial cells inhibiting paracellular diffusion of water-soluble molecules across this barrier. Besides its barrier function, choroid plexus epithelial cells have a secretory function and produce the CSF. The barrier and secretory function of the choroid plexus epithelial cells are maintained by the expression of numerous transport systems allowing the directed transport of ions and nutrients into the CSF and the removal of toxic agents out of the CSF. In the event of CNS pathology, barrier characteristics of the blood–CNS barriers are altered, leading to edema formation and recruitment of inflammatory cells into the CNS. In this review we will describe current knowledge on the cellular and molecular basis of the functional and dysfunctional blood–CNS barriers with focus on CNS autoimmune inflammation.


Blood–brain barrier Blood–cerebrospinal fluid barrier Extracellular matrix Basement membrane Choroid plexus Experimental autoimmune encephalomyelitis 


  1. 1.
    Ehrlich P (1904) Über die Beziehung chemischer Constitution, Vertheilung, und pharmakologischer Wirkung. BerlinGoogle Scholar
  2. 2.
    Goldmann EE (1913) Vitalfärbung am Zentralnervensystem. Abh Preuss Wissensch Phys-Math 1:1–60Google Scholar
  3. 3.
    Lewandowsky M (1890) Zur Lehre der Zerebrospinalflüssigkeit. Z Klin Med 40:480–494Google Scholar
  4. 4.
    Biedl A, Kraus R (1898) Über eine bisher unbekannte toxische Wirkung der Gallensäure auf das Zentralnervensystem. Zentralbl Inn Med 19:1185–1200Google Scholar
  5. 5.
    Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34:207–217PubMedCrossRefGoogle Scholar
  6. 6.
    Leonhardt H (1980) Ependym und circumventriculäre Organe. In: Oksche A, Vollrath L (eds) Handbuch der mikroskopischen Anatomie des Menschen. Springer, Berlin, pp 177–666Google Scholar
  7. 7.
    Engelhardt B, Wolburg-Buchholz K, Wolburg H (2001) Involvement of the choroid plexus in central nervous system inflammation. Microsc Res Tech 52(1):112–129PubMedCrossRefGoogle Scholar
  8. 8.
    Bouchaud C, Bosler O (1986) The circumventricular organs of the mammalian brain with special reference to monoaminergic innervation. IntRevCytol 105:283–327Google Scholar
  9. 9.
    Alcolado R, Weller RO, Parrish EP, Garrod D (1988) The cranial arachnoid and piamater in man: anatomical and ultrastructural observations. Neuropathol Appl Neurobiol 14:1–17PubMedCrossRefGoogle Scholar
  10. 10.
    Wolburg H (1995) Orthogonal arrays of intramembranous particles: a review with special reference to astrocytes. J Hirnforsch 36(2):239–258PubMedGoogle Scholar
  11. 11.
    Zhang ET, Inman CBE, Weller RO (1990) Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat 170:111–123PubMedGoogle Scholar
  12. 12.
    Sixt M, Engelhardt B, Pausch F et al (2001) Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood-brain barrier in experimental autoimmune encephalomyelitis. J Cell Biol 153(5):933–946PubMedCrossRefGoogle Scholar
  13. 13.
    Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173–185PubMedCrossRefGoogle Scholar
  14. 14.
    Wolburg H, Lippoldt A (2002) Tight junctions of the blood-brain barrier. Development, composition and regulation. Vasc Pharmacol 28:323–337CrossRefGoogle Scholar
  15. 15.
    Furuse M, Hirase T, Itoh M et al (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123(6 Pt 2):1777–1788PubMedCrossRefGoogle Scholar
  16. 16.
    Saitou M, Furuse M, Sasaki H et al (2000) Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 22:4131–4142Google Scholar
  17. 17.
    Furuse M, Tsukita S (2006) Claudins in occluding junctions of humans and flies. Trends Cell Biol 16(4):181–188PubMedCrossRefGoogle Scholar
  18. 18.
    Wolburg H, Wolburg-Buchholz K, Kraus J et al (2003) Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol (Berl) 105(6):586–592Google Scholar
  19. 19.
    Martin-Padura I, Lostaglio S, Schneemann M et al (1998) Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 142(1):117–127PubMedCrossRefGoogle Scholar
  20. 20.
    Nasdala I, Wolburg-Buchholz K, Wolburg H et al (2002) A transmembrane tight junction protein selectively expressed on endothelial cells and platelets. J Biol Chem 277(18):16294–16303PubMedCrossRefGoogle Scholar
  21. 21.
    Tsukita S, Furuse M, Itoh M (1999) Structural and signalling molecules come together at tight junctions. Curr Opin Cell Biol 11(5):628–633PubMedCrossRefGoogle Scholar
  22. 22.
    Dejana E, Orsenigo F, Lampugnani MG (2008) The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 121(Pt 13):2115–2122PubMedCrossRefGoogle Scholar
  23. 23.
    Dejana E, Tournier-Lasserve E, Weinstein BM (2009) The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 16(2):209–221PubMedCrossRefGoogle Scholar
  24. 24.
    Breier G, Breviaro F, Caveda L et al (1996) Molecular cloning and expression of murine VE-cadherin in early developing cardiovascular system. Blood 87(2):630–641PubMedGoogle Scholar
  25. 25.
    Taddei A, Giampietro C, Conti A et al (2008) Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nature cell biology 10(8):923–934PubMedCrossRefGoogle Scholar
  26. 26.
    Liebner S, Corada M, Bangsow T et al (2008) Wnt/beta-catenin signaling controls development of the blood-brain barrier. J Cell Biol 183(3):409–417PubMedCrossRefGoogle Scholar
  27. 27.
    Hallmann R, Mayer DN, Berg EL, Broermann R, Butcher EC (1995) Novel mouse endothelial cell surface marker is suppressed during differentiation of the blood brain barrier. Dev Dyn 202(4):325–332PubMedGoogle Scholar
  28. 28.
    Graesser D, Solowiej A, Bruckner M et al (2002) Altered vascular permeability and early onset of experimental autoimmune encephalomyelitis in PECAM-1-deficient mice. J Clin Invest 109(3):383–392PubMedGoogle Scholar
  29. 29.
    Davson H, Oldendorf WH (1967) Symposium on membrane transport. Transport in the central nervous system. Proc R Soc Med 60(4):326–329PubMedGoogle Scholar
  30. 30.
    Janzer RC, Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325(6101):253–257PubMedCrossRefGoogle Scholar
  31. 31.
    Bauer HC, Bauer H (2000) Neural induction of the blood-brain barrier: still an enigma. Cell Mol Neurobiol 20:13–28PubMedCrossRefGoogle Scholar
  32. 32.
    Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7(1):41–53PubMedCrossRefGoogle Scholar
  33. 33.
    Nicholas DS, Weller RO (1988) The fine anatomy of the human spinal meninges. A light and scanning electron microscopy study. J Neurosurg 69(2):276–282PubMedCrossRefGoogle Scholar
  34. 34.
    Hutchings M, Weller RO (1986) Anatomical relationships of the pia mater to cerebral blood vessels in man. J Neurosurg 65(3):316–325PubMedCrossRefGoogle Scholar
  35. 35.
    Garberg P, Ball M, Borg N et al (2005) In vitro models for the blood-brain barrier. Toxicol In Vitro 19(3):299–334PubMedCrossRefGoogle Scholar
  36. 36.
    Gerhardt H, Betsholtz C (2003) Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314(1):15–23PubMedCrossRefGoogle Scholar
  37. 37.
    Bondjers C, He L, Takemoto M et al (2006) Microarray analysis of blood microvessels from PDGF-B and PDGF-Rbeta mutant mice identifies novel markers for brain pericytes. Faseb J 20(10):1703–1705PubMedCrossRefGoogle Scholar
  38. 38.
    Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245PubMedCrossRefGoogle Scholar
  39. 39.
    Lindblom P, Gerhardt H, Liebner S et al (2003) Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev 17(15):1835–1840PubMedCrossRefGoogle Scholar
  40. 40.
    Timpl R (1989) Structure and biological activity of basement membrane proteins. Eur J Biochem 180:487–502PubMedCrossRefGoogle Scholar
  41. 41.
    Hallmann R, Horn N, Selg M et al (2005) Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev 85(3):979–1000PubMedCrossRefGoogle Scholar
  42. 42.
    del Zoppo GJ, Milner R (2006) Integrin-matrix interactions in the cerebral microvasculature. Arterioscler Thromb Vasc Biol 26(9):1966–1975PubMedCrossRefGoogle Scholar
  43. 43.
    Del Zoppo GJ, Milner R, Mabuchi T et al (2006) Vascular matrix adhesion and the blood-brain barrier. Biochem Soc Trans 34(Pt 6):1261–1266PubMedGoogle Scholar
  44. 44.
    Agrawal S, Anderson P, Durbeej M et al (2006) Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J Exp Med 203(4):1007–1019PubMedCrossRefGoogle Scholar
  45. 45.
    Wu C, Ivars F, Anderson P et al (2009) Endothelial basement membrane laminin alpha5 selectively inhibits T lymphocyte extravasation into the brain. Nat Med 15(5):519–527PubMedCrossRefGoogle Scholar
  46. 46.
    Jucker M, Tian M, Norton DD, Sherman C, Kusiak JW (1996) Laminin alpha 2 is a component of brain capillary basement membrane: reduced expression in dystrophic dy mice. Neuroscience 71:1153–1161PubMedCrossRefGoogle Scholar
  47. 47.
    Zhou FC (1990) Four patterns of laminin-immunoreactive structure in developing rat brain. Brain Res Dev Brain Res 55(2):191–201PubMedCrossRefGoogle Scholar
  48. 48.
    Vahedi K, Kubis N, Boukobza M et al (2007) COL4A1 mutation in a patient with sporadic, recurrent intracerebral hemorrhage. Stroke 38(5):1461–1464PubMedCrossRefGoogle Scholar
  49. 49.
    Gould DB, Phalan FC, Breedveld GJ et al (2005) Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly. Science 308(5725):1167–1171PubMedCrossRefGoogle Scholar
  50. 50.
    Poschl E, Schlotzer-Schrehardt U, Brachvogel B et al (2004) Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development 131(7):1619–1628PubMedCrossRefGoogle Scholar
  51. 51.
    Wolburg-Buchholz K, Mack AF, Steiner E et al (2009) Loss of astrocyte polarity marks blood-brain barrier impairment during experimental autoimmune encephalomyelitis. Acta Neuropathol 118(2):219–233PubMedCrossRefGoogle Scholar
  52. 52.
    Brachvogel B, Pausch F, Farlie P et al (2007) Isolated Anxa5+/Sca-1+ perivascular cells from mouse meningeal vasculature retain their perivascular phenotype in vitro and in vivo. Exp Cell Res 313(12):2730–2743PubMedCrossRefGoogle Scholar
  53. 53.
    Betsholtz C, Lindblom P, Bjarnegard M et al (2004) Role of platelet-derived growth factor in mesangium development and vasculopathies: lessons from platelet-derived growth factor and platelet-derived growth factor receptor mutations in mice. Curr Opin Nephrol Hypertens 13(1):45–52PubMedCrossRefGoogle Scholar
  54. 54.
    Durbeej M, Henry MD, Ferletta M, Campbell KP, Ekblom P (1998) Distribution of dystroglycan in normal adult mouse tissues. J Histochem Cytochem 46:449–458PubMedGoogle Scholar
  55. 55.
    Milner R (2009) Microglial expression of alphavbeta3 and alphavbeta5 integrins is regulated by cytokines and the extracellular matrix: beta5 integrin null microglia show no defects in adhesion or MMP-9 expression on vitronectin. Glia 57(7):714–723PubMedCrossRefGoogle Scholar
  56. 56.
    Proctor JM, Zang K, Wang D, Wang R, Reichardt LF (2005) Vascular development of the brain requires beta8 integrin expression in the neuroepithelium. J Neurosci 25(43):9940–9948PubMedCrossRefGoogle Scholar
  57. 57.
    Zhu J, Motejlek K, Wang D et al (2002) beta8 integrins are required for vascular morphogenesis in mouse embryos. Development 129(12):2891–2903PubMedGoogle Scholar
  58. 58.
    Bader BL, Rayburn H, Crowley D, Hynes RO (1998) Extensive vasculogenesis, angiogenesis and organogenesis precede lethality in mice lacking all av integrins. Cell 95:507–519PubMedCrossRefGoogle Scholar
  59. 59.
    McCarty JH, Monahan-Earley RA, Brown LF et al (2002) Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking alphav integrins. Mol Cell Biol 22:7667–7777PubMedCrossRefGoogle Scholar
  60. 60.
    Moore SA, Saito F, Chen J et al (2002) Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy. Nature 418(6896):422–425PubMedCrossRefGoogle Scholar
  61. 61.
    Ohtsuki S, Terasaki T (2007) Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm Res 24(9):1745–1758PubMedCrossRefGoogle Scholar
  62. 62.
    Boado RJ, Pardridge WM (1993) Glucose deprivation causes posttranscriptional enhancement of brain capillary endothelial glucose transporter gene expression via GLUT1 mRNA stabilization. J Neurochem 60(6):2290–2296PubMedCrossRefGoogle Scholar
  63. 63.
    Lyck R, Ruderisch N, Moll AG, et al. (2009) Culture-induced changes in blood-brain barrier transcriptome: implications for amino-acid transporters in vivo. J Cereb Blood Flow Metab 29:1491–1502Google Scholar
  64. 64.
    Lee HJ, Engelhardt B, Lesley J, Bickel U, Pardridge WM (2000) Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood-brain barrier in mouse. J Pharmacol Exp Ther 292(3):1048–1052PubMedGoogle Scholar
  65. 65.
    Banks WA (2005) Blood-brain barrier transport of cytokines: a mechanism for neuropathology. Curr Pharm Des 11(8):973–984PubMedCrossRefGoogle Scholar
  66. 66.
    Begley DJ (2004) ABC transporters and the blood-brain barrier. Curr Pharm Des 10(12):1295–1312PubMedCrossRefGoogle Scholar
  67. 67.
    Hickey WF, Hsu BL, Kimura H (1991) T-lymphocyte entry into the central nervous system. J Neurosci Res 28(2):254–260PubMedCrossRefGoogle Scholar
  68. 68.
    Wekerle H, Linington C, Lassmann H, Meyermann R (1986) Cellular immune reactivity within the CNS. TINS 9:271–277Google Scholar
  69. 69.
    Vajkoczy P, Laschinger M, Engelhardt B (2001) Alpha4-integrin-VCAM-1 binding mediates G protein-independent capture of encephalitogenic T cell blasts to CNS white matter microvessels. J Clin Invest 108(4):557–565PubMedGoogle Scholar
  70. 70.
    Laschinger M, Vajkoczy P, Engelhardt B (2002) Encephalitogenic T cells use LFA-1 during transendothelial migration but not during capture and adhesion in spinal cord microvessels in vivo. Eur J Immunol 32:3598–3606PubMedCrossRefGoogle Scholar
  71. 71.
    Kerfoot SM, Norman MU, Lapointe BM et al (2006) Reevaluation of P-selectin and alpha 4 integrin as targets for the treatment of experimental autoimmune encephalomyelitis. J Immunol 176:6225–6234PubMedGoogle Scholar
  72. 72.
    Bauer M, Brakebusch C, Coisne C et al (2009) {beta}1 integrins differentially control extravasation of inflammatory cell subsets into the CNS during autoimmunity. Proc Natl Acad Sci U S A 106:1920–1925PubMedCrossRefGoogle Scholar
  73. 73.
    Engelhardt B, Laschinger M, Schulz M et al (1998) The development of experimental autoimmune encephalomyelitis in the mouse requires alpha4-integrin but not alpha4beta7-integrin. J Clin Invest 102(12):2096–2105PubMedCrossRefGoogle Scholar
  74. 74.
    Piccio L, Rossi B, Scarpini E et al (2002) Molecular mechanisms involved in lymphocyte recruitment in inflamed brain microvessels: critical roles for P-selectin glycoprotein ligand-1 and heterotrimeric G(i)-linked receptors. J Immunol 168:1940–1949PubMedGoogle Scholar
  75. 75.
    Engelhardt B, Ransohoff RM (2005) The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol 26(9):485–495PubMedCrossRefGoogle Scholar
  76. 76.
    Kerfoot S, Kubes P (2002) Overlapping roles of P-selectin and alpha 4 integrin to recruit leukocytes to the central nervous system in experimental autoimmune encephalomyelitis. J Immunol 169:1000–1006PubMedGoogle Scholar
  77. 77.
    Osmers I, Bullard DC, Barnum SR (2005) PSGL-1 is not required for development of experimental autoimmune encephalomyelitis. J Neuroimmunol 166:193–196PubMedCrossRefGoogle Scholar
  78. 78.
    Engelhardt B, Vestweber D, Hallmann R, Schulz M (1997) E- and P-selectin are not involved in the recruitment of inflammatory cells across the blood-brain barrier in experimental autoimmune encephalomyelitis. Blood 90(11):4459–4472PubMedGoogle Scholar
  79. 79.
    Engelhardt B, Kempe B, Merfeld-Clauss S et al (2005) P-selectin glycoprotein ligand 1 is not required for the development of experimental autoimmune encephalomyelitis in SJL and C57BL/6 mice. J Immunol 175(2):1267–1275PubMedGoogle Scholar
  80. 80.
    Doring A, Wild M, Vestweber D, Deutsch U, Engelhardt B (2007) E- and P-selectin are not required for the development of experimental autoimmune encephalomyelitis in C57BL/6 and SJL mice. J Immunol 179(12):8470–8479PubMedGoogle Scholar
  81. 81.
    Uboldi C, Doring A, Alt C et al (2008) L-Selectin-deficient SJL and C57BL/6 mice are not resistant to experimental autoimmune encephalomyelitis. Eur J Immunol 38(8):2156–2167PubMedCrossRefGoogle Scholar
  82. 82.
    Adamson P, Etienne S, Couraud PO, Calder V, Greenwood J (1999) Lymphocyte migration through brain endothelial cell monolayers involves signaling through endothelial ICAM-1 via a rho-dependent pathway. J Immunol 162(5):2964–2973PubMedGoogle Scholar
  83. 83.
    Lyck R, Reiss Y, Gerwin N et al (2003) T cell interaction with ICAM-1/ICAM-2-double-deficient brain endothelium in vitro: the cytoplasmic tail of endothelial ICAM-1 is necessary for transendothelial migration of T cells. Blood 102:3675–3683 Epub 2003 Jul 3631PubMedCrossRefGoogle Scholar
  84. 84.
    Vestweber D (2007) Adhesion and signaling molecules controlling the transmigration of leukocytes through endothelium. Immunol Rev 218:178–196PubMedCrossRefGoogle Scholar
  85. 85.
    Carman CV, Springer TA (2008) Trans-cellular migration: cell-cell contacts get intimate. Curr Opin Cell Biol 20(5):533–540PubMedCrossRefGoogle Scholar
  86. 86.
    Barreiro O, Yanez-Mo M, Serrador JM et al (2002) Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol 157:1233–1245PubMedCrossRefGoogle Scholar
  87. 87.
    Carman CV, Springer TA (2004) A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J Cell Biol 167:377–388PubMedCrossRefGoogle Scholar
  88. 88.
    Cross AH, Raine CS (1991) Central nervous system endothelial cell-polymorphonuclear cell interactions during autoimmune demyelination. American 139(6):1401–1409Google Scholar
  89. 89.
    Engelhardt B, Wolburg H (2004) Mini-review: transendothelial migration of leukocytes: through the front door or around the side of the house? Eur J Immunol 34(11):2955–2963PubMedCrossRefGoogle Scholar
  90. 90.
    Wolburg H, Wolburg-Buchholz K, Engelhardt B (2005) Diapedesis of mononuclear cells across cerebral venules during experimental autoimmune encephalomyelitis leaves tight junctions intact. Acta Neuropathol (Berl) 109(2):181–190CrossRefGoogle Scholar
  91. 91.
    Geberhiwot T, Assefa D, Kortesmaa J et al (2001) Laminin-8 (alpha4beta1gamma1) is synthesized by lymphoid cells, promotes lymphocyte migration and costimulates T cell proliferation. J Cell Sci 114(Pt 2):423–433PubMedGoogle Scholar
  92. 92.
    Thyboll J, Kortesmaa J, Cao R et al (2002) Deletion of the laminin alpha4 chain leads to impaired microvessel maturation. Mol Cell Biol 22(4):1194–1202PubMedCrossRefGoogle Scholar
  93. 93.
    Colognato H, Yurchenco PD (2000) Form and function: the laminin family of heterotrimers. Dev Dyn 218(2):213–234PubMedCrossRefGoogle Scholar
  94. 94.
    Yurchenco PD, Smirnov S, Mathus T (2002) Analysis of basement membrane self-assembly and cellular interactions with native and recombinant glycoproteins. Methods Cell Biol 69:111–144PubMedCrossRefGoogle Scholar
  95. 95.
    Graesser D, Mahooti S, Madri JA (2000) Distinct roles for matrix metalloproteinase-2 and alpha4 integrin in autoimmune T cell extravasation and residency in brain parenchyma during experimental autoimmune encephalomyelitis. J Neuroimmunol 109(2):121–131PubMedCrossRefGoogle Scholar
  96. 96.
    Dubois B, Masure S, Hurtenbach U et al (1999) Resistance of young gelatinase B-deficient mice to experimental autoimmune encephalomyelitis and necrotizing tail lesions. J Clin Invest 104:1507–1515PubMedCrossRefGoogle Scholar
  97. 97.
    Kieseier BC, Clements JM, Pischel HB et al (1998) Matrix metalloproteinases MMP-9 and MMP-7 are expressed in experimental autoimmune neuritis and the Guillain-Barre syndrome. Annals 43(4):427–434Google Scholar
  98. 98.
    Toft-Hansen H, Nuttall RK, Edwards DR, Owens T (2004) Key metalloproteinases are expressed by specific cell types in experimental autoimmune encephalomyelitis. J Immunol 173(8):5209–5218PubMedGoogle Scholar
  99. 99.
    Toft-Hansen H, Babcock AA, Millward JM, Owens T (2007) Downregulation of membrane type-matrix metalloproteinases in the inflamed or injured central nervous system. J Neuroinflammation 4:24PubMedCrossRefGoogle Scholar
  100. 100.
    Nygardas P, Hinkkanen A (2002) Up-regulation of MMP-8 and MMP-9 activity in the BALB/c mouse spinal cord correlates with the severity of experimental autoimmune encephalomyelitis. Clin Exp Immunol 128:245–254PubMedCrossRefGoogle Scholar
  101. 101.
    Gijbels K, Galardy RE, Steinman L (1994) Reversal of experimental autoimmune encephalomyelitis with a hydroxamate inhibitor of matrix metalloproteases. J Clin Invest 94(6):2177–2182PubMedCrossRefGoogle Scholar
  102. 102.
    Morini M, Roccatagliata L, Dell’Eva R et al (2004) Alpha-lipoic acid is effective in prevention and treatment of experimental autoimmune encephalomyelitis. J Neuroimmunol 148(1–2):146–153PubMedCrossRefGoogle Scholar
  103. 103.
    Parks WC, Wilson CL, Lopez-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nature reviews 4(8):617–629PubMedCrossRefGoogle Scholar
  104. 104.
    McCawley LJ, Matrisian LM (2001) Matrix metalloproteinases: they’re not just for matrix anymore!. Curr Opin Cell Biol 13:534–540PubMedCrossRefGoogle Scholar
  105. 105.
    Dean RA, Overall CM (2007) Proteomics discovery of metalloproteinase substrates in the cellular context by iTRAQ labeling reveals a diverse MMP-2 substrate degradome. Mol Cell Proteomics 6(4):611–623PubMedCrossRefGoogle Scholar
  106. 106.
    Overall CM, Blobel CP (2007) In search of partners: linking extracellular proteases to substrates. Nature reviews 8(3):245–257PubMedCrossRefGoogle Scholar
  107. 107.
    Talts JF, Andac Z, Göhring W, Brancaccio A, Timpl R (1999) Binding of G domains of laminin alpha 1 and alpha 2 chains and perlecan to heparin, sulfatides, alpha-dystroglycan and several extracellular matrix proteins. EMBO J 18:863–870PubMedCrossRefGoogle Scholar
  108. 108.
    Toft-Hansen H, Buist R, Sun XJ et al (2006) Metalloproteinases control brain inflammation induced by pertussis toxin in mice overexpressing the chemokine CCL2 in the central nervous system. J Immunol 177(10):7242–7249PubMedGoogle Scholar
  109. 109.
    Betz LA, Goldstein GW, Katzman R (1989) Blood-brain-cerebrospinal fluid barriers. In: Siegel GJ (ed) Basic neurochemistry: molecular, cellular, and medical aspects. Raven, New York, pp 591–606Google Scholar
  110. 110.
    Wolburg H, Wolburg-Buchholz K, Liebner S, Engelhardt B (2001) Claudin-1, claudin-2 and claudin-11 are present in tight junctions of choroid plexus epithelium of the mouse. Neurosci Lett 307(2):77–80PubMedCrossRefGoogle Scholar
  111. 111.
    Bronstein JM, Tiwari-Woodruff S, Buznikov AG, Stevens DB (2000) Involvement of OSP/Claudin-11 in oligodendrocyte membrane interactions: role in biology and disease [review]. J Neurosci Res 59(6):706–711PubMedCrossRefGoogle Scholar
  112. 112.
    de Lange EC (2004) Potential role of ABC transporters as a detoxification system at the blood-CSF barrier. Adv Drug Deliv Rev 56(12):1793–1809PubMedCrossRefGoogle Scholar
  113. 113.
    Liao KK, Lu KS (1993) Cast-model and scanning electron microscopy of the rat brain ventricular system. Kao Hsiung I Hsueh Ko Hsueh Tsa Chih 9(6):328–337PubMedGoogle Scholar
  114. 114.
    Ling EA, Kaur C, Lu J (1998) Origin, nature and some functional considerations of intraventrucular macrophages, with special reference to the epiplexus cells. Microsc Res Tech 41:43–56PubMedCrossRefGoogle Scholar
  115. 115.
    Lu J, Kaur C, Ling EA (1994) Up-regulation of surface antigens on epiplexus cells in postnatal rats following intraperitoneal injections of lipopolysaccaride. Neurosci 63:1169–1178CrossRefGoogle Scholar
  116. 116.
    Wolburg K, Gerhardt H, Schulz M, Wolburg H, Engelhardt B (1999) Ultrastructural localization of adhesion molecules in the healthy and inflamed choroid plexus of the mouse. Cell Tissue Res 296(2):259–269PubMedCrossRefGoogle Scholar
  117. 117.
    Steffen BJ, Breier G, Butcher EC, Schulz M, Engelhardt B (1996) ICAM-1, VCAM-1, and MAdCAM-1 are expressed on choroid plexus epithelium but not endothelium and mediate binding of lymphocytes in vitro. American 148(6):1819–1838Google Scholar
  118. 118.
    Kivisakk P, Mahad DJ, Callahan MK et al (2005) Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci U S A 100:8389–8394 Epub 2003 Jun 8326CrossRefGoogle Scholar
  119. 119.
    Reboldi A, Coisne C, Baumjohann D et al (2009) C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 10(5):514–523PubMedCrossRefGoogle Scholar
  120. 120.
    Dickeson SK, Mathis NL, Rahman M, Bergelson JM, Santoro SA (1999) Determinants of ligand binding specificity of the alpha(1)beta(1) and alpha(2)beta(1) integrins. J Biol Chem 274(45):32182–32191PubMedCrossRefGoogle Scholar
  121. 121.
    Eble JA, Kassner A, Niland S, et al (2006) Collagen XVI harbors an integrin alpha1 beta1 recognition site in its C-terminal domains. J Biol Chem 28 (35):25745–25756CrossRefGoogle Scholar
  122. 122.
    Eble JA (2005) Collagen-binding integrins as pharmaceutical targets. Curr Pharm Des 11(7):867–880PubMedCrossRefGoogle Scholar
  123. 123.
    Wagner S, Gardner H (2000) Modes of regulation of laminin-5 production by rat astrocytes. Neurosci Lett 284(1–2):105–108PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Theodor Kocher InstituteUniversity of BernBernSwitzerland
  2. 2.Institute of Physiological Chemistry and PathobiochemistryUniversity of MuensterMuensterGermany

Personalised recommendations