Seminars in Immunopathology

, 31:345 | Cite as

Mononuclear cells in liver fibrosis

  • Fabio Marra
  • Sara Aleffi
  • Sara Galastri
  • Angela Provenzano
Review

Abstract

Fibrosis is a multicellular wound healing process, where myofibroblasts that express extracellular matrix components extensively cross-talk with other cells resident in the liver or recruited from the bloodstream. Macrophages and infiltrating monocytes participate in the development of fibrosis via several mechanisms, including secretion of cytokines and generation of oxidative stress-related products. However, macrophages are also pivotal in the process of fibrosis resolution, where they contribute to matrix degradation. T lymphocytes modulate the fibrogenic process by direct interaction with myofibroblasts and secreting cytokines. In general, Th2 polarized responses promote fibrosis, while Th1 cytokines may be antifibrogenic. NK cells limit the development of fibrosis and favor its resolution, at least in part via killing of fibrogenic cells. The possible role of NKT cells and B cells is emerging in recent studies. Thus, mononuclear cells represent a critical regulatory system during fibrogenesis and may become an appealing target for therapy.

Keywords

Liver fibrosis Hepatic stellate cells Kupffer cells Macrophages Monocytes T lymphocytes B lymphocytes NK cells NKT cells Chemokines 

References

  1. 1.
    Friedman SL (2008) Mechanisms of hepatic fibrogenesis. Gastroenterology 134:1655–1669PubMedCrossRefGoogle Scholar
  2. 2.
    Schuppan D, Ruehl M, Somasundaram R, Hahn EG (2001) Matrix as a modulator of hepatic fibrogenesis. Semin Liver Dis 21:351–372PubMedCrossRefGoogle Scholar
  3. 3.
    Pinzani M, Failli P, Ruocco C et al (1992) Fat-storing cells as liver-specific pericytes. Spatial dynamics of agonist-stimulated intracellular calcium transients. J Clin Invest 90:642–646PubMedCrossRefGoogle Scholar
  4. 4.
    Rockey DC, Housset CN, Friedman SL (1993) Activation-dependent contractility of rat hepatic lipocytes in culture and in vivo. J Clin Invest 92:1795PubMedCrossRefGoogle Scholar
  5. 5.
    Mann DA, Smart DE (2002) Transcriptional regulation of hepatic stellate cell activation. Gut 50:891–896PubMedCrossRefGoogle Scholar
  6. 6.
    Parola M, Robino G (2001) Oxidative stress-related molecules and liver fibrosis. Journal of Hepatology 35:297–306PubMedCrossRefGoogle Scholar
  7. 7.
    Duffield JS, Forbes SJ, Constandinou CM et al (2005) Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 115:56–65PubMedGoogle Scholar
  8. 8.
    Smedsrod B, De Bleser PJ, Braet F et al (1994) Cell biology of liver endothelial and Kupffer cells. Gut 35:1509–1516PubMedCrossRefGoogle Scholar
  9. 9.
    Bouwens L, Baekeland M, De Zanger R, Wisse E (1986) Quantitation, tissue distribution and proliferation kinetics of Kupffer cells in normal rat liver. Hepatology 6:718–722PubMedCrossRefGoogle Scholar
  10. 10.
    Winwood PJ, Arthur MJ (1993) Kupffer cells: their activation and role in animal models of liver injury and human liver disease. Semin Liver Dis 13:50–59PubMedCrossRefGoogle Scholar
  11. 11.
    Purohit V, Brenner DA (2006) Mechanisms of alcohol-induced hepatic fibrosis: a summary of the Ron Thurman Symposium. Hepatology 43:872–878PubMedCrossRefGoogle Scholar
  12. 12.
    Maher JJ (1999) Leukocytes as modulators of stellate cell activation. Alcohol Clin Exp Res 23:917–921PubMedGoogle Scholar
  13. 13.
    Shiratori Y, Geerts A, Ichida T, Kawase T, Wisse E (1986) Kupffer cells from CCl4-induced fibrotic livers stimulate proliferation of fat-storing cells. J Hepatol 3:294–303PubMedCrossRefGoogle Scholar
  14. 14.
    Geerts A, Schellinck P, Bouwens L, Wisse E (1988) Cell population kinetics of Kupffer cells during the onset of fibrosis in rat liver by chronic carbon tetrachloride administration. J Hepatol 6:50–56PubMedCrossRefGoogle Scholar
  15. 15.
    Friedman SL, Arthur MJ (1989) Activation of cultured rat hepatic lipocytes by Kupffer cell conditioned medium. Direct enhancement of matrix synthesis and stimulation of cell proliferation via induction of platelet-derived growth factor receptors. J Clin Invest 84:1780–1785PubMedCrossRefGoogle Scholar
  16. 16.
    Gressner AM, Zerbe O (1987) Kupffer cell-mediated induction of synthesis and secretion of proteoglycans by rat liver fat-storing cells in culture. J Hepatol 5:299–310PubMedCrossRefGoogle Scholar
  17. 17.
    Gressner AM, Weiskirchen R, Breitkopf K, Dooley S (2002) Roles of TGF-beta in hepatic fibrosis. Front Biosci 7:d793–d807PubMedCrossRefGoogle Scholar
  18. 18.
    Matsuoka M, Tsukamoto H (1990) Stimulation of hepatic lipocyte collagen production by Kupffer cell-derived transforming growth factor beta: implication for a pathogenetic role in alcoholic liver fibrogenesis. Hepatology 11:599–605PubMedCrossRefGoogle Scholar
  19. 19.
    Marra F, Gentilini A, Pinzani M et al (1997) Phosphatidylinositol 3-kinase is required for platelet-derived growth factor's actions on hepatic stellate cells. Gastroenterology 112:1297–1306PubMedCrossRefGoogle Scholar
  20. 20.
    Pinzani M, Gesualdo L, Sabbah GM, Abboud HE (1989) Effects of platelet-derived growth factor and other polypeptide mitogens on DNA synthesis and growth of cultured rat liver fatstoring cells. J Clin Invest 84:1786–1793PubMedCrossRefGoogle Scholar
  21. 21.
    Nieto N (2006) Oxidative-stress and IL-6 mediate the fibrogenic effects of [corrected] Kupffer cells on stellate cells. Hepatology 44:1487–1501PubMedCrossRefGoogle Scholar
  22. 22.
    Rivera CA, Bradford BU, Hunt KJ et al (2001) Attenuation of CCl(4)-induced hepatic fibrosis by GdCl(3) treatment or dietary glycine. Am J Physiol Gastrointest Liver Physiol 281:G200–207PubMedGoogle Scholar
  23. 23.
    Marra F, Bertolani C (2009) Adipokines in liver disease. Hepatology, in press. doi:10.1002/hep.23046
  24. 24.
    Ikejima K, Takei Y, Honda H, Hirose M, Yoshikawa M, Zhang YJ, Lang T, Fukuda T, Yamashina S, Kitamura T, Sato N (2002) Leptin receptor-mediated signaling regulates hepatic fibrogenesis and remodeling of extracellular matrix in the rat. Gastroenterology 122:1399–1410PubMedCrossRefGoogle Scholar
  25. 25.
    Wang J, Leclercq I, Brymora JM, et al. (2009) Kupffer cells mediate leptin-induced liver fibrosis. Gastroenterology, in press. doi:10.1053/j.gastro.2009.04.011
  26. 26.
    Aleffi S, Petrai I, Bertolani C et al (2005) Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology 42:1339–1348PubMedCrossRefGoogle Scholar
  27. 27.
    Saxena NK, Ikeda K, Rockey DC, Friedman SL, Anania FA (2002) Leptin in hepatic fibrosis: evidence for increased collagen production in stellate cells and lean littermates of ob/ob mice. Hepatology 35:762–771PubMedCrossRefGoogle Scholar
  28. 28.
    Mencin A, Kluwe J, Schwabe RF (2009) Toll-like receptors as targets in chronic liver diseases. Gut 58:704–720PubMedCrossRefGoogle Scholar
  29. 29.
    Seki E, De Minicis S, Osterreicher CH et al (2007) TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 13:1324–1332PubMedCrossRefGoogle Scholar
  30. 30.
    Huang H, Shiffman ML, Friedman S et al (2007) A 7 gene signature identifies the risk of developing cirrhosis in patients with chronic hepatitis C. Hepatology 46:297–306PubMedCrossRefGoogle Scholar
  31. 31.
    Guo J, Loke J, Zheng F, Hong F, Yea S, Fukata M, Tarocchi M, Abar OT, Huang H, Sninsky JJ, Friedman S (2009) Functional linkage of cirrhosis-predictive single nucleotide polymorphisms of Toll-like receptor 4 to hepatic stellate cell responses. Hepatology 49(3):960–968PubMedCrossRefGoogle Scholar
  32. 32.
    Watanabe A, Hashmi A, Gomes DA et al (2007) Apoptotic hepatocyte DNA inhibits hepatic stellate cell chemotaxis via toll-like receptor 9. Hepatology 46:1509–1518PubMedCrossRefGoogle Scholar
  33. 33.
    Gabele E, Muhlbauer M, Dorn C et al (2008) Role of TLR9 in hepatic stellate cells and experimental liver fibrosis. Biochem Biophys Res Commun 376:271–276PubMedCrossRefGoogle Scholar
  34. 34.
    Pardo M, Budick-Harmelin N, Tirosh B, Tirosh O (2008) Antioxidant defense in hepatic ischemia-reperfusion injury is regulated by damage-associated molecular pattern signal molecules. Free Rad Biol Med 45:1073–1083PubMedCrossRefGoogle Scholar
  35. 35.
    Imamura M, Ogawa T, Sasaguri Y, Chayama K, Ueno H (2005) Suppression of macrophage infiltration inhibits activation of hepatic stellate cells and liver fibrogenesis in rats. Gastroenterology 128:138–146PubMedCrossRefGoogle Scholar
  36. 36.
    Inoue S, Egashira K, Ni W et al (2002) Anti-monocyte chemoattractant protein-1 gene therapy limits progression and destabilization of established atherosclerosis in apolipoprotein E-knockout mice. Circulation 106:2700–2706PubMedCrossRefGoogle Scholar
  37. 37.
    Boring L, Gosling J, Cleary M, Charo IF (1998) Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394:894–897PubMedCrossRefGoogle Scholar
  38. 38.
    Gu L, Okada Y, Clinton SK et al (1998) Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 2:275–281PubMedCrossRefGoogle Scholar
  39. 39.
    Zamara E, Galastri S, Aleffi S et al (2007) Prevention of severe toxic liver injury and oxidative stress in MCP-1-deficient mice. J Hepatol 46:230–238PubMedCrossRefGoogle Scholar
  40. 40.
    Marra F, DeFranco R, Grappone C et al (1999) Expression of monocyte chemotactic protein-1 precedes monocyte recruitment in a rat model of acute liver injury, and is modulated by vitamin E. J Investig Med 47:66–75PubMedGoogle Scholar
  41. 41.
    Josse C, Boelaert JR, Best-Belpomme M, Piette J (2001) Importance of post-transcriptional regulation of chemokine genes by oxidative stress. Biochem J 360:321–333PubMedCrossRefGoogle Scholar
  42. 42.
    Xu Y, Rojkind M, Czaja MJ (1996) Regulation of monocyte chemoattractant protein 1 by cytokines and oxygen free radicals in rat hepatic fat-storing cells. Gastroenterology 110:1870–1877PubMedCrossRefGoogle Scholar
  43. 43.
    Marra F, Valente AJ, Pinzani M, Abboud HE (1993) Cultured human liver fat-storing cells produce monocyte chemotactic protein-1. Regulation by proinflammatory cytokines. J Clin Invest 92:1674–1680PubMedCrossRefGoogle Scholar
  44. 44.
    Czaja MJ, Geerts A, Xu J, Schmiedeberg P, Ju Y (1994) Monocyte chemoattractant protein 1 (MCP-1) expression occurs in toxic rat liver injury and human liver disease. J Leukoc Biol 55:120–126PubMedGoogle Scholar
  45. 45.
    Marra F (2002) Chemokines in liver inflammation and fibrosis. Front Biosci 7:d1899–1914PubMedCrossRefGoogle Scholar
  46. 46.
    Marra F, Romanelli RG, Giannini C et al (1999) Monocyte chemotactic protein-1 as a chemoattractant for human hepatic stellate cells. Hepatology 29:140–148PubMedCrossRefGoogle Scholar
  47. 47.
    Kruglov EA, Nathanson RA, Nguyen T, Dranoff JA (2006) Secretion of MCP-1/CCL2 by bile duct epithelia induces myofibroblastic transdifferentiation of portal fibroblasts. Am J Physiol Gastrointest Liver Physiol 290:G765–771PubMedCrossRefGoogle Scholar
  48. 48.
    Marra F, DeFranco R, Grappone C et al (1998) Increased expression of monocyte chemotactic protein-1 during active hepatic fibrogenesis: correlation with monocyte infiltration. Am J Pathol 152:423–430PubMedGoogle Scholar
  49. 49.
    Asselah T, Bieche I, Laurendeau I et al (2005) Liver gene expression signature of mild fibrosis in patients with chronic hepatitis C. Gastroenterology 129:2064–2075PubMedCrossRefGoogle Scholar
  50. 50.
    Muhlbauer M, Bosserhoff AK, Hartmann A et al (2003) A novel MCP-1 gene polymorphism is associated with hepatic MCP-1 expression and severity of HCV-related liver disease. Gastroenterology 125:1085–1093PubMedCrossRefGoogle Scholar
  51. 51.
    Seki E, de Minicis S, Inokuchi S, et al (2009) CCR2 promotes hepatic fibrosis in mice. Hepatology, in pressGoogle Scholar
  52. 52.
    Schwabe RF, Bataller R, Brenner DA (2003) Human hepatic stellate cells express CCR5 and RANTES to induce proliferation and migration. Am J Physiol Gastrointest Liver Physiol 285:G949–G958PubMedGoogle Scholar
  53. 53.
    Fallowfield JA, Mizuno M, Kendall TJ et al (2007) Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol 178:5288–5295PubMedGoogle Scholar
  54. 54.
    Gehring S, Dickson EM, San Martin ME et al (2006) Kupffer cells abrogate cholestatic liver injury in mice. Gastroenterology 130:810–822PubMedCrossRefGoogle Scholar
  55. 55.
    Roggin KK, Papa EF, Kurkchubasche AG, Tracy TF Jr (2000) Kupffer cell inactivation delays repair in a rat model of reversible biliary obstruction. J Surg Res 90:166–173PubMedCrossRefGoogle Scholar
  56. 56.
    Harty MW, Huddleston HM, Papa EF et al (2005) Repair after cholestatic liver injury correlates with neutrophil infiltration and matrix metalloproteinase 8 activity. Surgery 138:313–320PubMedCrossRefGoogle Scholar
  57. 57.
    Harty MW, Papa EF, Huddleston HM et al (2008) Hepatic macrophages promote the neutrophil-dependent resolution of fibrosis in repairing cholestatic rat livers. Surgery 143:667–678PubMedCrossRefGoogle Scholar
  58. 58.
    Mitchell C, Couton D, Couty JP et al (2009) Dual role of CCR2 in the constitution and the resolution of liver fibrosis in mice. Am J Pathol 174:1766–1775PubMedCrossRefGoogle Scholar
  59. 59.
    Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461PubMedCrossRefGoogle Scholar
  60. 60.
    Higashi-Kuwata N, Makino T, Inoue Y, Takeya M, Ihn H (2009) Alternatively activated macrophages (M2 macrophages) in the skin of patient with localized scleroderma. Exp Dermatol [Epub ahead of print].Google Scholar
  61. 61.
    Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35PubMedCrossRefGoogle Scholar
  62. 62.
    Pesce JT, Ramalingam TR, Mentink-Kane MM et al (2009) Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog 5:e1000371PubMedCrossRefGoogle Scholar
  63. 63.
    Romagnani S (2006) Regulation of the T cell response. Clin Exp Allergy 36:1357–1366PubMedCrossRefGoogle Scholar
  64. 64.
    Casini A, Ricci OE, Paoletti F, Surrenti C (1985) Immune mechanisms for hepatic fibrogenesis. T-lymphocyte-mediated stimulation of fibroblast collagen production in chronic active hepatitis. Liver 5:134–141PubMedGoogle Scholar
  65. 65.
    Shi Z, Wakil AE, Rockey DC (1997) Strain-specific differences in mouse hepatic wound healing are mediated by divergent T helper cytokine responses. Proc Natl Acad Sci U S A 94:10663–10668PubMedCrossRefGoogle Scholar
  66. 66.
    Czaja MJ, Weiner FR, Takahashi S et al (1989) Gamma-interferon treatment inhibits collagen deposition in murine schistosomiasis. Hepatology 10:795–800PubMedCrossRefGoogle Scholar
  67. 67.
    Baroni GS, D'Ambrosio L, Curto P et al (1996) Interferon gamma decreases hepatic stellate cell activation and extracellular matrix deposition in rat liver fibrosis. Hepatology 23:1189–1199PubMedCrossRefGoogle Scholar
  68. 68.
    Rockey DC, Maher JJ, Jarnagin WR, Gabbiani G, Friedman SL (1992) Inhibition of rat hepatic lipocyte activation in culture by interferon-gamma. Hepatology 16:776–784PubMedCrossRefGoogle Scholar
  69. 69.
    Knight B, Lim R, Yeoh GC, Olynyk JK (2007) Interferon-gamma exacerbates liver damage, the hepatic progenitor cell response and fibrosis in a mouse model of chronic liver injury. J Hepatol 47:826–833PubMedCrossRefGoogle Scholar
  70. 70.
    Marra F, Choudhury GG, Abboud HE (1996) Interferon-gamma-mediated activation of STAT1alpha regulates growth factor-induced mitogenesis. J Clin Invest 98:1218–1230PubMedCrossRefGoogle Scholar
  71. 71.
    Pockros PJ, Jeffers L, Afdhal N et al (2007) Final results of a double-blind, placebo-controlled trial of the antifibrotic efficacy of interferon-gamma1b in chronic hepatitis C patients with advanced fibrosis or cirrhosis. Hepatology 45:569–578PubMedCrossRefGoogle Scholar
  72. 72.
    Thompson K, Maltby J, Fallowfield J, McAulay M, Millward-Sadler H, Sheron N (1998) Interleukin-10 expression and function in experimental murine liver inflammation and fibrosis. Hepatology 28:1597–1606PubMedCrossRefGoogle Scholar
  73. 73.
    Wynn TA (2004) Fibrotic disease and the T(H) 1/T(H) 2 paradigm. Nat Rev Immunol 4:583–594PubMedCrossRefGoogle Scholar
  74. 74.
    Wang SC, Ohata M, Schrum L, Rippe RA, Tsukamoto H (1998) Expression of interleukin-10 by in vitro and in vivo activated hepatic stellate cells. J Biol Chem 273:302–308PubMedCrossRefGoogle Scholar
  75. 75.
    Thompson KC, Trowern A, Fowell A et al (1998) Primary rat and mouse hepatic stellate cells express the macrophage inhibitor cytokine interleukin-10 during the course of activation In vitro. Hepatology 28:1518–1524PubMedCrossRefGoogle Scholar
  76. 76.
    Nelson DR, Tu Z, Soldevila-Pico C et al (2003) Long-term interleukin 10 therapy in chronic hepatitis C patients has a proviral and anti-inflammatory effect. Hepatology 38:859–868PubMedGoogle Scholar
  77. 77.
    Coutinho HM, Acosta LP, Wu HW et al (2007) Th2 cytokines are associated with persistent hepatic fibrosis in human Schistosoma japonicum infection. J Infect Dis 195:288–295PubMedCrossRefGoogle Scholar
  78. 78.
    Alves Oliveira LF, Moreno EC, Gazzinelli G et al (2006) Cytokine production associated with periportal fibrosis during chronic schistosomiasis mansoni in humans. Infect Immun 74:1215–1221PubMedCrossRefGoogle Scholar
  79. 79.
    Farah IO, Mola PW, Kariuki TM, Nyindo M, Blanton RE, King CL (2000) Repeated exposure induces periportal fibrosis in Schistosoma mansoni-infected baboons: role of TGF-beta and IL-4. J Immunol 164:5337–5343PubMedGoogle Scholar
  80. 80.
    Wilson MS, Mentink-Kane MM, Pesce JT, Ramalingam TR, Thompson R, Wynn TA (2007) Immunopathology of schistosomiasis. Immunol Cell Biol 85:148–154PubMedCrossRefGoogle Scholar
  81. 81.
    Cheever AW, Williams ME, Wynn TA et al (1994) Anti-IL-4 treatment of Schistosoma mansoni-infected mice inhibits development of T cells and non-B, non-T cells expressing Th2 cytokines while decreasing egg-induced hepatic fibrosis. J Immunol 153:753–759PubMedGoogle Scholar
  82. 82.
    Wynn TA, Cheever AW, Jankovic D et al (1995) An IL-12-based vaccination method for preventing fibrosis induced by schistosome infection. Nature 376:594–596PubMedCrossRefGoogle Scholar
  83. 83.
    Chiaramonte MG, Donaldson DD, Cheever AW, Wynn TA (1999) An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J Clin Invest 104:777–785PubMedCrossRefGoogle Scholar
  84. 84.
    Vaillant B, Chiaramonte MG, Cheever AW, Soloway PD, Wynn TA (2001) Regulation of hepatic fibrosis and extracellular matrix genes by the th response: new insight into the role of tissue inhibitors of matrix metalloproteinases. J Immunol 167:7017–7026PubMedGoogle Scholar
  85. 85.
    Pesce J, Kaviratne M, Ramalingam TR et al (2006) The IL-21 receptor augments Th2 effector function and alternative macrophage activation. J Clin Invest 116:2044–2055PubMedCrossRefGoogle Scholar
  86. 86.
    Safadi R, Ohta M, Alvarez CE et al (2004) Immune stimulation of hepatic fibrogenesis by CD8 cells and attenuation by transgenic interleukin-10 from hepatocytes. Gastroenterology 127:870–882PubMedCrossRefGoogle Scholar
  87. 87.
    Safadi R, Zigmond E, Pappo O, Shalev Z, Ilan Y (2007) Amelioration of hepatic fibrosis via beta-glucosylceramide-mediated immune modulation is associated with altered CD8 and NKT lymphocyte distribution. Int Immunol 19:1021–1029PubMedCrossRefGoogle Scholar
  88. 88.
    Horani A, Muhanna N, Pappo O et al (2007) Beneficial effect of glatiramer acetate (Copaxone) on immune modulation of experimental hepatic fibrosis. Am J Physiol Gastrointest Liver Physiol 292:G628–638PubMedCrossRefGoogle Scholar
  89. 89.
    Inada S, Suzuki K, Kimura T et al (1995) Concentric fibrosis and cellular infiltration around bile ducts induced by graft-versus-host reaction in mice: a role of CD8+ cells. Autoimmunity 22:163–171PubMedCrossRefGoogle Scholar
  90. 90.
    Lombardo L, Capaldi A, Poccardi G, Vineis P (1995) Peripheral blood CD3 and CD4 T-lymphocyte reduction correlates with severity of liver cirrhosis. Int J Clin Lab Res 25:153–156PubMedCrossRefGoogle Scholar
  91. 91.
    Panasiuk A, Prokopowicz D, Zak J, Wysocka J (2003) Peripheral blood T, B, and NK cells in relation to histological hepatitis activity and fibrosis stage in chronic hepatitis C. Hepatogastroenterology 50:178–182PubMedGoogle Scholar
  92. 92.
    Muhanna N, Doron S, Wald O et al (2008) Activation of hepatic stellate cells after phagocytosis of lymphocytes: a novel pathway of fibrogenesis. Hepatology 48:963–977PubMedCrossRefGoogle Scholar
  93. 93.
    Zeremski M, Petrovic LM, Chiriboga L et al (2008) Intrahepatic levels of CXCR3-associated chemokines correlate with liver inflammation and fibrosis in chronic hepatitis C. Hepatology 48:1440–1450PubMedCrossRefGoogle Scholar
  94. 94.
    Bonacchi A, Romagnani P, Romanelli RG et al (2001) Signal transduction by the chemokine receptor CXCR3: activation of Ras/ERK, Src, and phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human vascular pericytes. J Biol Chem 276:9945–9954PubMedCrossRefGoogle Scholar
  95. 95.
    Lasagni L, Francalanci M, Annunziato F et al (2003) An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med 197:1537–1549PubMedCrossRefGoogle Scholar
  96. 96.
    Petrai I, Rombouts K, Lasagni L et al (2008) Activation of p38(MAPK) mediates the angiostatic effect of the chemokine receptor CXCR3-B. Int J Biochem Cell Biol 40:1764–1774PubMedCrossRefGoogle Scholar
  97. 97.
    Wasmuth HE, Lammert F, Zaldivar MM, et al. (2009) Anti-fibrotic effects of CXCL9 and its receptor CXCR3 in livers of mice and humans. Gastroenterology, in press. doi:10.1053/j.gastro.2009.03.053
  98. 98.
    Bonacchi A, Petrai I, Defranco RM et al (2003) The chemokine CCL21 modulates lymphocyte recruitment and fibrosis in chronic hepatitis C. Gastroenterology 125:1060–1076PubMedCrossRefGoogle Scholar
  99. 99.
    Ebert LM, Schaerli P, Moser B (2005) Chemokine-mediated control of T cell traffic in lymphoid and peripheral tissues. Mol Immunol 42:799–809PubMedCrossRefGoogle Scholar
  100. 100.
    Holt AP, Haughton EL, Lalor PF, Filer A, Buckley CD, Adams DH (2009) Liver myofibroblasts regulate infiltration and positioning of lymphocytes in human liver. Gastroenterology 136:705–714PubMedCrossRefGoogle Scholar
  101. 101.
    Hong F, Tuyama A, Lee TF et al (2009) Hepatic stellate cells express functional CXCR4: Role in stromal cell-derived factor-1alpha-mediated stellate cell activation. Hepatology 49(6):2055–2067PubMedCrossRefGoogle Scholar
  102. 102.
    Kobayashi S, Seki S, Kawada N et al (2003) Apoptosis of T cells in the hepatic fibrotic tissue of the rat: a possible inducing role of hepatic myofibroblast-like cells. Cell Tissue Res 311:353–364PubMedGoogle Scholar
  103. 103.
    Jiang G, Yang HR, Wang L et al (2008) Hepatic stellate cells preferentially expand allogeneic CD4+ CD25+ FoxP3+ regulatory T cells in an IL-2-dependent manner. Transplantation 86:1492–1502PubMedCrossRefGoogle Scholar
  104. 104.
    Vinas O, Bataller R, Sancho-Bru P et al (2003) Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation. Hepatology 38:919–929PubMedGoogle Scholar
  105. 105.
    Winau F, Hegasy G, Weiskirchen R et al (2007) Ito cells are liver-resident antigen-presenting cells for activating T cell responses. Immunity 26:117–129PubMedCrossRefGoogle Scholar
  106. 106.
    Gao B, Jeong WI, Tian Z (2008) Liver: an organ with predominant innate immunity. Hepatology 47:729–736PubMedCrossRefGoogle Scholar
  107. 107.
    Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274PubMedCrossRefGoogle Scholar
  108. 108.
    Shirachi M, Sata M, Miyajima I, Tanaka M, Tanikawa K (1998) Liver-associated natural killer activity in cirrhotic rats. Microbiol Immunol 42:117–124PubMedGoogle Scholar
  109. 109.
    Tsuyuki S, Yamauchi A, Nakamura H et al (1998) N-acetylcysteine improves cytotoxic activity of cirrhotic rat liver-associated mononuclear cells. Int Immunol 10:1501–1508PubMedCrossRefGoogle Scholar
  110. 110.
    Radaeva S, Sun R, Jaruga B, Nguyen VT, Tian Z, Gao B (2006) Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 130:435–452PubMedCrossRefGoogle Scholar
  111. 111.
    WL RS, Radaev S, Jeong WI, Park O, Gao B (2007) Retinoic acid signaling sensitizes hepatic stellate cells to NK cell killing via upregulation of NK cell activating ligand RAE1. Am J Physiol Gastrointest Liver Physiol 293(4):G809–816CrossRefGoogle Scholar
  112. 112.
    Melhem A, Muhanna N, Bishara A et al (2006) Anti-fibrotic activity of NK cells in experimental liver injury through killing of activated HSC. J Hepatol 45:60–71PubMedCrossRefGoogle Scholar
  113. 113.
    HA MN, Doron S, Safadi R (2007) Lymphocyte-hepatic stellate cell proximity suggests a direct interaction. Clin Exp Immunol 148(2):338–347CrossRefGoogle Scholar
  114. 114.
    Jeong WI, Park O, Radaeva S, Gao B (2006) STAT1 inhibits liver fibrosis in mice by inhibiting stellate cell proliferation and stimulating NK cell cytotoxicity. Hepatology 44:1441–1451PubMedCrossRefGoogle Scholar
  115. 115.
    Jeong WI, Park O, Gao B (2008) Abrogation of the antifibrotic effects of natural killer cells/interferon-gamma contributes to alcohol acceleration of liver fibrosis. Gastroenterology 134:248–258PubMedCrossRefGoogle Scholar
  116. 116.
    Asseman C, Pancré V, Quatennens B, Auriault C (1996) Schistosoma mansoni-infected mice show augmented hepatic fibrosis and selective inhibition of liver cytokine production after treatment with anti-NK1.1 antibodies. Immunol Lett 54:11–20PubMedCrossRefGoogle Scholar
  117. 117.
    Krizhanovsky V, Yon M, Dickins RA et al (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134:657–667PubMedCrossRefGoogle Scholar
  118. 118.
    Bendelac A, Rivera MN, Park SH, Roark JH (1997) Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol 15:535–562PubMedCrossRefGoogle Scholar
  119. 119.
    Kronenberg M (2005) Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 23:877–900PubMedCrossRefGoogle Scholar
  120. 120.
    Geissmann F, Cameron TO, Sidobre S et al (2005) Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol 3:e113PubMedCrossRefGoogle Scholar
  121. 121.
    Kimura K, Nagaki M, Matsuura T, Moriwaki H, Kakimi K (2009) Pathological role of CD44 on NKT cells in carbon tetrachloride-mediated liver injury. Hepatol Res 39(1):93–15PubMedCrossRefGoogle Scholar
  122. 122.
    Kahraman A, Barreyro FJ, Bronk SF et al (2008) TRAIL mediates liver injury by the innate immune system in the bile duct-ligated mouse. Hepatology 47:1317–1330PubMedCrossRefGoogle Scholar
  123. 123.
    Park O, Jeong WI, Wang L et al (2009) Diverse roles of invariant natural killer T cells in liver injury and fibrosis induced by carbon tetrachloride. Hepatology 49:1683–1694PubMedCrossRefGoogle Scholar
  124. 124.
    MG NTI, Amatucci A, Kogan S, Brenner I, Casola S, Shlomchik MJ, Koteliansky V, Hochman PS, Ibraghimov A (2005) Attenuated liver fibrosis in the absence of B cells. J Clin Invest 115:2962–2965CrossRefGoogle Scholar
  125. 125.
    Mosmann T (2000) Complexity or coherence? Cytokine secretion by B cells. Nature immunology 1:465–466PubMedCrossRefGoogle Scholar
  126. 126.
    Fichtner-Feigl S, Strober W, Kawakami K, Puri RK, Kitani A (2006) IL-13 signaling through the IL-13alpha(2) receptor is involved in induction of TGF-beta(1) production and fibrosis. Nat Med 12:99–106PubMedCrossRefGoogle Scholar
  127. 127.
    Afford SC, Rhandawa S, Eliopoulos AG, Hubscher SG, Young LS, Adams DH (1999) CD40 activation induces apoptosis in cultured human hepatocytes via induction of cell surface FasL expression and amplifies Fas mediated hepatocyte death during allograft rejection. J Exp Med 189:441–446PubMedCrossRefGoogle Scholar
  128. 128.
    Zhou X, Tan FK, Milewicz DM, Guo X, Bona CA, Arnett FC (2005) Autoantibodies to fibrillin-1 activate normal human fibroblasts in culture through the TGF-beta pathway to recapitulate the "scleroderma phenotype". J Immunol 175:4555–4560PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Fabio Marra
    • 1
    • 2
  • Sara Aleffi
    • 1
  • Sara Galastri
    • 1
  • Angela Provenzano
    • 1
  1. 1.Dipartimento di Medicina InternaUniversity of FlorenceFlorenceItaly
  2. 2.Center for Research, Transfer and Higher Education ‘DenoTHE’University of FlorenceFlorenceItaly

Personalised recommendations