Seminars in Immunopathology

, Volume 31, Issue 2, pp 257–266 | Cite as

Disturbance of the gut-associated lymphoid tissue is associated with disease progression in chronic HIV infection

Review

Abstract

Why and how HIV makes people sick is highly debated. Recent evidence implicates heightened immune activation due to breakdown of the gastrointestinal barrier as a determining factor of lentiviral pathogenesis. HIV-mediated loss of Th17 cells from the gut-associated lymphoid tissue (GALT) impairs mucosal integrity and innate defense mechanisms against gut microbes. Translocation of microbial products from the gut, in turn, correlates with increased immune activation in chronic HIV infection and may further damage the immune system by increasing viral and activation-induced T cell death, by reducing T cell reconstitution due to tissue scarring, and by impairing the function of other cell types, such as γδ T cells and epithelial cells. Maintaining a healthy GALT may be the key to reducing the pathogenic potential of HIV.

Keywords

HIV GALT Microbial translocation Immune activation LPS Th17 cells 

References

  1. 1.
    Ancuta P, Kamat A, Kunstman KJ, Kim E-Y, Autissier P, Wurcel A, Zaman T, Stone D, Mefford M, Morgello S, Singer EJ, Wolinsky SM, Gabuzda D (2008) Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients. PLoS One 3:e2516. doi:10.1371/journal.pone.0002516 CrossRefPubMedGoogle Scholar
  2. 2.
    Berger EA, Murphy PM, Farber JM (1999) Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 17:657–700. doi:10.1146/annurev.immunol.17.1.657 CrossRefPubMedGoogle Scholar
  3. 3.
    Boasso A, Vaccari M, Hryniewicz A, Fuchs D, Nacsa J, Cecchinato V, Andersson J, Franchini G, Shearer GM, Chougnet C (2007) Regulatory T-cell markers, indoleamine 2, 3-dioxygenase, and virus levels in spleen and gut during progressive simian immunodeficiency virus infection. J Virol 81:11593–11603. doi:10.1128/JVI.00760-07 CrossRefPubMedGoogle Scholar
  4. 4.
    Bourgeois C, Hao Z, Rajewsky K, Potocnik AJ, Stockinger B (2008) Ablation of thymic export causes accelerated decay of naive CD4 T cells in the periphery because of activation by environmental antigen. Proc Natl Acad Sci U S A 105:8691–8696. doi:10.1073/pnas.0803732105 CrossRefPubMedGoogle Scholar
  5. 5.
    Brand S, Beigel F, Olszak T, Zitzmann K, Eichhorst ST, Otte JM, Diepolder H, Marquardt A, Jagla W, Popp A, Leclair S, Herrmann K, Seiderer J, Ochsenkuhn T, Goke B, Auernhammer CJ, Dambacher J (2006) IL-22 is increased in active Crohn’s disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. Am J Physiol 290:G827–G838Google Scholar
  6. 6.
    Brenchley JM, Price DA, Douek DC (2006) HIV disease: fallout from a mucosal catastrophe? Nat Immunol 7:235–239. doi:10.1038/ni1316 CrossRefPubMedGoogle Scholar
  7. 7.
    Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, Kazzaz Z, Bornstein E, Lambotte O, Altmann D, Blazar BR, Rodriguez B, Teixeira-Johnson L, Landay A, Martin JN, Hecht FM, Picker LJ, Lederman MM, Deeks SG, Douek DC (2006) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12:1365–1371. doi:10.1038/nm1511 CrossRefPubMedGoogle Scholar
  8. 8.
    Brenchley JM, Paiardini M, Knox KS, Asher AI, Cervasi B, Asher TE, Scheinberg P, Price DA, Hage CA, Kholi LM, Khoruts A, Frank I, Else J, Schacker T, Silvestri G, Douek DC (2008) Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood 112:2826–2835. doi:10.1182/blood-2008-05-159301 CrossRefPubMedGoogle Scholar
  9. 9.
    Cecchinato V, Trindade CJ, Laurence A, Heraud JM, Brenchley JM, Ferrari MG, Zaffiri L, Tryniszewska E, Tsai WP, Vaccari M, Parks RW, Venzon D, Douek DC, O’Shea JJ, Franchini G (2008) Altered balance between Th17 and Th1 cells at mucosal sites predicts AIDS progression in simian immunodeficiency virus-infected macaques. Mucosal Immunol 1:279–288. doi:10.1038/mi.2008.14 CrossRefPubMedGoogle Scholar
  10. 10.
    Cecchinato V, Tryniszewska E, Ma ZM, Vaccari M, Boasso A, Tsai W-P, Petrovas C, Fuchs D, Heraud J-M, Venzon D, Shearer GM, Koup RA, Lowy I, Miller CJ, Franchini G (2008) Immune activation driven by CTLA-4 blockade augments viral replication at mucosal sites in simian immunodeficiency virus infection. J Immunol 180:5439–5447PubMedGoogle Scholar
  11. 11.
    Chen Y, Thai P, Zhao YH, Ho YS, DeSouza MM, Wu R (2003) Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. J Biol Chem 278:17036–17043. doi:10.1074/jbc.M210429200 CrossRefPubMedGoogle Scholar
  12. 12.
    Cullen BR, Greene WC (1989) Regulatory pathways governing HIV-1 replication. Cell 58:423–426. doi:10.1016/0092-8674(89)90420-0 CrossRefPubMedGoogle Scholar
  13. 13.
    Epple HJ, Schneider T, Troeger H, Kunkel D, Allers K, Moos V, Amasheh M, Loddenkemper C, Fromm M, Zeitz M, Schulzke JD (2009) Impairment of the intestinal barrier is evident in untreated but absent in suppressively treated HIV-infected patients. Gut 58:220–227. doi:10.1136/gut.2008.150425 CrossRefPubMedGoogle Scholar
  14. 14.
    Estes J, Baker JV, Brenchley JM, Khoruts A, Barthold JL, Bantle A, Reilly CS, Beilman GJ, George ME, Douek DC, Haase AT, Schacker TW (2008) Collagen deposition limits immune reconstitution in the gut. J Infect Dis 198:456–464. doi:10.1086/590112 CrossRefPubMedGoogle Scholar
  15. 15.
    Gordon SN, Klatt NR, Bosinger SE, Brenchley JM, Milush JM, Engram JC, Dunham RM, Paiardini M, Klucking S, Danesh A, Strobert EA, Apetrei C, Pandrea IV, Kelvin D, Douek DC, Staprans SI, Sodora DL, Silvestri G (2007) Severe depletion of mucosal CD4+ T cells in AIDS-free simian immunodeficiency virus-infected sooty mangabeys. J Immunol 179:3026–3034PubMedGoogle Scholar
  16. 16.
    Gregson JN, Steel A, Bower M, Gazzard BG, Gotch FM, Goodier MR (2009) Elevated plasma lipopolysaccharide is not sufficient to drive natural killer cell activation in HIV-1-infected individuals. AIDS 23:29–34. doi:10.1097/QAD.0b013e3283199780 CrossRefPubMedGoogle Scholar
  17. 17.
    Guadalupe M, Reay E, Sankaran S, Prindiville T, Flamm J, McNeil A, Dandekar S (2003) Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J Virol 77:11708–11717. doi:10.1128/JVI.77.21.11708-11717.2003 CrossRefPubMedGoogle Scholar
  18. 18.
    Happel KI, Dubin PJ, Zheng M, Ghilardi N, Lockhart C, Quinton LJ, Odden AR, Shellito JE, Bagby GJ, Nelson S, Kolls JK (2005) Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J Exp Med 202:761–769. doi:10.1084/jem.20050193 CrossRefPubMedGoogle Scholar
  19. 19.
    Higgins SC, Jarnicki AG, Lavelle EC, Mills KH (2006) TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis: role of IL-17-producing T cells. J Immunol 177:7980–7989PubMedGoogle Scholar
  20. 20.
    Huang W, Na L, Fidel PL, Schwarzenberger P (2004) Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis 190:624–631. doi:10.1086/422329 CrossRefPubMedGoogle Scholar
  21. 21.
    Hunt PW, Brenchley J, Sinclair E, McCune JM, Roland M, Page-Shafer K, Hsue P, Emu B, Krone M, Lampiris H, Douek D, Martin JN, Deeks SG (2008) Relationship between T cell activation and CD4+ T cell count in HIV-seropositive individuals with undetectable plasma HIV RNA levels in the absence of therapy. J Infect Dis 197:126–133. doi:10.1086/524143 CrossRefPubMedGoogle Scholar
  22. 22.
    Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE, Shen F, Eaton SM, Gaffen SL, Swain SL, Locksley RM, Haynes L, Randall TD, Cooper AM (2007) IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol 8:369–377. doi:10.1038/ni1449 CrossRefPubMedGoogle Scholar
  23. 23.
    Kinugasa T, Sakaguchi T, Gu X, Reinecker HC (2000) Claudins regulate the intestinal barrier in response to immune mediators. Gastroenterology 118:1001–1011. doi:10.1016/S0016-5085(00)70351-9 CrossRefPubMedGoogle Scholar
  24. 24.
    Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240. doi:10.1084/jem.20041257 CrossRefPubMedGoogle Scholar
  25. 25.
    Lederman MM, Smeaton L, Smith KY, Rodriguez B, Pu M, Wang H, Sevin A, Tebas P, Sieg SF, Medvik K, Margolis DM, Pollard R, Ertl HC, Valdez H (2006) Cyclosporin A provides no sustained immunologic benefit to persons with chronic HIV-1 infection starting suppressive antiretroviral therapy: results of a randomized, controlled trial of the AIDS Clinical Trials Group A5138. J Infect Dis 194:1677–1685. doi:10.1086/509261 CrossRefPubMedGoogle Scholar
  26. 26.
    Li Q, Duan L, Estes JD, Ma Z-M, Rourke T, Wang Y, Reilly C, Carlis J, Miller CJ, Haase AT (2005) Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature 434:1148–1152PubMedGoogle Scholar
  27. 27.
    Li Q, Estes JD, Duan L, Jessurun J, Pambuccian S, Forster C, Wietgrefe S, Zupancic M, Schacker T, Reilly C, Carlis JV, Haase AT (2008) Simian immunodeficiency virus-induced intestinal cell apoptosis is the underlying mechanism of the regenerative enteropathy of early infection. J Infect Dis 197:420–429. doi:10.1086/525046 CrossRefPubMedGoogle Scholar
  28. 28.
    Liu Z, Cumberland WG, Hultin LE, Prince HE, Detels R, Giorgi JV (1997) Elevated CD38 antigen expression on CD8+ T cells is a stronger marker for the risk of chronic HIV disease progression to AIDS and death in the Multicenter AIDS Cohort Study than CD4+ cell count, soluble immune activation markers, or combinations of HLA-DR and CD38 expression. J Acquir Immune Defic Syndr Hum Retrovirol 16:83–92PubMedGoogle Scholar
  29. 29.
    Maloy KJ (2007) Induction and regulation of inflammatory bowel disease in immunodeficient mice by distinct CD4+ T-cell subsets. Methods Mol Biol 380:327–335CrossRefPubMedGoogle Scholar
  30. 30.
    Maloy KJ, Kullberg MC (2008) IL-23 and Th17 cytokines in intestinal homeostasis. Mucosal Immunol 1:339–349. doi:10.1038/mi.2008.28 CrossRefPubMedGoogle Scholar
  31. 31.
    Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT (2006) Transforming growth factor-[beta] induces development of the TH17 lineage. Nature 441:231–234. doi:10.1038/nature04754 CrossRefPubMedGoogle Scholar
  32. 32.
    Marchetti G, Bellistri GM, Borghi E, Tincati C, Ferramosca S, La Francesca M, Morace G, Gori A, Monforte AD (2008) Microbial translocation is associated with sustained failure in CD4+ T-cell reconstitution in HIV-infected patients on long-term highly active antiretroviral therapy. AIDS 22:2035–2038. doi:10.1097/QAD.0b013e3283112d29 CrossRefPubMedGoogle Scholar
  33. 33.
    Mattapallil JJ, Douek DC, Hill B, Nishimura Y, Martin M, Roederer M (2005) Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 434:1093–1097. doi:10.1038/nature03501 CrossRefPubMedGoogle Scholar
  34. 34.
    Mehandru S, Poles MA, Tenner-Racz K, Horowitz A, Hurley A, Hogan C, Boden D, Racz P, Markowitz M (2004) Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J Exp Med 200:761–770. doi:10.1084/jem.20041196 CrossRefPubMedGoogle Scholar
  35. 35.
    Mehandru S, Poles MA, Tenner-Racz K, Jean-Pierre P, Manuelli V, Lopez P, Shet A, Low A, Mohri H, Boden D, Racz P, Markowitz M (2006) Lack of mucosal immune reconstitution during prolonged treatment of acute and early HIV-1 infection. PLoS Med 3:e484. doi:10.1371/journal.pmed.0030484 CrossRefPubMedGoogle Scholar
  36. 36.
    Milner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ, Elias KM, Kanno Y, Spalding C, Elloumi HZ, Paulson ML, Davis J, Hsu A, Asher AI, O’Shea J, Holland SM, Paul WE, Douek DC (2008) Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452:773–776. doi:10.1038/nature06764 CrossRefPubMedGoogle Scholar
  37. 37.
    Milush JM, Reeves JD, Gordon SN, Zhou D, Muthukumar A, Kosub DA, Chacko E, Giavedoni LD, Ibegbu CC, Cole KS, Miamidian JL, Paiardini M, Barry AP, Staprans SI, Silvestri G, Sodora DL (2007) Virally induced CD4+ T cell depletion is not sufficient to induce AIDS in a natural host. J Immunol 179:3047–3056PubMedGoogle Scholar
  38. 38.
    Modlin RL, Sieling PA (2005) Immunology: now presenting: γδ T cells. Science 309:252–253. doi:10.1126/science.1115264 CrossRefPubMedGoogle Scholar
  39. 39.
    Mohan M, Aye PP, Borda JT, Alvarez X, Lackner AA (2007) Gastrointestinal disease in simian immunodeficiency virus-infected rhesus macaques is characterized by proinflammatory dysregulation of the interleukin-6-Janus kinase/signal transducer and activator of transcription 3 pathway. Am J Pathol 171:1952–1965. doi:10.2353/ajpath.2007.070017 CrossRefPubMedGoogle Scholar
  40. 40.
    Paiardini M, Frank I, Pandrea I, Apetrei C, Silvestri G (2008) Mucosal immune dysfunction in AIDS pathogenesis. AIDS Rev 10:36–46PubMedGoogle Scholar
  41. 41.
    Pandrea I, Apetrei C, Gordon S, Barbercheck J, Dufour J, Bohm R, Sumpter B, Roques P, Marx PA, Hirsch VM, Kaur A, Lackner AA, Veazey RS, Silvestri G (2007) Paucity of CD4+ CCR5+ T cells is a typical feature of natural SIV hosts. Blood 109:1069–1076. doi:10.1182/blood-2006-05-024364 CrossRefPubMedGoogle Scholar
  42. 42.
    Pandrea IV, Gautam R, Ribeiro RM, Brenchley JM, Butler IF, Pattison M, Rasmussen T, Marx PA, Silvestri G, Lackner AA, Perelson AS, Douek DC, Veazey RS, Apetrei C (2007) Acute loss of intestinal CD4+ T cells is not predictive of simian immunodeficiency virus virulence. J Immunol 179:3035–3046PubMedGoogle Scholar
  43. 43.
    Pandrea I, Sodora DL, Silvestri G, Apetrei C (2008) Into the wild: simian immunodeficiency virus (SIV) infection in natural hosts. Trends Immunol 29:419–428. doi:10.1016/j.it.2008.05.004 CrossRefPubMedGoogle Scholar
  44. 44.
    Papasavvas E, Pistilli M, Reynolds G, Bucki R, Azzoni L, Chehimi J, Janmey PA, DiNubile MJ, Ondercin J, Kostman JR, Mounzer KC, Montaner LJ (2009) Delayed loss of control of plasma lipopolysaccharide levels after therapy interruption in chronically HIV-1-infected patients. AIDS 23:369–375. doi:10.1097/QAD.0b013e32831e9c76 CrossRefPubMedGoogle Scholar
  45. 45.
    Poccia F, Boullier S, Lecoeur H, Cochet M, Poquet Y, Colizzi V, Fournie JJ, Gougeon ML (1996) Peripheral V gamma 9/V delta 2 T cell deletion and anergy to nonpeptidic mycobacterial antigens in asymptomatic HIV-1-infected persons. J Immunol 157:449–461PubMedGoogle Scholar
  46. 46.
    Raffatellu M, Santos RL, Verhoeven DE, George MD, Wilson RP, Winter SE, Godinez I, Sankaran S, Paixao TA, Gordon MA, Kolls JK, Dandekar S, Baumler AJ (2008) Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nat Med 14:421–428. doi:10.1038/nm1743 CrossRefPubMedGoogle Scholar
  47. 47.
    Sankaran S, George MD, Reay E, Guadalupe M, Flamm J, Prindiville T, Dandekar S (2008) Rapid onset of intestinal epithelial barrier dysfunction in primary human immunodeficiency virus infection is driven by an imbalance between immune response and mucosal repair and regeneration. J Virol 82:538–545. doi:10.1128/JVI.01449-07 CrossRefPubMedGoogle Scholar
  48. 48.
    Sankatsing SU, Jurriaans S, van Swieten P, van Leth F, Cornelissen M, Miedema F, Lange JM, Schuitemaker H, Prins JM (2004) Highly active antiretroviral therapy with or without mycophenolate mofetil in treatment-naive HIV-1 patients. AIDS 18:1925–1931. doi:10.1097/00002030-200409240-00008 CrossRefPubMedGoogle Scholar
  49. 49.
    Schacker TW, Nguyen PL, Beilman GJ, Wolinsky S, Larson M, Reilly C, Haase AT (2002) Collagen deposition in HIV-1 infected lymphatic tissues and T cell homeostasis. J Clin Invest 110:1133–1139PubMedGoogle Scholar
  50. 50.
    Schacker TW, Brenchley JM, Beilman GJ, Reilly C, Pambuccian SE, Taylor J, Skarda D, Larson M, Douek DC, Haase AT (2006) Lymphatic tissue fibrosis is associated with reduced numbers of naive CD4+ T cells in human immunodeficiency virus type 1 infection. Clin Vaccine Immunol 13:556–560. doi:10.1128/CVI.13.5.556-560.2006 CrossRefPubMedGoogle Scholar
  51. 51.
    Schneider T, Jahn HU, Schmidt W, Riecken EO, Zeitz M, Ullrich R (1995) Loss of CD4 T lymphocytes in patients infected with human immunodeficiency virus type 1 is more pronounced in the duodenal mucosa than in the peripheral blood. Berlin Diarrhea/Wasting Syndrome Study Group. Gut 37:524–529. doi:10.1136/gut.37.4.524 CrossRefPubMedGoogle Scholar
  52. 52.
    Sodora DL, Silvestri G (2008) Immune activation and AIDS pathogenesis. AIDS 22:439–446. doi:10.1097/QAD.0b013e3282f2dbe7 CrossRefPubMedGoogle Scholar
  53. 53.
    Sugimoto K, Ogawa A, Mizoguchi E, Shimomura Y, Andoh A, Bhan AK, Blumberg RS, Xavier RJ, Mizoguchi A (2008) IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest 118:534–544PubMedGoogle Scholar
  54. 54.
    Veazey RS, DeMaria M, Chalifoux LV, Shvetz DE, Pauley DR, Knight HL, Rosenzweig M, Johnson RP, Desrosiers RC, Lackner AA (1998) Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science 280:427–431. doi:10.1126/science.280.5362.427 CrossRefPubMedGoogle Scholar
  55. 55.
    Wolk K, Witte E, Hoffmann U, Doecke WD, Endesfelder S, Asadullah K, Sterry W, Volk HD, Wittig BM, Sabat R (2007) IL-22 induces lipopolysaccharide-binding protein in hepatocytes: a potential systemic role of IL-22 in Crohn’s disease. J Immunol 178:5973–5981PubMedGoogle Scholar
  56. 56.
    Wu Q, Martin RJ, Rino JG, Breed R, Torres RM, Chu HW (2007) IL-23-dependent IL-17 production is essential in neutrophil recruitment and activity in mouse lung defense against respiratory Mycoplasma pneumoniae infection. Microbes Infect/Institut Pasteur 9:78–86Google Scholar
  57. 57.
    Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, Oliver P, Huang W, Zhang P, Zhang J, Shellito JE, Bagby GJ, Nelson S, Charrier K, Peschon JJ, Kolls JK (2001) Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 194:519–528. doi:10.1084/jem.194.4.519 CrossRefPubMedGoogle Scholar
  58. 58.
    Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, McKenzie B, Kleinschek MA, Owyang A, Mattson J, Blumenschein W, Murphy E, Sathe M, Cua DJ, Kastelein RA, Rennick D (2006) IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 116:1310–1316. doi:10.1172/JCI21404 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Division of Infectious Diseases and Hospital EpidemiologyUniversity Hospital Zurich, University of ZurichZurichSwitzerland

Personalised recommendations