Seminars in Immunopathology

, Volume 31, Issue 2, pp 171–184 | Cite as

Intestinal macrophages: differentiation and involvement in intestinal immunopathologies

Review

Abstract

Intestinal macrophages, preferentially located in the subepithelial lamina propria, represent the largest pool of tissue macrophages in humans. As an adaptation to the local antigen- and bacteria-rich environment, intestinal macrophages exhibit several distinct phenotypic and functional characteristics. Notably, microbe-associated molecular pattern receptors, including the lipopolysaccharide (LPS) receptors CD14 and TLR4, and also the Fc receptors for IgA and IgG are absent on most intestinal macrophages under homeostatic conditions. Moreover, while macrophages in the intestinal mucosa are refractory to the induction of proinflammatory cytokine secretion, they still display potent phagocytic activity. These adaptations allow intestinal macrophages to comply with their main task, i.e., the efficient removal of microbes while maintaining local tissue homeostasis. In this paper, we review recent findings on the functional differentiation of monocyte subsets into distinct macrophage populations and on the phenotypic and functional adaptations that have evolved in intestinal macrophages in response to their antigen-rich environment. Furthermore, the involvement of intestinal macrophages in the pathogenesis of celiac disease and inflammatory bowel diseases is discussed.

Keywords

Monocytes Macrophages Intestinal mucosa Commensal flora 

Notes

Acknowledgements

The authors would like to thank Ursula Yela for the assistance during the preparation of the manuscript and Jasmin Ossola for the assistance with the preparation of the figures. The present work of the authors is supported by grants of the Swiss National Science Foundation and the 3R Foundation to CM.

References

  1. 1.
    Gordon S (2007) The macrophage: past, present and future. Eur J Immunol 37(Suppl 1):S9–S17. doi:10.1002/eji.200737638 PubMedCrossRefGoogle Scholar
  2. 2.
    Pollard JW (2009) Trophic macrophages in development and disease. Nat Rev Immunol 9:259–270. doi:10.1038/nri2528 PubMedCrossRefGoogle Scholar
  3. 3.
    Hume DA (2008) Differentiation and heterogeneity in the mononuclear phagocyte system. Mucosal Immunol 1:432–441PubMedCrossRefGoogle Scholar
  4. 4.
    Iwasaki H, Akashi K (2007) Myeloid lineage commitment from the hematopoietic stem cell. Immunity 26:726–740. doi:10.1016/j.immuni.2007.06.004 PubMedCrossRefGoogle Scholar
  5. 5.
    Spangrude GJ, Heimfeld S, Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241:58–62. doi:10.1126/science.2898810 PubMedCrossRefGoogle Scholar
  6. 6.
    Akashi K, Traver D, Miyamoto T, Weissman IL (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404:193–197. doi:10.1038/35004599 PubMedCrossRefGoogle Scholar
  7. 7.
    Kondo M, Weissman IL, Akashi K (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91:661–672. doi:10.1016/S0092-8674(00)80453-5 PubMedCrossRefGoogle Scholar
  8. 8.
    Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR (2000) Analysis of fractalkine receptor CX(3) CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20:4106–4114. doi:10.1128/MCB.20.11.4106-4114.2000 PubMedCrossRefGoogle Scholar
  9. 9.
    Fogg DK, Sibon C, Miled C, Jung S, Aucouturier P, Littman DR, Cumano A, Geissmann F (2006) A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311:83–87. doi:10.1126/science.1117729 PubMedCrossRefGoogle Scholar
  10. 10.
    Varol C, Landsman L, Fogg DK, Greenshtein L, Gildor B, Margalit R, Kalchenko V, Geissmann F, Jung S (2007) Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J Exp Med 204:171–180. doi:10.1084/jem.20061011 PubMedCrossRefGoogle Scholar
  11. 11.
    Gendelman HE, Orenstein JM, Martin MA, Ferrua C, Mitra R, Phipps T, Wahl LA, Lane HC, Fauci AS, Burke DS et al (1988) Efficient isolation and propagation of human immunodeficiency virus on recombinant colony-stimulating factor 1-treated monocytes. J Exp Med 167:1428–1441. doi:10.1084/jem.167.4.1428 PubMedCrossRefGoogle Scholar
  12. 12.
    Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964. doi:10.1038/nri1733 PubMedCrossRefGoogle Scholar
  13. 13.
    Crofton RW, Diesselhoff-den Dulk MM, van Furth R (1978) The origin, kinetics, and characteristics of the Kupffer cells in the normal steady state. J Exp Med 148:1–17. doi:10.1084/jem.148.1.1 PubMedCrossRefGoogle Scholar
  14. 14.
    Hickey WF (1999) The pathology of multiple sclerosis: a historical perspective. J Neuroimmunol 98:37–44. doi:10.1016/S0165-5728(99)00079-X PubMedCrossRefGoogle Scholar
  15. 15.
    Merad M, Manz MG, Karsunky H, Wagers A, Peters W, Charo I, Weissman IL, Cyster JG, Engleman EG (2002) Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol 3:1135–1141. doi:10.1038/ni852 PubMedCrossRefGoogle Scholar
  16. 16.
    Tarling JD, Lin HS, Hsu S (1987) Self-renewal of pulmonary alveolar macrophages: evidence from radiation chimera studies. J Leukoc Biol 42:443–446PubMedGoogle Scholar
  17. 17.
    Sawyer RT, Strausbauch PH, Volkman A (1982) Resident macrophage proliferation in mice depleted of blood monocytes by strontium-89. Lab Invest 46:165–170PubMedGoogle Scholar
  18. 18.
    Smith PD, Ochsenbauer-Jambor C, Smythies LE (2005) Intestinal macrophages: unique effector cells of the innate immune system. Immunol Rev 206:149–159. doi:10.1111/j.0105-2896.2005.00288.x PubMedCrossRefGoogle Scholar
  19. 19.
    Xaus J, Cardo M, Valledor AF, Soler C, Lloberas J, Celada A (1999) Interferon gamma induces the expression of p21waf-1 and arrests macrophage cell cycle, preventing induction of apoptosis. Immunity 11:103–113. doi:10.1016/S1074-7613(00)80085-0 PubMedCrossRefGoogle Scholar
  20. 20.
    Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82PubMedCrossRefGoogle Scholar
  21. 21.
    Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35. doi:10.1038/nri978 PubMedCrossRefGoogle Scholar
  22. 22.
    Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969. doi:10.1038/nri2448 PubMedCrossRefGoogle Scholar
  23. 23.
    Passlick B, Flieger D, Ziegler-Heitbrock HW (1989) Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 74:2527–2534PubMedGoogle Scholar
  24. 24.
    Ancuta P, Rao R, Moses A, Mehle A, Shaw SK, Luscinskas FW, Gabuzda D (2003) Fractalkine preferentially mediates arrest and migration of CD16+ monocytes. J Exp Med 197:1701–1707. doi:10.1084/jem.20022156 PubMedCrossRefGoogle Scholar
  25. 25.
    Thieblemont N, Weiss L, Sadeghi HM, Estcourt C, Haeffner-Cavaillon N (1995) CD14lowCD16high: a cytokine-producing monocyte subset which expands during human immunodeficiency virus infection. Eur J Immunol 25:3418–3424. doi:10.1002/eji.1830251232 PubMedCrossRefGoogle Scholar
  26. 26.
    Fingerle G, Pforte A, Passlick B, Blumenstein M, Strobel M, Ziegler-Heitbrock HW (1993) The novel subset of CD14+/CD16+ blood monocytes is expanded in sepsis patients. Blood 82:3170–3176PubMedGoogle Scholar
  27. 27.
    Belge KU, Dayyani F, Horelt A, Siedlar M, Frankenberger M, Frankenberger B, Espevik T, Ziegler-Heitbrock L (2002) The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. J Immunol 168:3536–3542PubMedGoogle Scholar
  28. 28.
    Sanchez-Torres C, Garcia-Romo GS, Cornejo-Cortes MA, Rivas-Carvalho A, Sanchez-Schmitz G (2001) CD16+ and CD16− human blood monocyte subsets differentiate in vitro to dendritic cells with different abilities to stimulate CD4+ T cells. Int Immunol 13:1571–1581. doi:10.1093/intimm/13.12.1571 PubMedCrossRefGoogle Scholar
  29. 29.
    Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179:1109–1118. doi:10.1084/jem.179.4.1109 PubMedCrossRefGoogle Scholar
  30. 30.
    Grage-Griebenow E, Flad HD, Ernst M, Bzowska M, Skrzeczynska J, Pryjma J (2000) Human MO subsets as defined by expression of CD64 and CD16 differ in phagocytic activity and generation of oxygen intermediates. Immunobiology 202:42–50PubMedGoogle Scholar
  31. 31.
    Grage-Griebenow E, Zawatzky R, Kahlert H, Brade L, Flad H, Ernst M (2001) Identification of a novel dendritic cell-like subset of CD64(+)/CD16(+) blood monocytes. Eur J Immunol 31:48–56. doi:10.1002/1521-4141(200101)31:1<48::AID-IMMU48>3.0.CO;2-5 PubMedCrossRefGoogle Scholar
  32. 32.
    Landsman L, Bar-On L, Zernecke A, Kim KW, Krauthgamer R, Shagdarsuren E, Lira SA, Weissman IL, Weber C, Jung S (2009) CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood 113:963–972. doi:10.1182/blood-2008-07-170787 PubMedCrossRefGoogle Scholar
  33. 33.
    Palframan RT, Jung S, Cheng G, Weninger W, Luo Y, Dorf M, Littman DR, Rollins BJ, Zweerink H, Rot A, von Andrian UH (2001) Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J Exp Med 194:1361–1373. doi:10.1084/jem.194.9.1361 PubMedCrossRefGoogle Scholar
  34. 34.
    Serbina NV, Jia T, Hohl TM, Pamer EG (2008) Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol 26:421–452. doi:10.1146/annurev.immunol.26.021607.090326 PubMedCrossRefGoogle Scholar
  35. 35.
    Tsou CL, Peters W, Si Y, Slaymaker S, Aslanian AM, Weisberg SP, Mack M, Charo IF (2007) Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest 117:902–909. doi:10.1172/JCI29919 PubMedCrossRefGoogle Scholar
  36. 36.
    de Bruijn MF, Slieker WA, van der Loo JC, Voerman JS, van Ewijk W, Leenen PJ (1994) Distinct mouse bone marrow macrophage precursors identified by differential expression of ER-MP12 and ER-MP20 antigens. Eur J Immunol 24:2279–2284. doi:10.1002/eji.1830241003 PubMedCrossRefGoogle Scholar
  37. 37.
    Nikolic T, de Bruijn MF, Lutz MB, Leenen PJ (2003) Developmental stages of myeloid dendritic cells in mouse bone marrow. Int Immunol 15:515–524. doi:10.1093/intimm/dxg050 PubMedCrossRefGoogle Scholar
  38. 38.
    Sunderkoetter C, Nikolic T, Dillon MJ, Van Rooijen N, Stehling M, Drevets DA, Leenen PJ (2004) Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 172:4410–4417Google Scholar
  39. 39.
    Qu C, Edwards EW, Tacke F, Angeli V, Llodra J, Sanchez-Schmitz G, Garin A, Haque NS, Peters W, van Rooijen N, Sanchez-Torres C, Bromberg J, Charo IF, Jung S, Lira SA, Randolph GJ (2004) Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes. J Exp Med 200:1231–1241. doi:10.1084/jem.20032152 PubMedCrossRefGoogle Scholar
  40. 40.
    Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, Sarnacki S, Cumano A, Lauvau G, Geissmann F (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317:666–670. doi:10.1126/science.1142883 PubMedCrossRefGoogle Scholar
  41. 41.
    Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG (2003) TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19:59–70. doi:10.1016/S1074-7613(03)00171-7 PubMedCrossRefGoogle Scholar
  42. 42.
    Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S (2005) Macrophage receptors and immune recognition. Annu Rev Immunol 23:901–944. doi:10.1146/annurev.immunol.23.021704.115816 PubMedCrossRefGoogle Scholar
  43. 43.
    Schenk M, Mueller C (2008) The mucosal immune system at the gastrointestinal barrier. Best Pract Res Clin Gastroenterol 22:391–409. doi:10.1016/j.bpg.2007.11.002 PubMedCrossRefGoogle Scholar
  44. 44.
    Macpherson AJ, Harris NL (2004) Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 4:478–485. doi:10.1038/nri1373 PubMedCrossRefGoogle Scholar
  45. 45.
    Bull DM, Bookman MA (1977) Isolation and functional characterization of human intestinal mucosal lymphoid cells. J Clin Invest 59:966–974. doi:10.1172/JCI108719 PubMedCrossRefGoogle Scholar
  46. 46.
    Lee SH, Starkey PM, Gordon S (1985) Quantitative analysis of total macrophage content in adult mouse tissues. Immunochemical studies with monoclonal antibody F4/80. J Exp Med 161:475–489. doi:10.1084/jem.161.3.475 PubMedCrossRefGoogle Scholar
  47. 47.
    Schenk M, Mueller C (2007) Adaptations of intestinal macrophages to an antigen-rich environment. Semin Immunol 19:84–93PubMedCrossRefGoogle Scholar
  48. 48.
    Kanai T, Ilyama R, Ishikura T, Uraushihara K, Totsuka T, Yamazaki M, Nakamuma T, Watanabe M (2002) Role of the innate immune system in the development of chronic colitis. J Gastroenterol 37(Suppl 14):38–42PubMedGoogle Scholar
  49. 49.
    Platt AM, Mowat AM (2008) Mucosal macrophages and the regulation of immune responses in the intestine. Immunol Lett 119:22–31. doi:10.1016/j.imlet.2008.05.009 PubMedCrossRefGoogle Scholar
  50. 50.
    Rugtveit J, Bakka A, Brandtzaeg P (1997) Differential distribution of B7.1 (CD80) and B7.2 (CD86) costimulatory molecules on mucosal macrophage subsets in human inflammatory bowel disease (IBD). Clin Exp Immunol 110:104–113. doi:10.1111/j.1365-2249.1997.507-ce1404.x PubMedCrossRefGoogle Scholar
  51. 51.
    Hausmann M, Kiessling S, Mestermann S, Webb G, Spottl T, Andus T, Scholmerich J, Herfarth H, Ray K, Falk W, Rogler G (2002) Toll-like receptors 2 and 4 are up-regulated during intestinal inflammation. Gastroenterology 122:1987–2000. doi:10.1053/gast.2002.33662 PubMedCrossRefGoogle Scholar
  52. 52.
    Smith PD, Smythies LE, Mosteller-Barnum M, Sibley DA, Russell MW, Merger M, Sellers MT, Orenstein JM, Shimada T, Graham MF, Kubagawa H (2001) Intestinal macrophages lack CD14 and CD89 and consequently are down-regulated for LPS- and IgA-mediated activities. J Immunol 167:2651–2656PubMedGoogle Scholar
  53. 53.
    Smythies LE, Sellers M, Clements RH, Mosteller-Barnum M, Meng G, Benjamin WH, Orenstein JM, Smith PD (2005) Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J Clin Invest 115:66–75PubMedGoogle Scholar
  54. 54.
    Schenk M, Bouchon A, Birrer S, Colonna M, Mueller C (2005) Macrophages expressing triggering receptor expressed on myeloid cells-1 are underrepresented in the human intestine. J Immunol 174:517–524PubMedGoogle Scholar
  55. 55.
    Bouchon A, Dietrich J, Colonna M (2000) Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol 164:4991–4995PubMedGoogle Scholar
  56. 56.
    Kamada N, Hisamatsu T, Okamoto S, Sato T, Matsuoka K, Arai K, Nakai T, Hasegawa A, Inoue N, Watanabe N, Akagawa KS, Hibi T (2005) Abnormally differentiated subsets of intestinal macrophage play a key role in Th1-dominant chronic colitis through excess production of IL-12 and IL-23 in response to bacteria. J Immunol 175:6900–6908PubMedGoogle Scholar
  57. 57.
    Maloy KJ, Powrie F (2001) Regulatory T cells in the control of immune pathology. Nat Immunol 2:816–822. doi:10.1038/ni0901-816 PubMedCrossRefGoogle Scholar
  58. 58.
    Maloy KJ, Salaun L, Cahill R, Dougan G, Saunders NJ, Powrie F (2003) CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms. J Exp Med 197:111–119. doi:10.1084/jem.20021345 PubMedCrossRefGoogle Scholar
  59. 59.
    Xian CJ, Mardell CE, Read LC (1999) Specificity of the localization of transforming growth factor-alpha immunoreactivity in colon mucosa. J Histochem Cytochem 47:949–958PubMedGoogle Scholar
  60. 60.
    Khoo UY, Proctor IE, Macpherson AJ (1997) CD4+ T cell down-regulation in human intestinal mucosa: evidence for intestinal tolerance to luminal bacterial antigens. J Immunol 158:3626–3634PubMedGoogle Scholar
  61. 61.
    Moore KW, O’Garra A, de Waal Malefyt R, Vieira P, Mosmann TR (1993) Interleukin-10. Annu Rev Immunol 11:165–190. doi:10.1146/annurev.iy.11.040193.001121 PubMedCrossRefGoogle Scholar
  62. 62.
    Stordeur P, Goldman M (1998) Interleukin-10 as a regulatory cytokine induced by cellular stress: molecular aspects. Int Rev Immunol 16:501–522. doi:10.3109/08830189809043006 PubMedCrossRefGoogle Scholar
  63. 63.
    Cassatella MA, Meda L, Gasperini S, Calzetti F, Bonora S (1994) Interleukin 10 (IL-10) upregulates IL-1 receptor antagonist production from lipopolysaccharide-stimulated human polymorphonuclear leukocytes by delaying mRNA degradation. J Exp Med 179:1695–1699. doi:10.1084/jem.179.5.1695 PubMedCrossRefGoogle Scholar
  64. 64.
    Rogler G, Gelbmann CM, Vogl D, Brunner M, Scholmerich J, Falk W, Andus T, Brand K (2001) Differential activation of cytokine secretion in primary human colonic fibroblast/myofibroblast cultures. Scand J Gastroenterol 36:389–398. doi:10.1080/003655201300051216 PubMedCrossRefGoogle Scholar
  65. 65.
    Pavli P, Gibson PR (1992) Pathogenic factors in inflammatory bowel disease. 2. Crohn’s disease. Dig Dis 10:72–84. doi:10.1159/000171346 PubMedCrossRefGoogle Scholar
  66. 66.
    Takahashi-Iwanaga H, Iwanaga T, Isayama H (1999) Porosity of the epithelial basement membrane as an indicator of macrophage–enterocyte interaction in the intestinal mucosa. Arch Histol Cytol 62:471–481. doi:10.1679/aohc.62.471 PubMedCrossRefGoogle Scholar
  67. 67.
    Hohn HP, Grummer R, Bosserhoff S, Graf-Lingnau S, Reuss B, Backer C, Denker HW (1996) The role of matrix contact and of cell–cell interactions in choriocarcinoma cell differentiation. Eur J Cell Biol 69:76–85PubMedGoogle Scholar
  68. 68.
    Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101:890–898. doi:10.1172/JCI1112 PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang WJ, Zheng SS (2005) In vitro study of immunosuppressive effect of apoptotic cells. J Zhejiang Univ Sci B 6:919–925. doi:10.1631/jzus.2005.B0919 PubMedCrossRefGoogle Scholar
  70. 70.
    Kurosaka K, Watanabe N, Kobayashi Y (2002) Potentiation by human serum of anti-inflammatory cytokine production by human macrophages in response to apoptotic cells. J Leukoc Biol 71:950–956PubMedGoogle Scholar
  71. 71.
    Nadeau KC, Azuma H, Tilney NL (1995) Sequential cytokine dynamics in chronic rejection of rat renal allografts: roles for cytokines RANTES and MCP-1. Proc Natl Acad Sci U S A 92:8729–8733. doi:10.1073/pnas.92.19.8729 PubMedCrossRefGoogle Scholar
  72. 72.
    Nagashima R, Maeda K, Imai Y, Takahashi T (1996) Lamina propria macrophages in the human gastrointestinal mucosa: their distribution, immunohistological phenotype, and function. J Histochem Cytochem 44:721–731PubMedGoogle Scholar
  73. 73.
    Madsen KL, Doyle JS, Tavernini MM, Jewell LD, Rennie RP, Fedorak RN (2000) Antibiotic therapy attenuates colitis in interleukin 10 gene-deficient mice. Gastroenterology 118:1094–1105. doi:10.1016/S0016-5085(00)70362-3 PubMedCrossRefGoogle Scholar
  74. 74.
    Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75:263–274. doi:10.1016/0092-8674(93)80068-P PubMedCrossRefGoogle Scholar
  75. 75.
    Hahm KB, Im YH, Parks TW, Park SH, Markowitz S, Jung HY, Green J, Kim SJ (2001) Loss of transforming growth factor beta signalling in the intestine contributes to tissue injury in inflammatory bowel disease. Gut 49:190–198. doi:10.1136/gut.49.2.190 PubMedCrossRefGoogle Scholar
  76. 76.
    Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D et al (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359:693–699. doi:10.1038/359693a0 PubMedCrossRefGoogle Scholar
  77. 77.
    Green PH, Cellier C (2007) Celiac disease. N Engl J Med 357:1731–1743. doi:10.1056/NEJMra071600 PubMedCrossRefGoogle Scholar
  78. 78.
    Meresse B, Chen Z, Ciszewski C, Tretiakova M, Bhagat G, Krausz TN, Raulet DH, Lanier LL, Groh V, Spies T, Ebert EC, Green PH, Jabri B (2004) Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 21:357–366. doi:10.1016/j.immuni.2004.06.020 PubMedCrossRefGoogle Scholar
  79. 79.
    Hue S, Mention JJ, Monteiro RC, Zhang S, Cellier C, Schmitz J, Verkarre V, Fodil N, Bahram S, Cerf-Bensussan N, Caillat-Zucman S (2004) A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 21:367–377. doi:10.1016/j.immuni.2004.06.018 PubMedCrossRefGoogle Scholar
  80. 80.
    Tuckova L, Novotna J, Novak P, Flegelova Z, Kveton T, Jelinkova L, Zidek Z, Man P, Tlaskalova-Hogenova H (2002) Activation of macrophages by gliadin fragments: isolation and characterization of active peptide. J Leukoc Biol 71:625–631PubMedGoogle Scholar
  81. 81.
    Thomas KE, Sapone A, Fasano A, Vogel SN (2006) Gliadin stimulation of murine macrophage inflammatory gene expression and intestinal permeability are MyD88-dependent: role of the innate immune response in Celiac disease. J Immunol 176:2512–2521PubMedGoogle Scholar
  82. 82.
    Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, Almer S, Tysk C, O’Morain CA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahbatou M, Thomas G (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411:599–603. doi:10.1038/35079107 PubMedCrossRefGoogle Scholar
  83. 83.
    Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nunez G, Cho JH (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411:603–606. doi:10.1038/35079114 PubMedCrossRefGoogle Scholar
  84. 84.
    Hampe J, Cuthbert A, Croucher PJ, Mirza MM, Mascheretti S, Fisher S, Frenzel H, King K, Hasselmeyer A, MacPherson AJ, Bridger S, van Deventer S, Forbes A, Nikolaus S, Lennard-Jones JE, Foelsch UR, Krawczak M, Lewis C, Schreiber S, Mathew CG (2001) Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations. Lancet 357:1925–1928. doi:10.1016/S0140-6736(00)05063-7 PubMedCrossRefGoogle Scholar
  85. 85.
    Rogler G, Andus T, Aschenbrenner E, Vogl D, Falk W, Scholmerich J, Gross V (1997) Alterations of the phenotype of colonic macrophages in inflammatory bowel disease. Eur J Gastroenterol Hepatol 9:893–899PubMedGoogle Scholar
  86. 86.
    Smith PD, Janoff EN, Mosteller-Barnum M, Merger M, Orenstein JM, Kearney JF, Graham MF (1997) Isolation and purification of CD14-negative mucosal macrophages from normal human small intestine. J Immunol Methods 202:1–11. doi:10.1016/S0022-1759(96)00204-9 PubMedCrossRefGoogle Scholar
  87. 87.
    Schenk M, Bouchon A, Seibold F, Mueller C (2007) TREM-1-expressing intestinal macrophages crucially amplify chronic inflammation in experimental colitis and inflammatory bowel diseases. J Clin Invest 117:3097–3106. doi:10.1172/JCI30602 PubMedCrossRefGoogle Scholar
  88. 88.
    Fiocchi C (1998) Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 115:182–205. doi:10.1016/S0016-5085(98)70381-6 PubMedCrossRefGoogle Scholar
  89. 89.
    Takeda K, Clausen BE, Kaisho T, Tsujimura T, Terada N, Förster I, Akira S (1999) Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10:39–49. doi:10.1016/S1074-7613(00)80005-9 PubMedCrossRefGoogle Scholar
  90. 90.
    Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, Philpott DJ, Sansonetti PJ (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278:8869–8872PubMedCrossRefGoogle Scholar
  91. 91.
    Inohara N, Nunez G (2003) NODs: intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol 3:371–382. doi:10.1038/nri1086 PubMedCrossRefGoogle Scholar
  92. 92.
    Bonen DK, Cho JH (2003) The genetics of inflammatory bowel disease. Gastroenterology 124:521–536. doi:10.1053/gast.2003.50045 PubMedCrossRefGoogle Scholar
  93. 93.
    Chamaillard M, Girardin SE, Viala J, Philpott DJ (2003) Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation. Cell Microbiol 5:581–592. doi:10.1046/j.1462-5822.2003.00304.x PubMedCrossRefGoogle Scholar
  94. 94.
    Girardin SE, Hugot JP, Sansonetti PJ (2003) Lessons from Nod2 studies: towards a link between Crohn’s disease and bacterial sensing. Trends Immunol 24:652–658. doi:10.1016/j.it.2003.10.007 PubMedCrossRefGoogle Scholar
  95. 95.
    Watanabe T, Kitani A, Murray PJ, Strober W (2004) NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat Immunol 5:800–808PubMedCrossRefGoogle Scholar
  96. 96.
    Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nunez G, Flavell RA (2005) Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307:731–734. doi:10.1126/science.1104911 PubMedCrossRefGoogle Scholar
  97. 97.
    Maeda S, Hsu LC, Liu H, Bankston LA, Iimura M, Kagnoff MF, Eckmann L, Karin M (2005) Nod2 mutation in Crohn’s disease potentiates NF-kappaB activity and IL-1beta processing. Science 307:734–738. doi:10.1126/science.1103685 PubMedCrossRefGoogle Scholar
  98. 98.
    Kamada N, Hisamatsu T, Okamoto S, Chinen H, Kobayashi T, Sato T, Sakuraba A, Kitazume MT, Sugita A, Koganei K, Akagawa KS, Hibi T (2008) Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis. J Clin Invest 118:2269–2280PubMedGoogle Scholar
  99. 99.
    van Deventer SJ (2001) Transmembrane TNF-alpha, induction of apoptosis, and the efficacy of TNF-targeting therapies in Crohn’s disease. Gastroenterology 121:1242–1246PubMedCrossRefGoogle Scholar
  100. 100.
    Corazza N, Eichenberger S, Eugster HP, Mueller C (1999) Nonlymphocyte-derived tumor necrosis factor is required for induction of colitis in recombination activating gene (RAG) 2(−/−) mice upon transfer of CD4(+) CD45RB(hi) T cells. J Exp Med 190:1479–1492. doi:10.1084/jem.190.10.1479 PubMedCrossRefGoogle Scholar
  101. 101.
    Brand S, Sakaguchi T, Gu X, Colgan SP, Reinecker HC (2002) Fractalkine-mediated signals regulate cell-survival and immune-modulatory responses in intestinal epithelial cells. Gastroenterology 122:166–177. doi:10.1053/gast.2002.30329 PubMedCrossRefGoogle Scholar
  102. 102.
    Lucas AD, Chadwick N, Warren BF, Jewell DP, Gordon S, Powrie F, Greaves DR (2001) The transmembrane form of the CX3CL1 chemokine fractalkine is expressed predominantly by epithelial cells in vivo. Am J Pathol 158:855–866PubMedGoogle Scholar
  103. 103.
    Muehlhoefer A, Saubermann LJ, Gu X, Luedtke-Heckenkamp K, Xavier R, Blumberg RS, Podolsky DK, MacDermott RP, Reinecker HC (2000) Fractalkine is an epithelial and endothelial cell-derived chemoattractant for intraepithelial lymphocytes in the small intestinal mucosa. J Immunol 164:3368–3376PubMedGoogle Scholar
  104. 104.
    Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, Vyas JM, Boes M, Ploegh HL, Fox JG, Littman DR, Reinecker HC (2005) CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307:254–258. doi:10.1126/science.1102901 PubMedCrossRefGoogle Scholar
  105. 105.
    Mazzucchelli L, Hauser C, Zgraggen K, Wagner HE, Hess MW, Laissue JA, Mueller C (1996) Differential in situ expression of the genes encoding the chemokines MCP-1 and RANTES in human inflammatory bowel disease. J Pathol 178:201–206. doi:10.1002/(SICI)1096-9896(199602)178:2<201::AID-PATH440>3.0.CO;2-4 PubMedCrossRefGoogle Scholar
  106. 106.
    Varol C, Yona S, Jung S (2009) Origins and tissue-context-dependent fates of blood monocytes. Immunol Cell Biol 87:30–38. doi:10.1038/icb.2008.90 PubMedCrossRefGoogle Scholar
  107. 107.
    Ziegler-Heitbrock HW (2000) Definition of human blood monocytes. J Leukoc Biol 67:603–606PubMedGoogle Scholar
  108. 108.
    Henderson RB, Hobbs JA, Mathies M, Hogg N (2003) Rapid recruitment of inflammatory monocytes is independent of neutrophil migration. Blood 102:328–335. doi:10.1182/blood-2002-10-3228 PubMedCrossRefGoogle Scholar
  109. 109.
    Weber C, Belge KU, von Hundelshausen P, Draude G, Steppich B, Mack M, Frankenberger M, Weber KS, Ziegler-Heitbrock HW (2000) Differential chemokine receptor expression and function in human monocyte subpopulations. J Leukoc Biol 67:699–704PubMedGoogle Scholar
  110. 110.
    Taylor PR, Gordon S (2003) Monocyte heterogeneity and innate immunity. Immunity 19:2–4. doi:10.1016/S1074-7613(03)00178-X PubMedCrossRefGoogle Scholar
  111. 111.
    Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J, Garin A, Liu J, Mack M, Van Rooijen N, Lira SA, Habenicht AJ, Randolph GJ (2007) Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 117:185–194. doi:10.1172/JCI28549 PubMedCrossRefGoogle Scholar
  112. 112.
    Meng G, Sellers MT, Mosteller-Barnum M, Rogers TS, Shaw GM, Smith PD (2000) Lamina propria lymphocytes, not macrophages, express CCR5 and CXCR4 and are the likely target cell for human immunodeficiency virus type 1 in the intestinal mucosa. J Infect Dis 182:785–791. doi:10.1086/315790 PubMedCrossRefGoogle Scholar
  113. 113.
    Li PF, Dietz R, von Harsdorf R (1999) Superoxide induces apoptosis in cardiomyocytes, but proliferation and expression of transforming growth factor-beta1 in cardiac fibroblasts. FEBS Lett 448:206–210. doi:10.1016/S0014-5793(99)00370-1 PubMedCrossRefGoogle Scholar
  114. 114.
    Rogler G, Hausmann M, Vogl D, Aschenbrenner E, Andus T, Falk W, Andreesen R, Scholmerich J, Gross V (1998) Isolation and phenotypic characterization of colonic macrophages. Clin Exp Immunol 112:205–215. doi:10.1046/j.1365-2249.1998.00557.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Benjamin Weber
    • 1
  • Leslie Saurer
    • 1
  • Christoph Mueller
    • 1
  1. 1.Division of Experimental Pathology, Institute of PathologyUniversity of BernBernSwitzerland

Personalised recommendations