Advertisement

Seminars in Immunopathology

, Volume 30, Issue 3, pp 339–363 | Cite as

NOX enzymes as novel targets for drug development

  • J. David Lambeth
  • Karl-Heinz Krause
  • Robert A. Clark
Review

Abstract

The members of the NOX/DUOX family of NADPH oxidases mediate such physiologic functions as host defense, cell signaling, and thyroid hormone biosynthesis through the generation of reactive oxygen species (ROS), including superoxide anion and hydrogen peroxide. Moreover, ROS are involved in a broad range of fundamental biochemical and cellular processes, and data accumulated in recent years indicate that the NOX enzymes comprise one of the most important biological sources of ROS. Given the high biochemical reactivity of ROS, it is not surprising that they have been implicated in a wide variety of pathologies and diseases. Prominent among the settings that feature ROS-mediated tissue injury are disorders associated with inflammation, aging, and progressive degenerative changes in cells and organ systems, and it appears that essentially no organ system is exempt. Among the disorders currently believed to be mediated at least in part by NOX-derived ROS are hypertension, aortic aneurysm, myocardial infarction (and other ischemia–reperfusion disorders), pulmonary fibrosis and hypertension, amyotropic lateral sclerosis, Alzheimer’s disease, Parkinson’s disease, ischemic stroke, diabetic nephropathy, and renal cell carcinoma. Several small-molecule and peptide inhibitors of the NOX enzymes have been useful in experimental studies, but issues of specificity, potency, and toxicity militate against any of the existing published compounds as candidates for drug development. Given the broad array of disease targets documented in recent work, the time is here for vigorous efforts to develop clinically useful inhibitors of the NOX enzymes. As most (though not all) NOX-related diseases appear to be mediated by a single member of the NOX family, agents with isoform specificity will be preferred, although broadly active NOX inhibitors may prove to be useful in some settings.

Keywords

Drug development Nox Reactive oxygen 

Notes

Acknowledgments

This work was supported by grants from the US National Institutes of Health (CA105116 and CA084138 awarded to JDL; R01 AI020866 awarded to RAC) and the Swiss National Foundation (100A0-103725 awarded to K-HK).

Declaration of potential conflict of interest

JDL, KHK and RAC are among the founding scientists of the start-up company GenKyoTex, SA, which is developing NOX inhibitors.

References

  1. 1.
    Abdala-Valencia H, Earwood J, Bansal S, Jansen M, Babcock G, Garvy B, Wills-Karp M, Cook-Mills JM (2007) Nonhematopoietic NADPH oxidase regulation of lung eosinophilia and airway hyperresponsiveness in experimentally induced asthma. Am J Physiol Lung Cell Mol Physiol 292:L1111–L1125PubMedGoogle Scholar
  2. 2.
    Abramov AY, Scorziello A, Duchen MR (2007) Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci 27:1129–1138PubMedGoogle Scholar
  3. 3.
    Agarwal A, Saleh RA, Bedaiwy MA (2003) Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril 79:829–843PubMedGoogle Scholar
  4. 4.
    Aitken RJ, Baker MA (2004) Oxidative stress and male reproductive biology. Reprod Fertil Dev 16:581–588PubMedGoogle Scholar
  5. 5.
    Akasaki T, Ohya Y, Kuroda J, Eto K, Abe I, Sumimoto H, Iida M (2006) Increased expression of gp91phox homologues of NAD(P)H oxidase in the aortic media during chronic hypertension: involvement of the renin-angiotensin system. Hypertens Res 29:813–820PubMedGoogle Scholar
  6. 6.
    Al-Mehdi AB, Zhao G, Dodia C, Tozawa K, Costa K, Muzykantov V, Ross C, Blecha F, Dinauer M, Fisher AB (1998) Endothelial NADPH oxidase as the source of oxidants in lungs exposed to ischemia or high K+. Circ Res 83:730–737PubMedGoogle Scholar
  7. 7.
    Al-Shabrawey M, Bartoli M, El-Remessy AB, Platt DH, Matragoon S, Behzadian MA, Caldwell RW, Caldwell RB (2005) Inhibition of NAD(P)H oxidase activity blocks vascular endothelial growth factor overexpression and neovascularization during ischemic retinopathy. Am J Pathol 167:599–607PubMedGoogle Scholar
  8. 8.
    Anantharam V, Kaul S, Song C, Kanthasamy A, Kanthasamy AG (2007) Pharmacological inhibition of neuronal NADPH oxidase protects against 1-methyl-4-phenylpyridinium (MPP+)-induced oxidative stress and apoptosis in mesencephalic dopaminergic neuronal cells. Neurotoxicology 28:988–997PubMedGoogle Scholar
  9. 9.
    Arbiser JL, Petros JA, Klafter R, Govindajaran B, McLaughlin ER, Brown LF, Cohen C, Moses M, Kilroy S, Arnold RS, Lambeth JD (2002) Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc Natl Acad Sci 99:715–720PubMedGoogle Scholar
  10. 10.
    Arnold RS, He J, Remo A, Ritsick D, Yin-Goen Q, Lambeth JD, Datta MW, Young AN, Petros JA (2007) Nox1 expression determines cellular reactive oxygen and modulates c-fos-induced growth factor, interleukin-8, and Cav-1. Am J Pathol 171:2021–2032PubMedGoogle Scholar
  11. 11.
    Asaba K, Tojo A, Onozato ML, Goto A, Quinn MT, Fujita T, Wilcox CS (2005) Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney Int 67:1890–1898PubMedGoogle Scholar
  12. 12.
    Babior BM, Lambeth JD, Nauseef W (2002) The neutrophil NADPH oxidase. Arch Biochem Biophys 397:342–344PubMedGoogle Scholar
  13. 13.
    Banfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause KH (2004) NOX3: a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 279:46065–46072PubMedGoogle Scholar
  14. 14.
    Banfi B, Molnar G, Maturana A, Steger K, Hegedus B, Demaurex N, Krause KH (2001) A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem 276:37594–37601PubMedGoogle Scholar
  15. 15.
    Baroni SS, Santillo M, Bevilacqua F, Luchetti M, Spadoni T, Mancini M, Fraticelli P, Sambo P, Funaro A, Kazlauskas A, Avvedimento EV, Gabrielli A (2006) Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. N Engl J Med 354:2667–2676PubMedGoogle Scholar
  16. 16.
    Barrett WC, DeGnore JP, Keng YF, Zhang ZY, Yim MB, Chock PB (1999) Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein-tyrosine phosphatase 1B. J Biol Chem 274:34543–34546PubMedGoogle Scholar
  17. 17.
    Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313PubMedGoogle Scholar
  18. 18.
    Behrens MM, Ali SS, Dao DN, Lucero J, Shekhtman G, Quick KL, Dugan LL (2007) Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science 318:1645–1647PubMedGoogle Scholar
  19. 19.
    BelAiba RS, Djordjevic T, Petry A, Diemer K, Bonello S, Banfi B, Hess J, Pogrebniak A, Bickel C, Gorlach A (2007) NOX5 variants are functionally active in endothelial cells. Free Radic Biol Med 42:446–459PubMedGoogle Scholar
  20. 20.
    Ben-Shaul V, Lomnitski L, Nyska A, Zurovsky Y, Bergman M, Grossman S (2001) The effect of natural antioxidants, NAO and apocynin, on oxidative stress in the rat heart following LPS challenge. Toxicol Lett 123:1–10PubMedGoogle Scholar
  21. 21.
    Bendall JK, Cave AC, Heymes C, Gall N, Shah AM (2002) Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105:293–296PubMedGoogle Scholar
  22. 22.
    Berk BC, Fujiwara K, Lehoux S (2007) ECM remodeling in hypertensive heart disease. J Clin Invest 117:568–575PubMedGoogle Scholar
  23. 23.
    Beswick RA, Dorrance AM, Leite R, Webb RC (2001) NADH/NADPH oxidase and enhanced superoxide production in the mineralocorticoid hypertensive rat. Hypertension 38:1107–1111PubMedGoogle Scholar
  24. 24.
    Blanchard TG, Yu F, Hsieh CL, Redline RW (2003) Severe inflammation and reduced bacteria load in murine helicobacter infection caused by lack of phagocyte oxidase activity. J Infect Dis 187:1609–1615PubMedGoogle Scholar
  25. 25.
    Block K, Gorin Y, Hoover P, Williams P, Chelmicki T, Clark RA, Yoneda T, Abboud HE (2007) NAD(P)H oxidases regulate HIF-2alpha protein expression. J Biol Chem 282:8019–8026PubMedGoogle Scholar
  26. 26.
    Bloxham DP (1979) The relationship of diphenyleneiodonium-induced hypoglycaemia to the specific covalent modification of NADH-ubiquinone oxidoreductase. Biochem Soc Trans 7:103–106PubMedGoogle Scholar
  27. 27.
    Boldogh I, Bacsi A, Choudhury BK, Dharajiya N, Alam R, Hazra TK, Mitra S, Goldblum RM, Sur S (2005) ROS generated by pollen NADPH oxidase provide a signal that augments antigen-induced allergic airway inflammation. J Clin Invest 115:2169–2179PubMedGoogle Scholar
  28. 28.
    Boota A, Johnson B, Lee KL, Blaskovich MA, Liu SX, Kagan VE, Hamilton A, Pitt B, Sebti SM, Davies P (2000) Prenyltransferase inhibitors block superoxide production by pulmonary vascular smooth muscle. Am J Physiol Lung Cell Mol Physiol 278:L329–L334PubMedGoogle Scholar
  29. 29.
    Brar SS, Kennedy TP, Sturrock AB, Huecksteadt TP, Quinn MT, Murphy TM, Chitano P, Hoidal JR (2002) NADPH oxidase promotes NF-kappaB activation and proliferation in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 282:L782–L795PubMedGoogle Scholar
  30. 30.
    Brodsky SV, Zhang F, Nasjletti A, Goligorsky MS (2004) Endothelium-derived microparticles impair endothelial function in vitro. Am J Physiol Heart Circ Physiol 286:H1910–H1915PubMedGoogle Scholar
  31. 31.
    Brookes PS, Levonen AL, Shiva S, Sarti P, Darley-Usmar VM (2002) Mitochondria: regulators of signal transduction by reactive oxygen and nitrogen species. Free Radic Biol Med 33:755–764PubMedGoogle Scholar
  32. 32.
    Burdon R (1995) Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med 18:775–794PubMedGoogle Scholar
  33. 33.
    Byrne JA, Grieve DJ, Bendall JK, Li JM, Gove C, Lambeth JD, Cave AC, Shah AM (2003) Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy. Circ Res 93:802–805PubMedGoogle Scholar
  34. 34.
    Carmiel-Haggai M, Cederbaum AI, Nieto N (2005) A high-fat diet leads to the progression of non-alcoholic fatty liver disease in obese rats. FASEB J 19:136–138PubMedGoogle Scholar
  35. 35.
    Castello PR, Drechsel DA, Patel M (2007) Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain. J Biol Chem 282:14186–14193PubMedGoogle Scholar
  36. 36.
    Cave AC, Brewer AC, Narayanapanicker A, Ray R, Grieve DJ, Walker S, Shah AM (2006) NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 8:691–728PubMedGoogle Scholar
  37. 37.
    Cayatte AJ, Rupin A, Oliver-Krasinski J, Maitland K, Sansilvestri-Morel P, Boussard MF, Wierzbicki M, Verbeuren TJ, Cohen RA (2001) S17834, a new inhibitor of cell adhesion and atherosclerosis that targets nadph oxidase. Arterioscler Thromb Vasc Biol 21:1577–84PubMedGoogle Scholar
  38. 38.
    Cejkova J, Labsky J, Vacik J (1998) Reactive oxygen species (ROS) generated by xanthine oxidase in the corneal epithelium and their potential participation in the damage of the corneal epithelium after prolonged use of contact lenses in rabbits. Acta Histochem 100:171–184PubMedGoogle Scholar
  39. 39.
    Chamulitrat W, Huber A, Riedel HD, Stremmel W (2007) Nox1 induces differentiation resistance in immortalized human keratinocytes generating cells that express simple epithelial keratins. J Invest Dermatol 127:2171–2183PubMedGoogle Scholar
  40. 40.
    Chamulitrat W, Stremmel W, Kawahara T, Rokutan K, Fujii H, Wingler K, Schmidt HH, Schmidt R (2004) A constitutive NADPH oxidase-like system containing gp91phox homologs in human keratinocytes. J Invest Dermatol 122:1000–1009PubMedGoogle Scholar
  41. 41.
    Chen P, Guo AM, Edwards PA, Trick G, Scicli AG (2007) Role of NADPH oxidase and ANG II in diabetes-induced retinal leukostasis. Am J Physiol Regul Integr Comp Physiol 293:R1619–R1629PubMedGoogle Scholar
  42. 42.
    Choi JA, Kim EY, Song H, Kim C, Kim JH (2008) Reactive oxygen species are generated through a BLT2-linked cascade in Ras-transformed cells. Free Radic Biol Med 44:624–634PubMedGoogle Scholar
  43. 43.
    Choi KM, Kang CM, Cho ES, Kang SM, Lee SB, Um HD (2007) Ionizing radiation-induced micronucleus formation is mediated by reactive oxygen species that are produced in a manner dependent on mitochondria, Nox1, and JNK. Oncol Rep 17:1183–1188PubMedGoogle Scholar
  44. 44.
    Chu KY, Leung PS (2007) Angiotensin II Type 1 receptor antagonism mediates uncoupling protein 2-driven oxidative stress and ameliorates pancreatic islet beta-cell function in young Type 2 diabetic mice. Antioxid Redox Signal 9:869–878PubMedGoogle Scholar
  45. 45.
    Cifuentes ME, Pagano PJ (2006) Targeting reactive oxygen species in hypertension. Curr Opin Nephrol Hypertens 15:179–186PubMedGoogle Scholar
  46. 46.
    Colmenero J, Bataller R, Sancho-Bru P, Bellot P, Miquel R, Moreno M, Jares P, Bosch J, Arroyo V, Caballeria J, Gines P (2007) Hepatic expression of candidate genes in patients with alcoholic hepatitis: correlation with disease severity. Gastroenterology 132:687–697PubMedGoogle Scholar
  47. 47.
    Cross AR (1987) The inhibitory effects of some iodonium compounds on the superoxide generating system of neutrophils and their failure to inhibit diaphorase activity. Biochem Pharmacol 36:489–493PubMedGoogle Scholar
  48. 48.
    Cross AR, Jones OT (1986) The effect of the inhibitor diphenylene iodonium on the superoxide-generating system of neutrophils. Specific labelling of a component polypeptide of the oxidase. Biochem J 237:111–116PubMedGoogle Scholar
  49. 49.
    Cross AR, Jones OT (1991) Enzymic mechanisms of superoxide production. Biochim Biophys Acta 1057:281–298PubMedGoogle Scholar
  50. 50.
    Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, Dikalov S, Sorescu D (2005) NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97:900–907PubMedGoogle Scholar
  51. 51.
    D’Angio CT, Finkelstein JN (2000) Oxygen regulation of gene expression: a study in opposites. Mol Genet Metab 71:371–380PubMedGoogle Scholar
  52. 52.
    Dahan I, Issaeva I, Gorzalczany Y, Sigal N, Hirshberg M, Pick E (2002) Mapping of functional domains in the p22(phox) subunit of flavocytochrome b(559) participating in the assembly of the NADPH oxidase complex by “peptide walking”. J Biol Chem 277:8421–8432PubMedGoogle Scholar
  53. 53.
    Davidge ST (1998) Oxidative stress and altered endothelial cell function in preeclampsia. Semin Reprod Endocrinol 16:65–73PubMedGoogle Scholar
  54. 54.
    de Carvalho DD, Sadok A, Bourgarel-Rey V, Gattacceca F, Penel C, Lehmann M, Kovacic H (2008) Nox1 downstream of 12-lipoxygenase controls cell proliferation but not cell spreading of colon cancer cells. Int J Cancer 122:1757–1764PubMedGoogle Scholar
  55. 55.
    De Minicis S, Brenner DA (2007) NOX in liver fibrosis. Arch Biochem Biophys 462:266–272PubMedGoogle Scholar
  56. 56.
    dela Pena A, Leclercq IA, Williams J, Farrell GC (2007) NADPH oxidase is not an essential mediator of oxidative stress or liver injury in murine MCD diet-induced steatohepatitis. J Hepatol 46:304–313Google Scholar
  57. 57.
    DeLeo F, Yu L, Burritt J, Loetterle L, Bond C, Jesaitis A, Quinn M (1995) Mapping sites of interaction of p47-phox and flavocytochrome b with random-sequence peptide phage display libraries. Proc Natl Acad Sci USA 92:7110–7114PubMedGoogle Scholar
  58. 58.
    DeLeo FR, Nauseef WM, Jesaitis AJ, Burritt JB, Clark RA, Quinn MT (1995) A domain of p47phox that interacts with human neutrophil flavocytochrome b558. J Biol Chem 270:26246–26251PubMedGoogle Scholar
  59. 59.
    DeLeo FR, Quinn MT (1996) Assembly of the phagocyte NADPH oxidase: molecular interaction of oxidase proteins. J Leukoc Biol 60:677–691PubMedGoogle Scholar
  60. 60.
    Deliri H, McNamara CA (2007) Nox 4 regulation of vascular smooth muscle cell differentiation marker gene expression. Arterioscler Thromb Vasc Biol 27:12–14PubMedGoogle Scholar
  61. 61.
    Demidchik V, Shabala SN, Coutts KB, Tester MA, Davies JM (2003) Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells. J Cell Sci 116:81–88PubMedGoogle Scholar
  62. 62.
    Deng S, Kruger A, Kleschyov AL, Kalinowski L, Daiber A, Wojnowski L (2007) Gp91phox-containing NAD(P)H oxidase increases superoxide formation by doxorubicin and NADPH. Free Radic Biol Med 42:466–473PubMedGoogle Scholar
  63. 63.
    Dharajiya N, Choudhury BK, Bacsi A, Boldogh I, Alam R, Sur S (2007) Inhibiting pollen reduced nicotinamide adenine dinucleotide phosphate oxidase-induced signal by intrapulmonary administration of antioxidants blocks allergic airway inflammation. J Allergy Clin Immunol 119:646–653PubMedGoogle Scholar
  64. 64.
    Diatchuk V, Lotan O, Koshkin V, Wikstroem P, Pick E (1997) Inhibition of NADPH oxidase activation by 4-(2-aminoethyl)-benzenesulfonyl fluoride and related compounds. J Biol Chem 272:13292–13301PubMedGoogle Scholar
  65. 65.
    Doerries C, Grote K, Hilfiker-Kleiner D, Luchtefeld M, Schaefer A, Holland SM, Sorrentino S, Manes C, Schieffer B, Drexler H, Landmesser U (2007) Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction. Circ Res 100:894–903PubMedGoogle Scholar
  66. 66.
    Dourron HM, Jacobson GM, Park JL, Liu J, Reddy DJ, Scheel ML, Pagano PJ (2005) Perivascular gene transfer of NADPH oxidase inhibitor suppresses angioplasty-induced neointimal proliferation of rat carotid artery. Am J Physiol Heart Circ Physiol 288:H946–H953PubMedGoogle Scholar
  67. 67.
    Doussiere J, Gaillard J, Vignais PV (1999) The heme component of the neutrophil NADPH oxidase complex is a target for aryliodonium compounds. Biochemistry 38:3694–3703PubMedGoogle Scholar
  68. 68.
    Doussiere J, Vignais PV (1992) Diphenylene iodonium as an inhibitor of the NADPH oxidase complex of bovine neutrophils. Factors controlling the inhibitory potency of diphenylene iodonium in a cell-free system of oxidase activation. Eur J Biochem 208:61–71PubMedGoogle Scholar
  69. 69.
    Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95PubMedGoogle Scholar
  70. 70.
    Dusting GJ, Selemidis S, Jiang F (2005) Mechanisms for suppressing NADPH oxidase in the vascular wall. Mem Inst Oswaldo Cruz 100(Suppl 1):97–103PubMedGoogle Scholar
  71. 71.
    Laurent E, McCoy JW, Macina RA, Liu W, Cheng G, Robine S, Papkoff J, Lambeth JD (2008) Nox1 is over-expressed in human colon cancers and correlates with activating mutations in K-Ras. Int J Cancer 123: 100–107PubMedGoogle Scholar
  72. 72.
    Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA, Harper JA, Roebuck SJ, Morrison A, Pickering S, Clapham JC, Brand MD (2002) Superoxide activates mitochondrial uncoupling proteins. Nature 415:96–99PubMedGoogle Scholar
  73. 73.
    El Jamali A, Valente AJ, Lechleiter JD, Gamez MJ, Pearson DW, Nauseef WM, Clark RA (2008) Novel redox-dependent regulation of Nox5 NADPH oxidase by the non-receptor tyrosine kinase c-Abl. Free Radic Biol Med 44:868–881PubMedGoogle Scholar
  74. 74.
    Ellmark SH, Dusting GJ, Fui MN, Guzzo-Pernell N, Drummond GR (2005) The contribution of Nox4 to NADPH oxidase activity in mouse vascular smooth muscle. Cardiovasc Res 65:495–504PubMedGoogle Scholar
  75. 75.
    Ernst P (1999) Review article: the role of inflammation in the pathogenesis of gastric cancer. Aliment Pharmacol Ther 13(Suppl 1):13–18PubMedGoogle Scholar
  76. 76.
    Etoh T, Inoguchi T, Kakimoto M, Sonoda N, Kobayashi K, Kuroda J, Sumimoto H, Nawata H (2003) Increased expression of NAD(P)H oxidase subunits, NOX4 and p22phox, in the kidney of streptozotocin-induced diabetic rats and its reversibity by interventive insulin treatment. Diabetologia 46:1428–1437PubMedGoogle Scholar
  77. 77.
    Faggioni R, Gatti S, Demitri MT, Delgado R, Echtenacher B, Gnocchi P, Heremans H, Ghezzi P (1994) Role of xanthine oxidase and reactive oxygen intermediates in LPS- and TNF-induced pulmonary edema. J Lab Clin Med 123:394–399PubMedGoogle Scholar
  78. 78.
    Festjens N, Vanden Berghe T, Vandenabeele P (2006) Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 1757:1371–87PubMedGoogle Scholar
  79. 79.
    Finkel T (2001) Reactive oxygen species and signal transduction. IUBMB Life 52:3–6PubMedGoogle Scholar
  80. 80.
    Fridovich I (1999) Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? Ann N Y Acad Sci 893:13–18PubMedGoogle Scholar
  81. 81.
    Fridovich I (1997) Superoxide anion radical (O2 ), superoxide dismutases, and related matters. J Biol Chem 272:18515–18517PubMedGoogle Scholar
  82. 82.
    Fu NY, Zhang EX, Lin ZF, Yu LJ (1999) Relationship between superoxide anion radical and anion transport protein of red blood cell membrane. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 31:328–330Google Scholar
  83. 83.
    Fu X, Beer DG, Behar J, Wands J, Lambeth D, Cao W (2006) cAMP-response element-binding protein mediates acid-induced NADPH oxidase NOX5-S expression in Barrett esophageal adenocarcinoma cells. J Biol Chem 281:20368–20382PubMedGoogle Scholar
  84. 84.
    Fukuyama M, Rokutan K, Sano T, Miyake H, Shimada M, Tashiro S (2005) Overexpression of a novel superoxide-producing enzyme, NADPH oxidase 1, in adenoma and well differentiated adenocarcinoma of the human colon. Cancer Lett 221:97–104PubMedGoogle Scholar
  85. 85.
    Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752–1761PubMedGoogle Scholar
  86. 86.
    Gabrielli A, Svegliati S, Moroncini G, Luchetti M, Tonnini C, Avvedimento EV (2007) Stimulatory autoantibodies to the PDGF receptor: A link to fibrosis in scleroderma and a pathway for novel therapeutic targets. Autoimmun Rev 7:121–126PubMedGoogle Scholar
  87. 87.
    Gao XP, Standiford TJ, Rahman A, Newstead M, Holland SM, Dinauer MC, Liu QH, Malik AB (2002) Role of NADPH oxidase in the mechanism of lung neutrophil sequestration and microvessel injury induced by Gram-negative sepsis: studies in p47phox−/− and gp91phox−/− mice. J Immunol 168:3974–3982PubMedGoogle Scholar
  88. 88.
    Garvin JL, Ortiz PA (2003) The role of reactive oxygen species in the regulation of tubular function. Acta Physiol Scand 179:225–232PubMedGoogle Scholar
  89. 89.
    Gavazzi G, Banfi B, Deffert C, Fiette L, Schappi M, Herrmann F, Krause KH (2006) Decreased blood pressure in NOX1-deficient mice. FEBS Lett 580:497–504PubMedGoogle Scholar
  90. 90.
    Geiszt M, Kopp JB, Varnai P, Leto TL (2000) Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci USA 97:8010–8014PubMedGoogle Scholar
  91. 91.
    Geiszt M, Lekstrom K, Brenner S, Hewitt SM, Dana R, Malech HL, Leto TL (2003) NAD(P)H oxidase 1, a product of differentiated colon epithelial cells, can partially replace glycoprotein 91(phox) in the regulated production of superoxide by phagocytes. J Immunol 171:299–306PubMedGoogle Scholar
  92. 92.
    Geyer O, Podos SM, Mittag T (1997) Nitric oxide synthase activity in tissues of the bovine eye. Graefes Arch Clin Exp Ophthalmol 235:786–793PubMedGoogle Scholar
  93. 93.
    Gonzalez-Quintero VH, Jimenez JJ, Jy W, Mauro LM, Hortman L, O’Sullivan MJ, Ahn Y (2003) Elevated plasma endothelial microparticles in preeclampsia. Am J Obstet Gynecol 189:589–593PubMedGoogle Scholar
  94. 94.
    Gonzalez-Quintero VH, Smarkusky LP, Jimenez JJ, Mauro LM, Jy W, Hortsman LL, O’Sullivan MJ, Ahn YS (2004) Elevated plasma endothelial microparticles: preeclampsia versus gestational hypertension. Am J Obstet Gynecol 191:1418–1424PubMedGoogle Scholar
  95. 95.
    Gorin Y, Block K, Hernandez J, Bhandari B, Wagner B, Barnes JL, Abboud HE (2005) Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney. J Biol Chem 280:39616–39626PubMedGoogle Scholar
  96. 96.
    Goswami SK, Maulik N, Das DK (2007) Ischemia-reperfusion and cardioprotection: a delicate balance between reactive oxygen species generation and redox homeostasis. Ann Med 39:275–289PubMedGoogle Scholar
  97. 97.
    Govindarajan B, Sligh JE, Vincent BJ, Li M, Canter JA, Nickoloff BJ, Rodenburg RJ, Smeitink JA, Oberley L, Zhang Y, Slingerland J, Arnold RS, Lambeth JD, Cohen C, Hilenski L, Griendling K, Martinez-Diez M, Cuezva JM, Arbiser JL (2007) Overexpression of Akt converts radial growth melanoma to vertical growth melanoma. J Clin Invest 117:719–729PubMedGoogle Scholar
  98. 98.
    Guerra C, Mijimolle N, Dhawahir A, Dubus P, Barradas M, Serrano M, Campuzano V, Barbacid M (2003) Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell 4:111–120PubMedGoogle Scholar
  99. 99.
    Habibi J, Whaley-Connell A, Qazi MA, Hayden MR, Cooper SA, Tramontano A, Thyfault J, Stump C, Ferrario C, Muniyappa R, Sowers JR (2007) Rosuvastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, decreases cardiac oxidative stress and remodeling in Ren2 transgenic rats. Endocrinology 148:2181–2188PubMedGoogle Scholar
  100. 100.
    Harada H, Hines IN, Flores S, Gao B, McCord J, Scheerens H, Grisham MB (2004) Role of NADPH oxidase-derived superoxide in reduced size liver ischemia and reperfusion injury. Arch Biochem Biophys 423:103–108PubMedGoogle Scholar
  101. 101.
    Harada N, Iimuro Y, Nitta T, Yoshida M, Uchinami H, Nishio T, Hatano E, Yamamoto N, Yamamoto Y, Yamaoka Y (2003) Inactivation of the small GTPase Rac1 protects the liver from ischemia/reperfusion injury in the rat. Surgery 134:480–491PubMedGoogle Scholar
  102. 102.
    Harraz MM, Marden JJ, Zhou W, Zhang Y, Williams A, Sharov VS, Nelson K, Luo M, Paulson H, Schoneich C, Engelhardt JF (2008) SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model. J Clin Invest 118:659–670PubMedGoogle Scholar
  103. 103.
    Henderson BC, Sen U, Reynolds C, Moshal KS, Ovechkin A, Tyagi N, Kartha GK, Rodriguez WE, Tyagi SC (2007) Reversal of systemic hypertension-associated cardiac remodeling in chronic pressure overload myocardium by ciglitazone. Int J Biol Sci 3:385–392PubMedGoogle Scholar
  104. 104.
    Heumuller S, Wind S, Barbosa-Sicard E, Schmidt HH, Busse R, Schroder K, Brandes RP (2008) Apocynin is not an inhibitor of vascular reduced nicotinamide-adenine dinucleotide phosphate oxidases but an antioxidant. Hypertension 51:211–217PubMedGoogle Scholar
  105. 105.
    Heymes C, Bendall JK, Ratajczak P, Cave AC, Samuel JL, Hasenfuss G, Shah AM (2003) Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol 41:2164–2171PubMedGoogle Scholar
  106. 106.
    Hines IN, Hoffman JM, Scheerens H, Day BJ, Harada H, Pavlick KP, Bharwani S, Wolf R, Gao B, Flores S, McCord JM, Grisham MB (2003) Regulation of postischemic liver injury following different durations of ischemia. Am J Physiol Gastrointest Liver Physiol 284:G536–G545PubMedGoogle Scholar
  107. 107.
    Hingtgen SD, Tian X, Yang J, Dunlay SM, Peek AS, Wu Y, Sharma RV, Engelhardt JF, Davisson RL (2006) Nox2-containing NADPH oxidase and Akt activation play a key role in angiotensin II-induced cardiomyocyte hypertrophy. Physiol Genomics 26:180–191PubMedGoogle Scholar
  108. 108.
    Holland JA, O’Donnell RW, Chang MM, Johnson DK, Ziegler LM (2000) Endothelial cell oxidant production: effect of NADPH oxidase inhibitors. Endothelium 7:109–119PubMedGoogle Scholar
  109. 109.
    Hougee S, Hartog A, Sanders A, Graus YM, Hoijer MA, Garssen J, van den Berg WB, van Beuningen HM, Smit HF (2006) Oral administration of the NADPH-oxidase inhibitor apocynin partially restores diminished cartilage proteoglycan synthesis and reduces inflammation in mice. Eur J Pharmacol 531:264–269PubMedGoogle Scholar
  110. 110.
    Hu R, Wang YL, Edderkaoui M, Lugea A, Apte MV, Pandol SJ (2007) Ethanol augments PDGF-induced NADPH oxidase activity and proliferation in rat pancreatic stellate cells. Pancreatology 7:332–340PubMedGoogle Scholar
  111. 111.
    Hultqvist M, Olofsson P, Gelderman KA, Holmberg J, Holmdahl R (2006) A new arthritis therapy with oxidative burst inducers. PLoS Med 3:e348PubMedGoogle Scholar
  112. 112.
    Ibi M, Katsuyama M, Fan C, Iwata K, Nishinaka T, Yokoyama T, Yabe-Nishimura C (2006) NOX1/NADPH oxidase negatively regulates nerve growth factor-induced neurite outgrowth. Free Radic Biol Med 40:1785–1795PubMedGoogle Scholar
  113. 113.
    Ishii N, Ishii T, Hartman PS (2007) The role of the electron transport SDHC gene on lifespan and cancer. Mitochondrion 7:24–28PubMedGoogle Scholar
  114. 114.
    Ishii T, Yasuda K, Akatsuka A, Hino O, Hartman PS, Ishii N (2005) A mutation in the SDHC gene of complex II increases oxidative stress, resulting in apoptosis and tumorigenesis. Cancer Res 65:203–209PubMedGoogle Scholar
  115. 115.
    Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13:76–86PubMedGoogle Scholar
  116. 116.
    Jacobson GM, Dourron HM, Liu J, Carretero OA, Reddy DJ, Andrzejewski T, Pagano PJ (2003) Novel NAD(P)H oxidase inhibitor suppresses angioplasty-induced superoxide and neointimal hyperplasia of rat carotid artery. Circ Res 92:637–643PubMedGoogle Scholar
  117. 117.
    Jaeschke H, Mitchell JR (1989) Mitochondria and xanthine oxidase both generate reactive oxygen species in isolated perfused rat liver after hypoxic injury. Biochem Biophys Res Commun 160:140–147PubMedGoogle Scholar
  118. 118.
    Jeremy JY, Jones RA, Koupparis AJ, Hotston M, Persad R, Angelini GD, Shukla N (2007) Reactive oxygen species and erectile dysfunction: possible role of NADPH oxidase. Int J Impot Res 19:265–280PubMedGoogle Scholar
  119. 119.
    Jiang F, Drummond GR, Dusting GJ (2004) Suppression of oxidative stress in the endothelium and vascular wall. Endothelium 11:79–88PubMedGoogle Scholar
  120. 120.
    Jiang Q, Zhou C, Healey S, Chu W, Kouttab N, Bi Z, Wan Y (2006) UV radiation down-regulates Dsg-2 via Rac/NADPH oxidase-mediated generation of ROS in human lens epithelial cells. Int J Mol Med 18:381–387PubMedGoogle Scholar
  121. 121.
    Jin L, Burnett AL (2008) NADPH oxidase: recent evidence for its role in erectile dysfunction. Asian J Androl 10:6–13PubMedGoogle Scholar
  122. 122.
    Johar S, Cave AC, Narayanapanicker A, Grieve DJ, Shah AM (2006) Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. Faseb J 20:1546–8PubMedGoogle Scholar
  123. 123.
    Johnson DK, Schillinger KJ, Kwait DM, Hughes CV, McNamara EJ, Ishmael F, O’Donnell RW, Chang MM, Hogg MG, Dordick JS, Santhanam L, Ziegler LM, Holland JA (2002) Inhibition of NADPH oxidase activation in endothelial cells by ortho-methoxy-substituted catechols. Endothelium 9:191–203PubMedGoogle Scholar
  124. 124.
    Kamata H, Hirata H (1999) Redox regulation of cellular signalling. Cell Signal 11:1–14PubMedGoogle Scholar
  125. 125.
    Keenan JI, Peterson RA 2nd, Hampton MB (2005) NADPH oxidase involvement in the pathology of Helicobacter pylori infection. Free Radic Biol Med 38:1188–1196PubMedGoogle Scholar
  126. 126.
    Kim JS, Jin Y, Lemasters JJ (2006) Reactive oxygen species, but not Ca2+ overloading, trigger pH- and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion. Am J Physiol Heart Circ Physiol 290:H2024–H2034PubMedGoogle Scholar
  127. 127.
    Kim YM, Guzik TJ, Zhang YH, Zhang MH, Kattach H, Ratnatunga C, Pillai R, Channon KM, Casadei B (2005) A myocardial Nox2 containing NAD(P)H oxidase contributes to oxidative stress in human atrial fibrillation. Circ Res 97:629–636PubMedGoogle Scholar
  128. 128.
    Kim YS, Morgan MJ, Choksi S, Liu ZG (2007) TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol Cell 26:675–687PubMedGoogle Scholar
  129. 129.
    Kleinberg ME, Malech HL, Rotrosen D (1990) The phagocyte 47-kilodalton cytosolic oxidase protein is an early reactant in activation of the respiratory burst. J Biol Chem 265:15577–15583PubMedGoogle Scholar
  130. 130.
    Kobayashi S, Nojima Y, Shibuya M, Maru Y (2004) Nox1 regulates apoptosis and potentially stimulates branching morphogenesis in sinusoidal endothelial cells. Exp Cell Res 300:455–462PubMedGoogle Scholar
  131. 131.
    Kojda G, Harrison D (1999) Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovasc Res 43:562–571PubMedGoogle Scholar
  132. 132.
    Kono H, Rusyn I, Uesugi T, Yamashina S, Connor HD, Dikalova A, Mason RP, Thurman RG (2001) Diphenyleneiodonium sulfate, an NADPH oxidase inhibitor, prevents early alcohol-induced liver injury in the rat. Am J Physiol Gastrointest Liver Physiol 280:G1005–G1012PubMedGoogle Scholar
  133. 133.
    Kono H, Rusyn I, Yin M, Gabele E, Yamashina S, Dikalova A, Kadiiska MB, Connor HD, Mason RP, Segal BH, Bradford BU, Holland SM, Thurman RG (2000) NADPH oxidase-derived free radicals are key oxidants in alcohol-induced liver disease. J Clin Invest 106:867–872PubMedGoogle Scholar
  134. 134.
    Kourie JI (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol 275:C1–C24PubMedGoogle Scholar
  135. 135.
    Krause KH (2007) Aging: a revisited theory based on free radicals generated by NOX family NADPH oxidases. Exp Gerontol 42:256–262PubMedGoogle Scholar
  136. 136.
    Kuehl FA, Humes JL, Ham EA, Egan RW, Dougherty HW (1980) Inflammation: the role of peroxidase-derived products. Adv Prost Thromb Res 6:77–86Google Scholar
  137. 137.
    Kusaka I, Kusaka G, Zhou C, Ishikawa M, Nanda A, Granger DN, Zhang JH, Tang J (2004) Role of AT1 receptors and NAD(P)H oxidase in diabetes-aggravated ischemic brain injury. Am J Physiol Heart Circ Physiol 286:H2442–H2451PubMedGoogle Scholar
  138. 138.
    Lagente V, Planquois JM, Leclerc O, Schmidlin F, Bertrand CP (2008) Oxidative stress is an important component of airway inflammation in mice exposed to cigarette smoke or lipopolysaccharide. Clin Exp Pharmacol Physiol 35:601–605PubMedGoogle Scholar
  139. 139.
    Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189PubMedGoogle Scholar
  140. 140.
    Lambeth JD (2007) Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radic Biol Med 43:332–347PubMedGoogle Scholar
  141. 141.
    Lambeth JD (2000) Regulation of the phagocyte respiratory burst oxidase by protein interactions. J Biochem Mol Biol 33:427–439Google Scholar
  142. 142.
    Lambeth JD, Kawahara T, Diebold B (2007) Regulation of Nox and Duox enzymatic activity and expression. Free Radic Biol Med 43:319–331PubMedGoogle Scholar
  143. 143.
    Landmesser U, Cai H, Dikalov S, McCann L, Hwang J, Jo H, Holland SM, Harrison DG (2002) Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 40:511–515PubMedGoogle Scholar
  144. 144.
    Larios JM, Budhiraja R, Fanburg BL, Thannickal VJ (2001) Oxidative protein cross-linking reactions involving l-tyrosine in transforming growth factor-beta1-stimulated fibroblasts. J Biol Chem 276:17437–17441PubMedGoogle Scholar
  145. 145.
    Lee AC, Fenster BE, Ito H, Takeda K, Bae NS, Hirai T, Yu ZX, Ferrans VJ, Howard BH, Finkel T (1999) Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem 274:7936–7940PubMedGoogle Scholar
  146. 146.
    Lee NK, Choi YG, Baik JY, Han SY, Jeong DW, Bae YS, Kim N, Lee SY (2005) A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106:852–859PubMedGoogle Scholar
  147. 147.
    Lee S-R, Kwon K-S, Kim S-R, Rhee SG (1998) Reversible inactivation of protein tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. Journal of Biological Chemistry 273:15366–15372PubMedGoogle Scholar
  148. 148.
    Lee SR, Yang KS, Kwon J, Lee C, Jeong W, Rhee SG (2002) Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 277:20336–20342PubMedGoogle Scholar
  149. 149.
    Lee VM, Quinn PA, Jennings SC, Ng LL (2003) NADPH oxidase activity in preeclampsia with immortalized lymphoblasts used as models. Hypertension 41:925–931PubMedGoogle Scholar
  150. 150.
    Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312–324PubMedGoogle Scholar
  151. 151.
    Li J, Stouffs M, Serrander L, Banfi B, Bettiol E, Charnay Y, Steger K, Krause KH, Jaconi ME (2006) The NADPH oxidase NOX4 drives cardiac differentiation: role in regulating cardiac transcription factors and MAP kinase activation. Mol Biol Cell 17:3978–3988PubMedGoogle Scholar
  152. 152.
    Li JM, Gall NP, Grieve DJ, Chen M, Shah AM (2002) Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension 40:477–484PubMedGoogle Scholar
  153. 153.
    Littauer A, de Groot H (1992) Release of reactive oxygen by hepatocytes on reoxygenation: three phases and role of mitochondria. Am J Physiol 262:G1015–G1020PubMedGoogle Scholar
  154. 154.
    Looi YH, Grieve DJ, Siva A, Walker SJ, Anilkumar N, Cave AC, Marber M, Monaghan MJ, Shah AM (2008) Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction. Hypertension 51:319–325PubMedGoogle Scholar
  155. 155.
    Maack C, Kartes T, Kilter H, Schafers HJ, Nickenig G, Bohm M, Laufs U (2003) Oxygen free radical release in human failing myocardium is associated with increased activity of rac1-GTPase and represents a target for statin treatment. Circulation 108:1567–1574PubMedGoogle Scholar
  156. 156.
    Maeda H, Akaike T (1998) Nitric oxide and oxygen radicals in infection, inflammation, and cancer. Biochemistry (Mosc) 63:854–865Google Scholar
  157. 157.
    Mahadev K, Motoshima H, Wu X, Ruddy JM, Arnold RS, Cheng G, Lambeth JD, Goldstein BJ (2004) The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Mol Cell Biol 24:1844–1854PubMedGoogle Scholar
  158. 158.
    Malech JL, Gallin JI (1987) Immunology of neutrophils in human diseases. N Engl J Med 317:687–694PubMedGoogle Scholar
  159. 159.
    Maranchie JK, Zhan Y (2005) Nox4 is critical for hypoxia-inducible factor 2-alpha transcriptional activity in von Hippel–Lindau-deficient renal cell carcinoma. Cancer Res 65:9190–9193PubMedGoogle Scholar
  160. 160.
    Marden JJ, Harraz MM, Williams AJ, Nelson K, Luo M, Paulson H, Engelhardt JF (2007) Redox modifier genes in amyotrophic lateral sclerosis in mice. J Clin Invest 117:2913–2919PubMedGoogle Scholar
  161. 161.
    Marriott HM, Jackson LE, Wilkinson TS, Simpson AJ, Mitchell TJ, Buttle DJ, Cross SS, Ince PG, Hellewell PG, Whyte MK, Dockrell DH (2008) Reactive oxygen species regulate neutrophil recruitment and survival in pneumococcal pneumonia. Am J Respir Crit Care Med 177:887–895PubMedGoogle Scholar
  162. 162.
    Masamune A, Watanabe T, Kikuta K, Satoh K, Shimosegawa T (2008) NADPH oxidase plays a crucial role in the activation of pancreatic stellate cells. Am J Phys Gastrointest Liver Physiol 294:G99–G108Google Scholar
  163. 163.
    Matsuno K, Yamada H, Iwata K, Jin D, Katsuyama M, Matsuki M, Takai S, Yamanishi K, Miyazaki M, Matsubara H, Yabe-Nishimura C (2005) Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation 112:2677–2685PubMedGoogle Scholar
  164. 164.
    Maytin M, Siwik DA, Ito M, Xiao L, Sawyer DB, Liao R, Colucci WS (2004) Pressure overload-induced myocardial hypertrophy in mice does not require gp91phox. Circulation 109:1168–1171PubMedGoogle Scholar
  165. 165.
    McCormick ML, Gavrila D, Weintraub NL (2007) Role of oxidative stress in the pathogenesis of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 27:461–469PubMedGoogle Scholar
  166. 166.
    Mehta PK, Griendling KK (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 292:C82–C97PubMedGoogle Scholar
  167. 167.
    Meier B, Cross AR, Hancock JT, Kaup FJ, Jones OT (1991) Identification of a superoxide-generating NADPH oxidase system in human fibroblasts. Biochem J 275(Pt 1):241–245PubMedGoogle Scholar
  168. 168.
    Meneghin A, Hogaboam CM (2007) Infectious disease, the innate immune response, and fibrosis. J Clin Invest 117:530–538PubMedGoogle Scholar
  169. 169.
    Meng TC, Fukada T, Tonks NK (2002) Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9:387–399PubMedGoogle Scholar
  170. 170.
    Meyer M, Pahl HL, Baeuerle PA (1994) Regulation of the transcription factors NF-kappa B and AP-1 by redox changes. Chem Biol Interact 91:91–100PubMedGoogle Scholar
  171. 171.
    Mignotte B, Vayssiere JL (1998) Mitochondria and apoptosis. Eur J Biochem 252:1–15PubMedGoogle Scholar
  172. 172.
    Miriyala S, Gongora Nieto MC, Mingone C, Smith D, Dikalov S, Harrison DG, Jo H (2006) Bone morphogenic protein-4 induces hypertension in mice: role of noggin, vascular NADPH oxidases, and impaired vasorelaxation. Circulation 113:2818–2825PubMedGoogle Scholar
  173. 173.
    Mitsushita J, Lambeth JD, Kamata T (2004) The superoxide-generating oxidase Nox1 is functionally required for Ras oncogene transformation. Cancer res. 64:3580–3585PubMedGoogle Scholar
  174. 174.
    Mittal M, Roth M, Konig P, Hofmann S, Dony E, Goyal P, Selbitz AC, Schermuly RT, Ghofrani HA, Kwapiszewska G, Kummer W, Klepetko W, Hoda MA, Fink L, Hanze J, Seeger W, Grimminger F, Schmidt HH, Weissmann N (2007) Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circ Res 101:258–267PubMedGoogle Scholar
  175. 175.
    Mochizuki T, Furuta S, Mitsushita J, Shang WH, Ito M, Yokoo Y, Yamaura M, Ishizone S, Nakayama J, Konagai A, Hirose K, Kiyosawa K, Kamata T (2006) Inhibition of NADPH oxidase 4 activates apoptosis via the AKT/apoptosis signal-regulating kinase 1 pathway in pancreatic cancer PANC-1 cells. Oncogene 25:3699–3707PubMedGoogle Scholar
  176. 176.
    Mofarrahi M, Brandes RP, Gorlach A, Hanze J, Terada LS, Quinn MT, Mayaki D, Petrof B, Hussain SN (2008) Regulation of proliferation of skeletal muscle precursor cells by NADPH oxidase. Antioxid Redox Signal 10:559–574PubMedGoogle Scholar
  177. 177.
    Moraes TJ, Zurawska JH, Downey GP (2006) Neutrophil granule contents in the pathogenesis of lung injury. Curr Opin Hematol 13:21–27PubMedGoogle Scholar
  178. 178.
    Moreno JC, Visser TJ (2007) New phenotypes in thyroid dyshormonogenesis: hypothyroidism due to DUOX2 mutations. Endocr Dev 10:99–117PubMedGoogle Scholar
  179. 179.
    Morgan D, Oliveira-Emilio HR, Keane D, Hirata AE, Santos da Rocha M, Bordin S, Curi R, Newsholme P, Carpinelli AR (2007) Glucose, palmitate and pro-inflammatory cytokines modulate production and activity of a phagocyte-like NADPH oxidase in rat pancreatic islets and a clonal beta cell line. Diabetologia 50:359–69PubMedGoogle Scholar
  180. 180.
    Morozov I, Lotan O, Joseph G, Gorzalczany Y, Pick E (1998) Mapping of functional domains in p47(phox) involved in the activation of NADPH oxidase by “peptide walking”. J Biol Chem 273:15435–15444PubMedGoogle Scholar
  181. 181.
    Nakagami H, Takemoto M, Liao JK (2003) NADPH oxidase-derived superoxide anion mediates angiotensin II-induced cardiac hypertrophy. J Mol Cell Cardiol 35:851–859PubMedGoogle Scholar
  182. 182.
    Nauseef WM (2004) Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol 122:277–91PubMedGoogle Scholar
  183. 183.
    Nauseef WM, McCormick S, Renee J, Leidal KG, Clark RA (1993) Functional domain in an arginine-rich carboxyl-terminal region of p47phox. J Biol Chem 268:23646–23651PubMedGoogle Scholar
  184. 184.
    Nohl H, Gille L, Kozlov A, Staniek K (2003) Are mitochondria a spontaneous and permanent source of reactive oxygen species? Redox Rep 8:135–141PubMedGoogle Scholar
  185. 185.
    Nohl H, Gille L, Staniek K (2005) Intracellular generation of reactive oxygen species by mitochondria. Biochem Pharmacol 69:719–723PubMedGoogle Scholar
  186. 186.
    Nozik-Grayck E, Huang YC, Carraway MS, Piantadosi CA (2003) Bicarbonate-dependent superoxide release and pulmonary artery tone. Am J Physiol Heart Circ Physiol 285:H2327–H2335PubMedGoogle Scholar
  187. 187.
    Ohshiro Y, Ma RC, Yasuda Y, Hiraoka-Yamamoto J, Clermont AC, Isshiki K, Yagi K, Arikawa E, Kern TS, King GL (2006) Reduction of diabetes-induced oxidative stress, fibrotic cytokine expression, and renal dysfunction in protein kinase C{beta}-null mice. Diabetes 55:3112–3120PubMedGoogle Scholar
  188. 188.
    Oliveira HR, Verlengia R, Carvalho CR, Britto LR, Curi R, Carpinelli AR (2003) Pancreatic beta-cells express phagocyte-like NAD(P)H oxidase. Diabetes 52:1457–1463PubMedGoogle Scholar
  189. 189.
    Ozaki M, Deshpande S, Angkeow P, Bellan J, Lowenstein CJ, Dinauer MC, Goldschmidt-Clermont P, Suzuki S, Irani K (2001) Targeted inhibition of the small GTPase protects against ischemia/reperfusion liver injury in mice. Transplant Proc 33:863–864PubMedGoogle Scholar
  190. 190.
    Ozaki M, Deshpande SS, Angkeow P, Bellan J, Lowenstein CJ, Dinauer MC, Goldschmidt-Clermont PJ, Irani K (2000) Inhibition of the Rac1 GTPase protects against nonlethal ischemia/reperfusion-induced necrosis and apoptosis in vivo. FASEB J 14:418–429PubMedGoogle Scholar
  191. 191.
    Ozaki M, Irani K (2004) Measurement of in vivo oxidative stress regulated by the Rac1 GTPase. Methods Enzymol 381:184–191PubMedGoogle Scholar
  192. 192.
    Panaretakis T, Shabalina IG, Grander D, Shoshan MC, DePierre JW (2001) Reactive oxygen species and mitochondria mediate the induction of apoptosis in human hepatoma HepG2 cells by the rodent peroxisome proliferator and hepatocarcinogen, perfluorooctanoic acid. Toxicol Appl Pharmacol 173:56–64PubMedGoogle Scholar
  193. 193.
    Pannaccione A, Secondo A, Scorziello A, Cali G, Taglialatela M, Annunziato L (2005) Nuclear factor-kappaB activation by reactive oxygen species mediates voltage-gated K+ current enhancement by neurotoxic beta-amyloid peptides in nerve growth factor-differentiated PC-12 cells and hippocampal neurones. J Neurochem 94:572–586PubMedGoogle Scholar
  194. 194.
    Pantano C, Anathy V, Ranjan P, Heintz NH, Janssen-Heininger YM (2006) Non-phagocytic oxidase 1 causes death in lung epithelial cells via a TNF-R1-JNK signaling axis. Am J Respir Cell Mol Biol 36:473–479PubMedGoogle Scholar
  195. 195.
    Papa S, Skulachev VP (1997) Reactive oxygen species, mitochondria, apoptosis and aging. Mol Cell Biochem 174:305–319PubMedGoogle Scholar
  196. 196.
    Park HS, Chun JN, Jung HY, Choi C, Bae YS (2006) Role of NADPH oxidase 4 in lipopolysaccharide-induced proinflammatory responses by human aortic endothelial cells. Cardiovasc Res 72:447–455PubMedGoogle Scholar
  197. 197.
    Park HS, Lee SH, Park D, Lee JS, Ryu SH, Lee WJ, Rhee SG, Bae YS (2004) Sequential activation of phosphatidylinositol 3-kinase, beta Pix, Rac1, and Nox1 in growth factor-induced production of H2O2. Mol Cell Biol 24:4384–4394PubMedGoogle Scholar
  198. 198.
    Park L, Zhou P, Pitstick R, Capone C, Anrather J, Norris EH, Younkin L, Younkin S, Carlson G, McEwen BS, Iadecola C (2008) Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc Natl Acad Sci USA 105:1347–1352PubMedGoogle Scholar
  199. 199.
    Patel DN, Bailey SR, Gresham JK, Schuchman DB, Shelhamer JH, Goldstein BJ, Foxwell BM, Stemerman MB, Maranchie JK, Valente AJ, Mummidi S, Chandrasekar B (2006) TLR4-NOX4-AP-1 signaling mediates lipopolysaccharide-induced CXCR6 expression in human aortic smooth muscle cells. Biochem Biophys Res Commun 347:1113–1120PubMedGoogle Scholar
  200. 200.
    Patel M, Li QY, Chang LY, Crapo J, Liang LP (2005) Activation of NADPH oxidase and extracellular superoxide production in seizure-induced hippocampal damage. J Neurochem 92:123–31PubMedGoogle Scholar
  201. 201.
    Perry BN, Govindarajan B, Bhandarkar SS, Knaus UG, Valo M, Sturk C, Carrillo CO, Sohn A, Cerimele F, Dumont D, Losken A, Williams J, Brown LF, Tan X, Ioffe E, Yancopoulos GD, Arbiser JL (2006) Pharmacologic blockade of angiopoietin-2 is efficacious against model hemangiomas in mice. J Invest Dermatol 126:2316–2322PubMedGoogle Scholar
  202. 202.
    Peshavariya HM, Dusting GJ, Selemidis S (2007) Analysis of dihydroethidium fluorescence for the detection of intracellular and extracellular superoxide produced by NADPH oxidase. Free Radic Res 41:699–712PubMedGoogle Scholar
  203. 203.
    Petry A, Djordjevic T, Weitnauer M, Kietzmann T, Hess J, Gorlach A (2006) NOX2 and NOX4 mediate proliferative response in endothelial cells. Antioxid Redox Signal 8:1473–1484PubMedGoogle Scholar
  204. 204.
    Proell V, Carmona-Cuenca I, Murillo MM, Huber H, Fabregat I, Mikulits W (2007) TGF-beta dependent regulation of oxygen radicals during transdifferentiation of activated hepatic stellate cells to myofibroblastoid cells. Comp Hepatol 6:1PubMedGoogle Scholar
  205. 205.
    Qin B, Cartier L, Dubois-Dauphin M, Li B, Serrander L, Krause KH (2005) A key role for the microglial NADPH oxidase in APP-dependent killing of neurons. Neurobiol Aging 27:1577–1587PubMedGoogle Scholar
  206. 206.
    Qin F, Simeone M, Patel R (2007) Inhibition of NADPH oxidase reduces myocardial oxidative stress and apoptosis and improves cardiac function in heart failure after myocardial infarction. Free Radic Biol Med 43:271–281PubMedGoogle Scholar
  207. 207.
    Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, Leake D, Godden EL, Albertson DG, Nieto MA, Werb Z, Bissell MJ (2005) Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436:123–127PubMedGoogle Scholar
  208. 208.
    Raha S, Robinson BH (2001) Mitochondria, oxygen free radicals, and apoptosis. Am J Med Genet 106:62–70PubMedGoogle Scholar
  209. 209.
    Ranjan P, Anathy V, Burch PM, Weirather K, Lambeth JD, Heintz NH (2006) Redox-dependent expression of cyclin D1 and cell proliferation by Nox1 in mouse lung epithelial cells. Antioxid Redox Signal 8:1447–1459PubMedGoogle Scholar
  210. 210.
    Rao PV, Maddala R, John F, Zigler JS Jr (2004) Expression of nonphagocytic NADPH oxidase system in the ocular lens. Mol Vis 10:112–121PubMedGoogle Scholar
  211. 211.
    Reeves EP, Lu H, Jacobs HL, Messina CG, Bolsover S, Gabella G, Potma EO, Warley A, Roes J, Segal AW (2002) Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416:291–297PubMedGoogle Scholar
  212. 212.
    Rey FE, Cifuentes ME, Kiarash A, Quinn MT, Pagano PJ (2001) Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O(2)(−) and systolic blood pressure in mice. Circ Res 89:408–414PubMedGoogle Scholar
  213. 213.
    Rigutto S, Hoste C, Dumont JE, Corvilain B, Miot F, De Deken X (2007) Duox1 is the main source of hydrogen peroxide in the rat thyroid cell line PCCl3. Exp Cell Res 313:3892–901PubMedGoogle Scholar
  214. 214.
    Ritsick DR, Edens WA, Finnerty V, Lambeth JD (2007) Nox regulation of smooth muscle contraction. Free Radic Biol Med 43:31–38PubMedGoogle Scholar
  215. 215.
    Rocic P, Lucchesi PA (2005) NAD(P)H oxidases and TGF-beta-induced cardiac fibroblast differentiation: Nox-4 gets Smad. Circ Res 97:850–852PubMedGoogle Scholar
  216. 216.
    Romero N, Denicola A, Souza JM, Radi R (1999) Diffusion of peroxynitrite in the presence of carbon dioxide. Arch Biochem Biophys 368:23–30PubMedGoogle Scholar
  217. 217.
    Rossary A, Arab K, Steghens JP (2007) Polyunsaturated fatty acids modulate NOX4 anion superoxide production in human fibroblasts. Biochem J 406:77–83PubMedGoogle Scholar
  218. 218.
    Russo MT, Blasi MF, Chiera F, Fortini P, Degan P, Macpherson P, Furuichi M, Nakabeppu Y, Karran P, Aquilina G, Bignami M (2004) The oxidized deoxynucleoside triphosphate pool is a significant contributor to genetic instability in mismatch repair-deficient cells. Mol Cell Biol 24:465–474PubMedGoogle Scholar
  219. 219.
    Sadok A, Bourgarel-Rey V, Gattacceca F, Penel C, Lehmann M, Kovacic H (2008) Nox1-dependent superoxide production controls colon adenocarcinoma cell migration. Biochim Biophys Acta 1783:23–33PubMedGoogle Scholar
  220. 220.
    Saeed SA, Waqar MA, Zubairi AJ, Bhurgri H, Khan A, Gowani SA, Waqar SN, Choudhary MI, Jalil S, Zaidi AH, Ara I (2005) Myocardial ischaemia and reperfusion injury: reactive oxygen species and the role of neutrophil. J Coll Physicians Surg Pak 15:507–514PubMedGoogle Scholar
  221. 221.
    Saito Y, Geisen P, Uppal A, Hartnett ME (2007) Inhibition of NAD(P)H oxidase reduces apoptosis and avascular retina in an animal model of retinopathy of prematurity. Mol Vis 13:840–853PubMedGoogle Scholar
  222. 222.
    Salles N, Szanto I, Herrmann F, Armenian B, Stumm M, Stauffer E, Michel JP, Krause KH (2005) Expression of mRNA for ROS-generating NADPH oxidases in the aging stomach. Exp Gerontol 40:353–357PubMedGoogle Scholar
  223. 223.
    Sangrar W, Gao Y, Scott M, Truesdell P, Greer PA (2007) Fer-mediated cortactin phosphorylation is associated with efficient fibroblast migration and is dependent on reactive oxygen species generation during integrin-mediated cell adhesion. Mol Cell Biol 27:6140–6152PubMedGoogle Scholar
  224. 224.
    Sankarapandi S, Zweier JL, Mukherjee G, Quinn MT, Huso DL (1998) Measurement and characterization of superoxide generation in microglial cells: evidence for an NADPH oxidase-dependent pathway. Arch Biochem Biophys 353:312–21PubMedGoogle Scholar
  225. 225.
    Satoh M, Ogita H, Takeshita K, Mukai Y, Kwiatkowski DJ, Liao JK (2006) Requirement of Rac1 in the development of cardiac hypertrophy. Proc Natl Acad Sci USA 103:7432–7437PubMedGoogle Scholar
  226. 226.
    Schappi M, Deffert C, Fiette L, Gavazzi G, Herrmann F, Belli D, Krause KH (2008) Branched fungal beta-glucan causes hyperinflammation and necrosis in phagocyte NADPH oxidase-deficient mice. J Pathol 214(4):434–444PubMedGoogle Scholar
  227. 227.
    Schroder K, Helmcke I, Palfi K, Krause KH, Busse R, Brandes RP (2007) Nox1 mediates basic fibroblast growth factor-induced migration of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 27:1736–1743PubMedGoogle Scholar
  228. 228.
    Segal AW, Abo A (1993) The biochemical basis of the NADPH oxidase of phagocytes. TIBS 18:43–47PubMedGoogle Scholar
  229. 229.
    Senft AP, Dalton TP, Nebert DW, Genter MB, Hutchinson RJ, Shertzer HG (2002) Dioxin increases reactive oxygen production in mouse liver mitochondria. Toxicol Appl Pharmacol 178:15–21PubMedGoogle Scholar
  230. 230.
    Serrander L, Cartier L, Bedard K, Banfi B, Lardy B, Plastre O, Sienkiewicz A, Forro L, Schlegel W, Krause KH (2007) NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem J 406:105–114PubMedGoogle Scholar
  231. 231.
    Serrander L, Jaquet V, Bedard K, Plastre O, Hartley O, Arnaudeau S, Demaurex N, Schlegel W, Krause KH (2007) NOX5 is expressed at the plasma membrane and generates superoxide in response to protein kinase C activation. Biochimie 89:1159–1167PubMedGoogle Scholar
  232. 232.
    Shacter E, Weitzman SA (2002) Chronic inflammation and cancer. Oncology (Huntingt) 16:217–226, 229, discussion 230–2Google Scholar
  233. 233.
    Shi J, Ross CR, Leto TL, Blecha F (1996) PR-39, a proline-rich antibacterial peptide that inhibits phagocyte NADPH oxidase activity by binding to Src homology 3 domains of p47 phox. Proc Natl Acad Sci USA 93:6014–6018PubMedGoogle Scholar
  234. 234.
    Shibuya H, Ohkohchi N, Seya K, Satomi S (1997) Kupffer cells generate superoxide anions and modulate reperfusion injury in rat livers after cold preservation. Hepatology 25:356–360PubMedGoogle Scholar
  235. 235.
    Shiose A, Kuroda J, Tsuruya K, Hirai M, Hirakata H, Naito S, Hattori M, Sakaki Y, Sumimoto H (2001) A novel superoxide-producing NAD(P)H oxidase in kidney. J Biol Chem 276:1417–1423PubMedGoogle Scholar
  236. 236.
    Si J, Fu X, Behar J, Wands J, Beer DG, Souza RF, Spechler SJ, Lambeth D, Cao W (2007) NADPH oxidase NOX5-S mediates acid-induced cyclooxygenase-2 expression via activation of NF-kappaB in Barrett’s esophageal adenocarcinoma cells. J Biol Chem 282:16244–16255PubMedGoogle Scholar
  237. 237.
    Snelgrove RJ, Edwards L, Rae AJ, Hussell T (2006) An absence of reactive oxygen species improves the resolution of lung influenza infection. Eur J Immunol 36:1364–1373PubMedGoogle Scholar
  238. 238.
    Snelgrove RJ, Edwards L, Williams AE, Rae AJ, Hussell T (2006) In the absence of reactive oxygen species, T cells default to a Th1 phenotype and mediate protection against pulmonary Cryptococcus neoformans infection. J Immunol 177:5509–5516PubMedGoogle Scholar
  239. 239.
    Sorescu D, Griendling KK (2002) Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest Heart Fail 8:132–140PubMedGoogle Scholar
  240. 240.
    Sorescu GP, Song H, Tressel SL, Hwang J, Dikalov S, Smith DA, Boyd NL, Platt MO, Lassegue B, Griendling KK, Jo H (2004) Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based NADPH oxidase. Circ Res 95:773–779PubMedGoogle Scholar
  241. 241.
    Staniek K, Nohl H (2000) Are mitochondria a permanent source of reactive oxygen species? Biochim Biophys Acta 1460:268–275PubMedGoogle Scholar
  242. 242.
    Stas S, Whaley-Connell A, Habibi J, Appesh L, Hayden MR, Karuparthi PR, Qazi M, Morris EM, Cooper SA, Link CD, Stump C, Hay M, Ferrario C, Sowers JR (2007) Mineralocorticoid receptor blockade attenuates chronic overexpression of the renin–angiotensin–aldosterone system stimulation of reduced nicotinamide adenine dinucleotide phosphate oxidase and cardiac remodeling. Endocrinology 148:3773–3780PubMedGoogle Scholar
  243. 243.
    Stielow C, Catar RA, Muller G, Wingler K, Scheurer P, Schmidt HH, Morawietz H (2006) Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells. Biochem Biophys Res Commun 344:200–205PubMedGoogle Scholar
  244. 244.
    Stolk J, Hiltermann TJ, Dijkman JH, Verhoeven AJ (1994) Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. Am J Respir Cell Mol Biol 11:95–102PubMedGoogle Scholar
  245. 245.
    Strieter RM, Gomperts BN, Keane MP (2007) The role of CXC chemokines in pulmonary fibrosis. J Clin Invest 117:549–556PubMedGoogle Scholar
  246. 246.
    Stuehr DJ, Fasehun OA, Kwon NS, Gross SS, Gonzalez JA, Levi R, Nathan CF (1991) Inhibition of macrophage and endothelial cell nitric oxide synthase by diphenyleneiodonium and its analogs. FASEB J 5:98–103PubMedGoogle Scholar
  247. 247.
    Sturrock A, Cahill B, Norman K, Huecksteadt TP, Hill K, Sanders K, Karwande SV, Stringham JC, Bull DA, Gleich M, Kennedy TP, Hoidal JR (2006) Transforming growth factor-beta1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 290:L661–L673PubMedGoogle Scholar
  248. 248.
    Sturrock A, Huecksteadt TP, Norman K, Sanders K, Murphy TM, Chitano P, Wilson K, Hoidal JR, Kennedy TP (2007) Nox4 mediates TGF-beta1-induced retinoblastoma protein phosphorylation, proliferation, and hypertrophy in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 292:L1543–L1555PubMedGoogle Scholar
  249. 249.
    Sumimoto H, Miyano K, Takeya R (2005) Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochem Biophys Res Commun 338:677–686PubMedGoogle Scholar
  250. 250.
    Suzuki Y, Wang W, Vu TH, Raffin TA (1992) Effect of NADPH oxidase inhibition on endothelial cell ELAM-1 mRNA expression. Biochem Biophys Res Commun 184:1339–1343PubMedGoogle Scholar
  251. 251.
    Suzuki YJ, Ford GD (1999) Redox regulation of signal transduction in cardiac and smooth muscle. J Mol Cell Cardiol 31:345–353PubMedGoogle Scholar
  252. 252.
    Szocs K, Lassegue B, Wenzel P, Wendt M, Daiber A, Oelze M, Meinertz T, Munzel T, Baldus S (2007) Increased superoxide production in nitrate tolerance is associated with NAD(P)H oxidase and aldehyde dehydrogenase 2 downregulation. J Mol Cell Cardiol 42:1111–1118PubMedGoogle Scholar
  253. 253.
    ten Freyhaus H, Huntgeburth M, Wingler K, Schnitker J, Baumer AT, Vantler M, Bekhite MM, Wartenberg M, Sauer H, Rosenkranz S (2006) Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovasc Res 71:331–341PubMedGoogle Scholar
  254. 254.
    Teshima S, Kutsumi H, Kawahara T, Kishi K, Rokutan K (2000) Regulation of growth and apoptosis of cultured guinea pig gastric mucosal cells by mitogenic oxidase 1. Am J Physiol Gastrointest Liver Physiol 279:G1169–G1176PubMedGoogle Scholar
  255. 255.
    Teshima S, Rokutan K, Nikawa T, Kishi K (1998) Guinea pig gastric mucosal cells produce abundant superoxide anion through an NADPH oxidase-like system. Gastroenterology 115:1186–1196PubMedGoogle Scholar
  256. 256.
    Thabut G, El-Benna J, Samb A, Corda S, Megret J, Leseche G, Vicaut E, Aubier M, Boczkowski J (2002) Tumor necrosis factor-alpha increases airway smooth muscle oxidants production through a NADPH oxidase-like system to enhance myosin light chain phosphorylation and contractility. J Biol Chem 277:22814–22821PubMedGoogle Scholar
  257. 257.
    Thakur V, McMullen MR, Pritchard MT, Nagy LE (2007) Regulation of macrophage activation in alcoholic liver disease. J Gastroenterol Hepatol 221(Suppl):S53–S56Google Scholar
  258. 258.
    Thomas M, Gavrila D, McCormick ML, Miller FJ Jr, Daugherty A, Cassis LA, Dellsperger KC, Weintraub NL (2006) Deletion of p47phox attenuates angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E-deficient mice. Circulation 114:404–413PubMedGoogle Scholar
  259. 259.
    Toledo-Pereyra LH, Lopez-Neblina F, Toledo AH (2004) Reactive oxygen species and molecular biology of ischemia/reperfusion. Ann Transplant 9:81–83PubMedGoogle Scholar
  260. 260.
    Tominaga K, Kawahara T, Sano T, Toida K, Kuwano Y, Sasaki H, Kawai T, Teshima-Kondo S, Rokutan K (2007) Evidence for cancer-associated expression of NADPH oxidase 1 (Nox1)-based oxidase system in the human stomach. Free Radic Biol Med 43:1627–1638PubMedGoogle Scholar
  261. 261.
    Touyz RM, Mercure C, He Y, Javeshghani D, Yao G, Callera GE, Yogi A, Lochard N, Reudelhuber TL (2005) Angiotensin II-dependent chronic hypertension and cardiac hypertrophy are unaffected by gp91phox-containing NADPH oxidase. Hypertension 45:530–537PubMedGoogle Scholar
  262. 262.
    Uchizono Y, Takeya R, Iwase M, Sasaki N, Oku M, Imoto H, Iida M, Sumimoto H (2006) Expression of isoforms of NADPH oxidase components in rat pancreatic islets. Life Sci 80:133–139PubMedGoogle Scholar
  263. 263.
    Uhlinger DJ, Tyagi SR, Lambeth JD (1995) On the mechanism of inhibition of the neutrophil respiratory burst oxidase by a peptide from the C-terminus of the large subunit of cytochrome b558. Biochemistry 34:524–527PubMedGoogle Scholar
  264. 264.
    Urakami H, Abe Y, Grisham MB (2007) Role of reactive metabolites of oxygen and nitrogen in partial liver transplantation: lessons learned from reduced-size liver ischaemia and reperfusion injury. Clin Exp Pharmacol Physiol 34:912–919PubMedGoogle Scholar
  265. 265.
    Ushio-Fukai M (2006) Redox signaling in angiogenesis: role of NADPH oxidase. Cardiovasc Res 71:226–235PubMedGoogle Scholar
  266. 266.
    Ushio-Fukai M (2007) VEGF signaling through NADPH oxidase-derived ROS. Antioxid Redox Signal 9:731–739PubMedGoogle Scholar
  267. 267.
    Valencia A, Kochevar IE (2008) Nox1-based NADPH oxidase is the major source of UVA-induced reactive oxygen species in human keratinocytes. J Invest Dermatol 128:214–222PubMedGoogle Scholar
  268. 268.
    van der Vliet A (2008) NADPH oxidases in lung biology and pathology: host defense enzymes, and more. Free Radic Biol Med 44:938–955PubMedGoogle Scholar
  269. 269.
    Van Laethem A, Nys K, Van Kelst S, Claerhout S, Ichijo H, Vandenheede JR, Garmyn M, Agostinis P (2006) Apoptosis signal regulating kinase-1 connects reactive oxygen species to p38 MAPK-induced mitochondrial apoptosis in UVB-irradiated human keratinocytes. Free Radic Biol Med 41:1361–1371PubMedGoogle Scholar
  270. 270.
    Vanden Berghe T, Declercq W, Vandenabeele P (2007) NADPH oxidases: new players in TNF-induced necrotic cell death. Mol Cell 26:769–771PubMedGoogle Scholar
  271. 271.
    VanWijk MJ, Nieuwland R, Boer K, van der Post JA, VanBavel E, Sturk A (2002) Microparticle subpopulations are increased in preeclampsia: possible involvement in vascular dysfunction? Am J Obstet Gynecol 187:450–456PubMedGoogle Scholar
  272. 272.
    Vaquero EC, Edderkaoui M, Pandol SJ, Gukovsky I, Gukovskaya AS (2004) Reactive oxygen species produced by NAD(P)H oxidase inhibit apoptosis in pancreatic cancer cells. J Biol Chem 279:34643–34654PubMedGoogle Scholar
  273. 273.
    Varga J, Abraham D (2007) Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest 117:557–567PubMedGoogle Scholar
  274. 274.
    Vignais PV (2002) The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci 59:1428–1459PubMedGoogle Scholar
  275. 275.
    Vollgraf U, Wegner M, Richter-Landsberg C (1999) Activation of AP-1 and nuclear factor-kappaB transcription factors is involved in hydrogen peroxide-induced apoptotic cell death of oligodendrocytes. J Neurochem 73:2501–2509PubMedGoogle Scholar
  276. 276.
    Waghray M, Cui Z, Horowitz JC, Subramanian IM, Martinez FJ, Toews GB, Thannickal VJ (2005) Hydrogen peroxide is a diffusible paracrine signal for the induction of epithelial cell death by activated myofibroblasts. FASEB J 19:854–856PubMedGoogle Scholar
  277. 277.
    Wagner AH, Kohler T, Ruckschloss U, Just I, Hecker M (2000) Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation. Arterioscler Thromb Vasc Biol 20:61–69PubMedGoogle Scholar
  278. 278.
    Wagner B, Ricono JM, Gorin Y, Block K, Arar M, Riley D, Choudhury GG, Abboud HE (2007) Mitogenic signaling via platelet-derived growth factor beta in metanephric mesenchymal cells. J Am Soc Nephrol 18:2903–2911PubMedGoogle Scholar
  279. 279.
    Walder CE, Green SP, Darbonne WC, Mathias J, Rae J, Dinauer MC, Curnutte JT, Thomas GR (1997) Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28:2252–2258PubMedGoogle Scholar
  280. 280.
    Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488PubMedGoogle Scholar
  281. 281.
    Wang HD, Xu S, Johns DG, Du Y, Quinn MT, Cayatte AJ, Cohen RA (2001) Role of NADPH oxidase in the vascular hypertrophic and oxidative stress response to angiotensin II in mice. Circ Res 88:947–953PubMedGoogle Scholar
  282. 282.
    Wang P, Tang F, Li R, Zhang H, Chen S, Liu P, Huang H (2007) Contribution of different Nox homologues to cardiac remodeling in two-kidney two-clip renovascular hypertensive rats: effect of valsartan. Pharmacol Res 55:408–417PubMedGoogle Scholar
  283. 283.
    Wang Q, Tompkins KD, Simonyi A, Korthuis RJ, Sun AY, Sun GY (2006) Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Res 1090:182–189PubMedGoogle Scholar
  284. 284.
    Wang W, Suzuki Y, Tanigaki T, Rank DR, Raffin TA (1994) Effect of the NADPH oxidase inhibitor apocynin on septic lung injury in guinea pigs. Am J Respir Crit Care Med 150:1449–1452PubMedGoogle Scholar
  285. 285.
    Weiss SJ (1989) Tissue destruction by neutrophils. N Engl J Med 320:365–376PubMedGoogle Scholar
  286. 286.
    Whaley-Connell A, Habibi J, Nistala R, Cooper SA, Karuparthi PR, Hayden MR, Rehmer N, Demarco VG, Andresen BT, Wei Y, Ferrario C, Sowers R (2008) Attenuation of reduced nicotinamide-adenine dinucleotide phosphate oxidase activation and glomerular filtration barrier remodeling with statin treatment. Hypertension 51:474–480PubMedGoogle Scholar
  287. 287.
    Williams HC, Griendling KK (2007) NADPH oxidase inhibitors: new antihypertensive agents? J Cardiovasc Pharmacol 50:9–16PubMedGoogle Scholar
  288. 288.
    Winyard PG, Blake DR, Evans CH (2000) Free radicals and inflammation. Birkhèauser, BaselGoogle Scholar
  289. 289.
    Wo YB, Zhu DY, Hu Y, Wang ZQ, Liu J, Lou YJ (2007) Reactive oxygen species involved in prenylflavonoids, icariin and icaritin, initiating cardiac differentiation of mouse embryonic stem cells. J Cell Biochem 103:1536–1550Google Scholar
  290. 290.
    Wojnowski L, Kulle B, Schirmer M, Schluter G, Schmidt A, Rosenberger A, Vonhof S, Bickeboller H, Toliat MR, Suk EK, Tzvetkov M, Kruger A, Seifert S, Kloess M, Hahn H, Loeffler M, Nurnberg P, Pfreundschuh M, Trumper L, Brockmoller J, Hasenfuss G (2005) NAD(P)H oxidase and multidrug resistance protein genetic polymor phisms are associated with doxorubicin-induced cardiotoxicity. Circulation 112:3754–762PubMedGoogle Scholar
  291. 291.
    Wu DC, Re DB, Nagai M, Ischiropoulos H, Przedborski S (2006) The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice. Proc Natl Acad Sci USA 103:12132–12137PubMedGoogle Scholar
  292. 292.
    Wu S, Gao J, Dinh QT, Chen C, Fimmel S (2008) IL-8 production and AP-1 transactivation induced by UVA in human keratinocytes: roles of d-alpha-tocopherol. Mol Immunol 45:2288–2296PubMedGoogle Scholar
  293. 293.
    Xia C, Meng Q, Liu LZ, Rojanasakul Y, Wang XR, Jiang BH (2007) Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res 67:10823–10830PubMedGoogle Scholar
  294. 294.
    Ximenes VF, Kanegae MP, Rissato SR, Galhiane MS (2007) The oxidation of apocynin catalyzed by myeloperoxidase: proposal for NADPH oxidase inhibition. Arch Biochem Biophys 457:134–141PubMedGoogle Scholar
  295. 295.
    Xu D, Rovira II, Finkel T (2002) Oxidants painting the cysteine chapel: redox regulation of PTPs. Dev Cell 2:251–252PubMedGoogle Scholar
  296. 296.
    Yang S, Ries WL, Key LL Jr (1998) Nicotinamide adenine dinucleotide phosphate oxidase in the formation of superoxide in osteoclasts. Calcif Tissue Int 63:346–350PubMedGoogle Scholar
  297. 297.
    Yang S, Zhang Y, Ries W, Key L (2004) Expression of Nox4 in osteoclasts. J Cell Biochem 92:238–248PubMedGoogle Scholar
  298. 298.
    Yin CC, Huang KT (2007) H2O2 but not O2 elevated by oxidized LDL enhances human aortic smooth muscle cell proliferation. J Biomed Sci 14:245–254PubMedGoogle Scholar
  299. 299.
    Yu JH, Kim KH, Kim DG, Kim H (2007) Diphenyleneiodonium suppresses apoptosis in cerulein-stimulated pancreatic acinar cells. Int J Biochem Cell Biol 39:2063–2075PubMedGoogle Scholar
  300. 300.
    Zang M, Xu S, Maitland-Toolan KA, Zuccollo A, Hou X, Jiang B, Wierzbicki M, Verbeuren TJ, Cohen RA (2006) Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 55:2180–2191PubMedGoogle Scholar
  301. 301.
    Zekry D, Epperson TK, Krause KH (2003) A role for NOX NADPH oxidases in Alzheimer’s disease and other types of dementia. IUBMB Life 55:307–313PubMedGoogle Scholar
  302. 302.
    Zhang W, Wang M, Xie HY, Zhou L, Meng XQ, Shi J, Zheng S (2007) Role of reactive oxygen species in mediating hepatic ischemia-reperfusion injury and its therapeutic applications in liver transplantation. Transplant Proc 39:1332–1337PubMedGoogle Scholar
  303. 303.
    Zhang X, Shan P, Jiang G, Cohn L, Lee PJ (2006) Toll-like receptor 4 deficiency causes pulmonary emphysema. J Clin Invest 116:3050–3059PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • J. David Lambeth
    • 1
  • Karl-Heinz Krause
    • 2
  • Robert A. Clark
    • 3
  1. 1.Emory UniversityAtlantaUSA
  2. 2.University of GenevaGenevaSwitzerland
  3. 3.University of Texas Health Science CenterSan AntonioUSA

Personalised recommendations