Seminars in Immunopathology

, Volume 30, Issue 2, pp 111–119 | Cite as

Angiogenesis in eye disease: immunity gained or immunity lost?

  • Thomas A. FergusonEmail author
  • Rajendra S. Apte


The anti-inflammatory nature of the intraocular environment is critical to the immune privilege of the eye. An important part of immune privilege is the induction of apoptosis by two death-inducing ligands (FasL and TRAIL) that can limit the spread of inflammation and control tumor growth. While initial studies focused on control of inflammation and the impact of these molecules on the systemic immune response, more recent studies have extended this concept to pathogenic neovascularization. This process is an important component of several blinding eye disorders including age-related macular degeneration, diabetic retinopathy, retinopathy of prematurity, and corneal disease. These studies showed that the mediators of immune privilege also regulate the extent of angiogenesis. In this article, we will develop the idea that constitutive expression of FasL in the eye, as well as inducible FasL on cells of the immune system, modulates neovascularization in ocular disease. Further, we will present the idea that macrophage participation in this process and their function during disease depends on the microenvironment and the cytokine milieu. These concepts challenge the idea that neovascular eye disease is simply an inflammatory process and support the idea that these diseases may result from the loss or dysfunction of important components of the cellular immune system.


AMD CNV Macrophage Inflammation Immunity FasL Immune privilege IL-10 


  1. 1.
    Stromblad S, Cheresh DA (1996) Integrins, angiogenesis and vascular cell survival. Chem Biol 3(11):881–885PubMedCrossRefGoogle Scholar
  2. 2.
    Jackson JR et al (1997) The codependence of angiogenesis and chronic inflammation. Faseb J 11(6):457–465PubMedGoogle Scholar
  3. 3.
    Capoccia BJ et al (2006) G-CSF and AMD3100 mobilize monocytes into the blood that stimulate angiogenesis in vivo through a paracrine mechanism. Blood 108(7):2438–2445PubMedCrossRefGoogle Scholar
  4. 4.
    Kvanta A et al (1996) Subfoveal fibrovascular membranes in age-related macular degeneration express vascular endothelial growth factor. Invest Ophthalmol Vis Sci 37(9):1929–1934PubMedGoogle Scholar
  5. 5.
    Ishibashi T et al (1997) Expression of vascular endothelial growth factor in experimental choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol 235(3):159–167PubMedCrossRefGoogle Scholar
  6. 6.
    Liu X et al (1998) Regulatory effects of soluble growth factors on choriocapillaris endothelial growth and survival. Ophthalmic Res 30(5):302–313PubMedCrossRefGoogle Scholar
  7. 7.
    Pierce EA et al (1995) Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci U S A 92(3):905–909PubMedCrossRefGoogle Scholar
  8. 8.
    Miller H et al (1990) Pathogenesis of laser-induced choroidal subretinal neovascularization. Invest Ophthalmol Vis Sci 31(5):899–908PubMedGoogle Scholar
  9. 9.
    D’Amore PA (1994) Mechanisms of retinal and choroidal neovascularization. Invest Ophthalmol Vis Sci 35(12):3974–3979PubMedGoogle Scholar
  10. 10.
    Luna J et al (1996) Antagonists of integrin alpha v beta 3 inhibit retinal neovascularization in a murine model. Lab Invest 75(4):563–573PubMedGoogle Scholar
  11. 11.
    Rosenfeld PJ et al (2006) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 355(14):1419–1431PubMedCrossRefGoogle Scholar
  12. 12.
    Dawson DW et al (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285(5425):245–248PubMedCrossRefGoogle Scholar
  13. 13.
    Stellmach V et al (2001) Prevention of ischemia-induced retinopathy by the natural ocular antiangiogenic agent pigment epithelium-derived factor. Proc Natl Acad Sci U S A 98(5):2593–2597PubMedCrossRefGoogle Scholar
  14. 14.
    Doll JA et al (2003) Pigment epithelium-derived factor regulates the vasculature and mass of the prostate and pancreas. Nat Med 9(6):774–780PubMedCrossRefGoogle Scholar
  15. 15.
    Ambati BK et al (2006) Corneal avascularity is due to soluble VEGF receptor-1. Nature 443(7114):993–997PubMedCrossRefGoogle Scholar
  16. 16.
    Kaplan HJ et al (1999) Fas ligand (CD95 ligand) controls angiogenesis beneath the retina. Nat Med 5(3):292–297PubMedCrossRefGoogle Scholar
  17. 17.
    Apte RS et al (2006) Macrophages inhibit neovascularization in a murine model of age-related macular degeneration. PLoS Med 3(8):e310PubMedCrossRefGoogle Scholar
  18. 18.
    Kelly J et al (2007) Senescence regulates macrophage activation and angiogenic fate at sites of tissue injury in mice. J Clin Invest 117(11):3421–3426PubMedCrossRefGoogle Scholar
  19. 19.
    Stuart PM et al (1997) CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival. J Clin Invest 99(3):396–402PubMedCrossRefGoogle Scholar
  20. 20.
    Stuart PM et al (2003) FasL–Fas interactions regulate neovascularization in the cornea. Invest Ophthalmol Vis Sci 44(1):93–98PubMedCrossRefGoogle Scholar
  21. 21.
    Barreiro R et al (2003) The role of Fas–FasL in the development and treatment of ischemic retinopathy. Invest Ophthalmol Vis Sci 44(3):1282–1286PubMedCrossRefGoogle Scholar
  22. 22.
    Davies MH et al (2003) Increased retinal neovascularization in Fas ligand-deficient mice. Invest Ophthalmol Vis Sci 44(7):3202–3210PubMedCrossRefGoogle Scholar
  23. 23.
    Nagata S (1996) Fas-mediated apoptosis. Adv Exp Med Biol 406:119–124PubMedGoogle Scholar
  24. 24.
    Lee HO, Ferguson TA (2003) Biology of FasL. Cytokine Growth Factor Rev 14(3–4):325–335PubMedCrossRefGoogle Scholar
  25. 25.
    Griffith TS et al (1995) Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270(5239):1189–1192PubMedCrossRefGoogle Scholar
  26. 26.
    Ferguson TA, Griffith TS (1997) A vision of cell death: insights into immune privilege. Immunol Rev 156:167–184PubMedCrossRefGoogle Scholar
  27. 27.
    O’Connell J et al (1999) The Fas counterattack: cancer as a site of immune privilege. Immunol Today 20(1):46–52PubMedCrossRefGoogle Scholar
  28. 28.
    Hahne M et al (1996) Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 274(5291):1363–1366PubMedCrossRefGoogle Scholar
  29. 29.
    Brunner T et al (1996) Regulation of CD95 ligand expression: a key element in immune regulation? Behring Inst Mitt 97:161–174PubMedGoogle Scholar
  30. 30.
    Zhang HG et al (2000) Antigen presenting cells expressing Fas ligand down-modulate chronic inflammatory disease in Fas ligand-deficient mice. J Clin Invest 105(6):813–821PubMedCrossRefGoogle Scholar
  31. 31.
    Bonfoco E et al (1998) Inducible nonlymphoid expression of Fas ligand is responsible for superantigen-induced peripheral deletion of T cells. Immunity 9(5):711–720PubMedCrossRefGoogle Scholar
  32. 32.
    Ferguson TA, Griffith TS (1997) Cell death and the immune response: a lesson from the privileged. J Clin Immunol 17(1):1–10PubMedCrossRefGoogle Scholar
  33. 33.
    Green DR, Ferguson TA (2001) The role of Fas ligand in immune privilege. Nat Rev Mol Cell Biol 2(12):917–924PubMedCrossRefGoogle Scholar
  34. 34.
    Taylor PR et al (2005) Macrophage receptors and immune recognition. Annu Rev Immunol 23:901–944PubMedCrossRefGoogle Scholar
  35. 35.
    Nakao S et al (2005) Infiltration of COX-2-expressing macrophages is a prerequisite for IL-1 beta-induced neovascularization and tumor growth. J Clin Invest 115(11):2979–2991PubMedCrossRefGoogle Scholar
  36. 36.
    Balciuniene J et al (1995) A gene for autosomal dominant progressive cone dystrophy (CORD5) maps to chromosome 17p12-p13. Genomics 30(2):281–286PubMedCrossRefGoogle Scholar
  37. 37.
    Klein RJ et al (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308(5720):385–389PubMedCrossRefGoogle Scholar
  38. 38.
    van Leeuwen R et al (2003) Epidemiology of age-related maculopathy: a review. Eur J Epidemiol 18(9):845–854PubMedCrossRefGoogle Scholar
  39. 39.
    Anderson DH et al (2002) A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 134(3):411–431PubMedCrossRefGoogle Scholar
  40. 40.
    Rattner A, Nathans J (2006) Macular degeneration: recent advances and therapeutic opportunities. Nat Rev Neurosci 7(11):860–872PubMedCrossRefGoogle Scholar
  41. 41.
    Ambati J et al (2003) An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 9(11):1390–1397PubMedCrossRefGoogle Scholar
  42. 42.
    Espinosa-Heidmann DG et al (2003) Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44(8):3586–3592PubMedCrossRefGoogle Scholar
  43. 43.
    Bok D (2005) Evidence for an inflammatory process in age-related macular degeneration gains new support. Proc Natl Acad Sci U S A 102(20):7053–7054PubMedCrossRefGoogle Scholar
  44. 44.
    Sakurai E et al (2003) Macrophage depletion inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44(8):3578–3585PubMedCrossRefGoogle Scholar
  45. 45.
    Haines JL et al (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308(5720):419–421PubMedCrossRefGoogle Scholar
  46. 46.
    Edwards AO et al (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308(5720):421–424PubMedCrossRefGoogle Scholar
  47. 47.
    Hageman GS et al (2005) A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A 102(20):7227–7232PubMedCrossRefGoogle Scholar
  48. 48.
    Bora NS et al (2007) CD59, a complement regulatory protein, controls choroidal neovascularization in a mouse model of wet-type age-related macular degeneration. J Immunol 178(3):1783–1790PubMedGoogle Scholar
  49. 49.
    Bora NS et al (2006) Complement activation via alternative pathway is critical in the development of laser-induced choroidal neovascularization: role of factor B and factor H. J Immunol 177(3):1872–1878PubMedGoogle Scholar
  50. 50.
    Tsutsumi C et al (2003) The critical role of ocular-infiltrating macrophages in the development of choroidal neovascularization. J Leukoc Biol 74(1):25–32PubMedCrossRefGoogle Scholar
  51. 51.
    Lobov IB et al (2005) WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature 437(7057):417–421PubMedCrossRefGoogle Scholar
  52. 52.
    Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3(1):23–35PubMedCrossRefGoogle Scholar
  53. 53.
    Mantovani A et al (2005) Macrophage polarization comes of age. Immunity 23(4):344–346PubMedCrossRefGoogle Scholar
  54. 54.
    McMenamin PG (1999) Dendritic cells and macrophages in the uveal tract of the normal mouse eye. Br J Ophthalmol 83(5):598–604PubMedGoogle Scholar
  55. 55.
    Niederkorn JY et al (1989) Phagocytosis of particulate antigens by corneal epithelial cells stimulates interleukin-1 secretion and migration of Langerhans cells into the central cornea. Reg Immunol 2(2):83–90PubMedGoogle Scholar
  56. 56.
    Tacke F et al (2007) Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 117(1):185–194PubMedCrossRefGoogle Scholar
  57. 57.
    Johnson PT et al (2006) Individuals homozygous for the age-related macular degeneration risk-conferring variant of complement factor H have elevated levels of CRP in the choroid. Proc Natl Acad Sci U S A 103(46):17456–17461PubMedCrossRefGoogle Scholar
  58. 58.
    Gehrs KM et al (2006) Age-related macular degeneration—emerging pathogenetic and therapeutic concepts. Ann Med 38(7):450–471PubMedCrossRefGoogle Scholar
  59. 59.
    Stout RD et al (2005) Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 175(1):342–349PubMedGoogle Scholar
  60. 60.
    Duffield JS (2003) The inflammatory macrophage: a story of Jekyll and Hyde. Clin Sci (Lond) 104(1):27–38CrossRefGoogle Scholar
  61. 61.
    Hassanzadeh Ghassabeh G, et al. (2006) Identification of a common gene signature for type II cytokine-associated myeloid cells elicited in vivo during different pathologies. Blood 108:575–583CrossRefGoogle Scholar
  62. 62.
    Sica A et al (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42(6):717–727PubMedCrossRefGoogle Scholar
  63. 63.
    Espinosa-Heidmann DG et al (2002) Age as an independent risk factor for severity of experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 43(5):1567–1573PubMedGoogle Scholar
  64. 64.
    Lloberas J, Celada A (2002) Effect of aging on macrophage function. Exp Gerontol 37(12):1325–1331PubMedCrossRefGoogle Scholar
  65. 65.
    Gomez CR et al (2005) The aging innate immune system. Curr Opin Immunol 17(5):457–462PubMedGoogle Scholar
  66. 66.
    Griffith TS, Ferguson TA (1997) The role of FasL-induced apoptosis in immune privilege. Immunol Today 18(5):240–244PubMedCrossRefGoogle Scholar
  67. 67.
    Ferguson TA, Griffith TS (2006) A vision of cell death: Fas ligand and immune privilege 10 years later. Immunol Rev 213:228–238PubMedCrossRefGoogle Scholar
  68. 68.
    Combadiere C et al (2007) CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Invest 117(10):2920–2928PubMedCrossRefGoogle Scholar
  69. 69.
    Yates JR et al (2007) Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med 357(6):553–561PubMedCrossRefGoogle Scholar
  70. 70.
    Pickering MC et al (2002) Uncontrolled C3 activation causes membranoproliferative glomerulonephritis in mice deficient in complement factor H. Nat Genet 31(4):424–428PubMedGoogle Scholar
  71. 71.
    Quigg RJ (2004) Complement and autoimmune glomerular diseases. Curr Dir Autoimmun 7:165–180PubMedCrossRefGoogle Scholar
  72. 72.
    Coffey PJ et al (2007) Complement factor H deficiency in aged mice causes retinal abnormalities and visual dysfunction. Proc Natl Acad Sci U S A 104(42):16651–16656PubMedCrossRefGoogle Scholar
  73. 73.
    Lopez PF et al (1991) Pathologic features of surgically excised subretinal neovascular membranes in age-related macular degeneration. Am J Ophthalmol 112(6):647–656PubMedGoogle Scholar
  74. 74.
    Papadimitriou E, Antimisiaris SG (2000) Interactions of PC/Chol and PS/Chol liposomes with human cells in vitro. J Drug Target 8(5):335–351PubMedCrossRefGoogle Scholar
  75. 75.
    Krasnici S et al (2003) Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels. Int J Cancer 105(4):561–567PubMedCrossRefGoogle Scholar
  76. 76.
    Penfold PL et al (2001) Immunological and aetiological aspects of macular degeneration. Prog Retin Eye Res 20(3):385–414PubMedCrossRefGoogle Scholar
  77. 77.
    Patel N et al (2005) Circulating anti-retinal antibodies as immune markers in age-related macular degeneration. Immunology 115(3):422–430PubMedCrossRefGoogle Scholar
  78. 78.
    Cherepanoff S et al (2006) Retinal autoantibody profile in early age-related macular degeneration: preliminary findings from the Blue Mountains Eye Study. Clin Experiment Ophthalmol 34(6):590–595PubMedCrossRefGoogle Scholar
  79. 79.
    Kuo IC, Cunningham ET Jr. (2000) Ocular neovascularization in patients with uveitis. Int Ophthalmol Clin 40(2):111–126PubMedCrossRefGoogle Scholar
  80. 80.
    Lee HO et al (2002) TRAIL: a mechanism of tumor surveillance in an immune privileged site. J Immunol 169(9):4739–4744PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Ophthalmology and Visual SciencesWashington University School of MedicineSt. LouisUSA

Personalised recommendations