Seminars in Immunopathology

, Volume 30, Issue 2, pp 135–143 | Cite as

New perspectives on effector mechanisms in uveitis



Experimental autoimmune uveitis (EAU) in its several variants represents human autoimmune uveitis and has been instrumental in obtaining insights into the basic mechanisms of disease. Studies have uncovered that in addition to CD4+ Th1 cells, uveitis can be induced also by CD8+ T cells. Antibodies may have a secondary role after the blood–retinal barrier has been broken. The role in uveitis of a recently discovered IL-17-producing effector T cell type, Th17, is being intensively studied. Th17 cells elicit EAU, can be found in uveitic eyes along with Th1 cells, and are dominant in some types of EAU. In other types of EAU, Th1 cells have a dominant role. The dominant effector type is at least in part determined by conditions under which initial exposure to self-antigen occurs. These findings shed light on the heterogeneity of human disease and may ultimately help to develop better and more rational treatment strategies for human uveitis.


Autoimmune disease uveitis Th1 Th17 IL-23 IL-17 IFN-γ 


  1. 1.
    Agarwal RK, Caspi RR (2004) Rodent models of experimental autoimmune uveitis. Methods Mol Med 102:395–420PubMedGoogle Scholar
  2. 2.
    Tang J, Zhu W, Silver PB, Su SB, Chan CC, Caspi RR (2007) Autoimmune uveitis elicited with antigen-pulsed dendritic cells has a distinct clinical signature and is driven by unique effector mechanisms: initial encounter with autoantigen defines disease phenotype. J Immunol 178:5578–5587PubMedGoogle Scholar
  3. 3.
    Nussenblatt RB (2002) Bench to bedside: new approaches to the immunotherapy of uveitic disease. Int Rev Immunol 21:273–289PubMedCrossRefGoogle Scholar
  4. 4.
    Caspi RR, Silver PB, Chan CC, Sun B, Agarwal RK, Wells J, Oddo S, Fujino Y, Najafian F, Wilder RL (1996) Genetic susceptibility to experimental autoimmune uveoretinitis in the rat is associated with an elevated Th1 response. J Immunol 157:2668–2675PubMedGoogle Scholar
  5. 5.
    Caspi RR (2002) Th1 and Th2 responses in pathogenesis and regulation of experimental autoimmune uveoretinitis. Int Rev Immunol 21:197–208PubMedCrossRefGoogle Scholar
  6. 6.
    Kim SJ, Zhang M, Vistica BP, Chan CC, Shen DF, Wawrousek EF, Gery I (2002) Induction of ocular inflammation by T-helper lymphocytes type 2. Invest Ophthalmol Vis Sci 43:758–765PubMedGoogle Scholar
  7. 7.
    McPherson SW, Yang J, Chan CC, Dou C, Gregerson DS (2003) Resting CD8 T cells recognize beta-galactosidase expressed in the immune-privileged retina and mediate autoimmune disease when activated. Immunology 110:386–396PubMedCrossRefGoogle Scholar
  8. 8.
    Song L, Le J, Ye F, Shao H, Kaplan HJ, Sun D (2008) Sequence 168 to 177 of interphotoreceptor retinoid-binding protein (IRBP) is an antigenic epitope for autoreactive CD8T cells in the B10RIII mouse. J Neuroimmunol 193:68–76Google Scholar
  9. 9.
    Prendergast RA, Iliff CE, Coskuncan NM, Caspi RR, Sartani G, Tarrant TK, Lutty GA, McLeod DS (1998) T cell traffic and the inflammatory response in experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci 39:754–762PubMedGoogle Scholar
  10. 10.
    Caspi RR (2006) Ocular autoimmunity: the price of privilege? Immunol Rev 213:23–35PubMedCrossRefGoogle Scholar
  11. 11.
    Su SB, Grajewski RS, Luger D, Agarwal RK, Silver PB, Tang J, Tuo J, Chan CC, Caspi RR (2007) Altered chemokine profile associated with exacerbated autoimmune pathology under conditions of genetic interferon-gamma deficiency. Invest Ophthalmol Vis Sci 48:4616–4625PubMedCrossRefGoogle Scholar
  12. 12.
    Forrester JV, Huitinga I, Lumsden L, Dijkstra CD (1998) Marrow-derived activated macrophages are required during the effector phase of experimental autoimmune uveoretinitis in rats. Curr Eye Res 17:426–437PubMedCrossRefGoogle Scholar
  13. 13.
    Caspi RR, Chan CC, Fujino Y, Najafian F, Grover S, Hansen CT, Wilder RL (1993) Recruitment of antigen-nonspecific cells plays a pivotal role in the pathogenesis of a T cell-mediated organ-specific autoimmune disease, experimental autoimmune uveoretinitis. J Neuroimmunol 47:177–188PubMedCrossRefGoogle Scholar
  14. 14.
    Pennesi G, Mattapallil MJ, Sun SH, Avichezer D, Silver PB, Karabekian Z, David CS, Hargrave PA, McDowell JH, Smith WC et al (2003) A humanized model of experimental autoimmune uveitis in HLA class II transgenic mice. J Clin Invest 111:1171–1180PubMedGoogle Scholar
  15. 15.
    Tarrant TK, Silver PB, Chan CC, Wiggert B, Caspi RR (1998) Endogenous IL-12 is required for induction and expression of experimental autoimmune uveitis. J Immunol 161:122–127PubMedGoogle Scholar
  16. 16.
    Tarrant TK, Silver PB, Wahlsten JL, Rizzo LV, Chan CC, Wiggert B, Caspi RR (1999) Interleukin 12 protects from a T helper type 1-mediated autoimmune disease, experimental autoimmune uveitis, through a mechanism involving interferon gamma, nitric oxide, and apoptosis. J Exp Med 189:219–230PubMedCrossRefGoogle Scholar
  17. 17.
    Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T et al (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748PubMedCrossRefGoogle Scholar
  18. 18.
    Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240PubMedCrossRefGoogle Scholar
  19. 19.
    Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T, Kastelein RA, Sedgwick JD, Cua DJ (2003) Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 198:1951–1957PubMedCrossRefGoogle Scholar
  20. 20.
    Luger D, Silver PB, Tang J, Cua D, Chen Z, Iwakura Y, Bowman EP, Sgambellone NM, Chan C-C, Caspi RR (2008) Either a Th17 or a Th1 effector response can drive autoimmunity: context of initial Ag exposure determines dominant effector category. J Exp Med (in press)Google Scholar
  21. 21.
    Spriggs MK (1997) Interleukin-17 and its receptor. J Clin Immunol 17:366–369PubMedCrossRefGoogle Scholar
  22. 22.
    Kao CY, Chen Y, Thai P, Wachi S, Huang F, Kim C, Harper RW, Wu R (2004) IL-17 markedly up-regulates beta-defensin-2 expression in human airway epithelium via JAK and NF-kappaB signaling pathways. J Immunol 173:3482–3491PubMedGoogle Scholar
  23. 23.
    Yago T, Nanke Y, Kawamoto M, Furuya T, Kobashigawa T, Kamatani N, Kotake S (2007) IL-23 induces human osteoclastogenesis via IL-17 in vitro, and anti-IL-23 antibody attenuates collagen-induced arthritis in rats. Arthritis Res Ther 9:R96PubMedCrossRefGoogle Scholar
  24. 24.
    Chi W, Yang P, Li B, Wu C, Jin H, Zhu X, Chen L, Zhou H, Huang X, Kijlstra A (2007) IL-23 promotes CD4+ T cells to produce IL-17 in Vogt–Koyanagi–Harada disease. J Allergy Clin Immunol 119:1218–1224PubMedCrossRefGoogle Scholar
  25. 25.
    Chi W, Zhu X, Yang P, Liu X, Lin X, Zhou H, Huang X, Kijlstra A (2008) IL-23 and IL-17 are upregulated in Behcet’s patients with active uveitis. Invest Ophthalmol Vis Sci (in press)Google Scholar
  26. 26.
    Gran B, Zhang GX, Yu S, Li J, Chen XH, Ventura ES, Kamoun M, Rostami A (2002) IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J Immunol 169:7104–7110PubMedGoogle Scholar
  27. 27.
    Billiau A, Heremans H, Vandekerckhove F, Dijkmans R, Sobis H, Meulepas E, Carton H (1988) Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-gamma. J Immunol 140:1506–1510PubMedGoogle Scholar
  28. 28.
    Caspi RR, Chan CC, Grubbs BG, Silver PB, Wiggert B, Parsa CF, Bahmanyar S, Billiau A, Heremans H (1994) Endogenous systemic IFN-gamma has a protective role against ocular autoimmunity in mice. J Immunol 152:890–899PubMedGoogle Scholar
  29. 29.
    Heremans H, Dillen C, Groenen M, Martens E, Billiau A (1996) Chronic relapsing experimental autoimmune encephalomyelitis (CREAE) in mice: enhancement by monoclonal antibodies against interferon-gamma. Eur J Immunol 26:2393–2398PubMedCrossRefGoogle Scholar
  30. 30.
    Jones LS, Rizzo LV, Agarwal RK, Tarrant TK, Chan CC, Wiggert B, Caspi RR (1997) IFN-gamma-deficient mice develop experimental autoimmune uveitis in the context of a deviant effector response. J Immunol 158:5997–6005PubMedGoogle Scholar
  31. 31.
    Zhu Y, Ljunggren HG, Mix E, Li HL, van der Meide P, Elhassan AM, Winblad B, Zhu J (2001) Suppression of autoimmune neuritis in IFN-gamma receptor-deficient mice. Exp Neurol 169:472–478PubMedCrossRefGoogle Scholar
  32. 32.
    Bettelli E, Sullivan B, Szabo SJ, Sobel RA, Glimcher LH, Kuchroo VK (2004) Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J Exp Med 200:79–87PubMedCrossRefGoogle Scholar
  33. 33.
    Boyton RJ, Davies S, Marden C, Fantino C, Reynolds C, Portugal K, Dewchand H, Altmann DM (2005) Stat4-null non-obese diabetic mice: protection from diabetes and experimental allergic encephalomyelitis, but with concomitant epitope spread. Int Immunol 17:1157–1165PubMedCrossRefGoogle Scholar
  34. 34.
    Parham C, Chirica M, Timans J, Vaisberg E, Travis M, Cheung J, Pflanz S, Zhang R, Singh KP, Vega F et al (2002) A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol 168:5699–5708PubMedGoogle Scholar
  35. 35.
    Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238PubMedCrossRefGoogle Scholar
  36. 36.
    Veldhoen M, Hocking RJ, Flavell RA, Stockinger B (2006) Signals mediated by transforming growth factor-beta initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat Immunol 7:1151–1156PubMedCrossRefGoogle Scholar
  37. 37.
    McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T, Cua DJ (2007) TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol 8:1390–1397PubMedCrossRefGoogle Scholar
  38. 38.
    Kleinschek MA, Owyang AM, Joyce-Shaikh B, Langrish CL, Chen Y, Gorman DM, Blumenschein WM, McClanahan T, Brombacher F, Hurst SD et al (2007) IL-25 regulates Th17 function in autoimmune inflammation. J Exp Med 204:161–170PubMedCrossRefGoogle Scholar
  39. 39.
    Seiderer J, Elben I, Diegelmann J, Glas J, Stallhofer J, Tillack C, Pfennig S, Jurgens M, Schmechel S, Konrad A et al (2007) Role of the novel Th17 cytokine IL-17F in inflammatory bowel disease (IBD): upregulated colonic IL-17F expression in active Crohn’s disease and analysis of the IL17F p.His161Arg polymorphism in IBD. Inflamm Bowel Dis (in press) DOI  10.1002/ibd.20339
  40. 40.
    Yao Z, Fanslow WC, Seldin MF, Rousseau AM, Painter SL, Comeau MR, Cohen JI, Spriggs MK (1995) Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3:811–821PubMedCrossRefGoogle Scholar
  41. 41.
    Yao Z, Painter SL, Fanslow WC, Ulrich D, Macduff BM, Spriggs MK, Armitage RJ (1995) Human IL-17: a novel cytokine derived from T cells. J Immunol 155:5483–5486PubMedGoogle Scholar
  42. 42.
    Amadi-Obi A, Yu CR, Liu X, Mahdi RM, Clarke GL, Nussenblatt RB, Gery I, Lee YS, Egwuagu CE (2007) TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1. Nat Med 13:711–718PubMedCrossRefGoogle Scholar
  43. 43.
    Peng Y, Han G, Shao H, Wang Y, Kaplan HJ, Sun D (2007) Characterization of IL-17+ interphotoreceptor retinoid-binding protein-specific T cells in experimental autoimmune uveitis. Invest Ophthalmol Vis Sci 48:4153–4161PubMedCrossRefGoogle Scholar
  44. 44.
    Banerjee S, Savant V, Scott RA, Curnow SJ, Wallace GR, Murray PI (2007) Multiplex bead analysis of vitreous humor of patients with vitreoretinal disorders. Invest Ophthalmol Vis Sci 48:2203–2207PubMedCrossRefGoogle Scholar
  45. 45.
    Munz C, Steinman RM, Fujii S (2005) Dendritic cell maturation by innate lymphocytes: coordinated stimulation of innate and adaptive immunity. J Exp Med 202:203–207PubMedCrossRefGoogle Scholar
  46. 46.
    Roberts AI, Devadas S, Zhang X, Zhang L, Keegan A, Greeneltch K, Solomon J, Wei L, Das J, Sun E et al (2003) The role of activation-induced cell death in the differentiation of T-helper-cell subsets. Immunol Res 28:285–293PubMedCrossRefGoogle Scholar
  47. 47.
    Khademi M, Illes Z, Gielen AW, Marta M, Takazawa N, Baecher-Allan C, Brundin L, Hannerz J, Martin C, Harris RA et al (2004) T Cell Ig- and mucin-domain-containing molecule-3 (TIM-3) and TIM-1 molecules are differentially expressed on human Th1 and Th2 cells and in cerebrospinal fluid-derived mononuclear cells in multiple sclerosis. J Immunol 172:7169–7176PubMedGoogle Scholar
  48. 48.
    Lu B, Yu H, Chow C, Li B, Zheng W, Davis RJ, Flavell RA (2001) GADD45gamma mediates the activation of the p38 and JNK MAP kinase pathways and cytokine production in effector TH1 cells. Immunity 14:583–590PubMedCrossRefGoogle Scholar
  49. 49.
    van Beelen AJ, Teunissen MB, Kapsenberg ML, de Jong EC (2007) Interleukin-17 in inflammatory skin disorders. Curr Opin Allergy Clin Immunol 7:374–381PubMedCrossRefGoogle Scholar
  50. 50.
    Albanesi C, Cavani A, Girolomoni G (1999) IL-17 is produced by nickel-specific T lymphocytes and regulates ICAM-1 expression and chemokine production in human keratinocytes: synergistic or antagonist effects with IFN-gamma and TNF-alpha. J Immunol 162:494–502PubMedGoogle Scholar
  51. 51.
    Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, Parente E, Fili L, Ferri S, Frosali F et al (2007) Phenotypic and functional features of human Th17 cells. J Exp Med 204:1849–1861PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Laboratory of Immunology, National Eye InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations