Seminars in Immunopathology

, Volume 29, Issue 2, pp 115–122 | Cite as

Regulatory T cells and regulatory natural killer (NK) cells play important roles in feto-maternal tolerance

  • Shigeru Saito
  • Arihiro Shiozaki
  • Yasushi Sasaki
  • Akitoshi Nakashima
  • Tomoko Shima
  • Mika Ito
Review

Abstract

In the early pregnancy decidua, lymphocytes express some activation markers on their surface, suggesting that maternal lymphocytes are activated and recognize the semiallograftic fetus. Therefore, the immunoregulation system must work to prevent fetus rejection. Recent data showed that parts of the immunoregulation system such as CD4+CD25+ regulatory T (Treg) cells, Th3 cells, Tr1 cells, regulatory NK cells, and a tryptophan-catabolizing enzyme, indolamine 2,3 deoxygenase, play very important roles in the maintenance of pregnancy. Not only Treg cells but also regulatory NK cells may inhibit maternal T cell or NK cell fetal attack.

Keywords

Pregnancy Regulatory T cell Regulatory NK cell Th3 cell Tr1 cell 

References

  1. 1.
    Moffett-King A (2002) Natural killer cells and pregnancy. Nat Rev Immunol 2:656–663PubMedCrossRefGoogle Scholar
  2. 2.
    Tabiasco J, Rabot M, Aguerre-Girr M, El Costa H, Berrebi A, Parant O, Laskarin G, Juretic K, Bensussan A, Rukavina D, Le Bouteiller P (2006) Human decidual NK cells: unique phenotype and functional properties—a review. Placenta 27(Suppl A):S34–S39PubMedCrossRefGoogle Scholar
  3. 3.
    Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S, Prus D, Cohen-Daniel L, Arnon TI, Manaster I, Gazit R, Yutkin V, Benharroch D, Porgador A, Keshet E, Yagel S, Mandelboim O (2006) Decidual NK cells regulate key developmental processes at the human fetal–maternal interface. Nat Med 12:1065–1074PubMedCrossRefGoogle Scholar
  4. 4.
    Sakaguchi S (2004) Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562PubMedCrossRefGoogle Scholar
  5. 5.
    Aluvihare VR, Kallikourdis M, Betz AG (2004) Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol 5:266–271PubMedCrossRefGoogle Scholar
  6. 6.
    Sasaki Y, Sakai M, Miyazaki S, Higuma S, Shiozaki A, Saito S (2004) Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol Hum Reprod 10:347–353PubMedCrossRefGoogle Scholar
  7. 7.
    Somerset DA, Zheng Y, Kilby MD, Sansom DM, Drayson MT (2004) Normal human pregnancy is associated with an elevation in the immune suppressive CD4+CD25+ regulatory T-cell subset. Immunology 112:38–43PubMedCrossRefGoogle Scholar
  8. 8.
    Zenclussen AC, Gerlof K, Zenclussen ML, Sollwedel A, Bertoja AZ, Ritter T, Kotsch K, Leber J, Volk HD (2005) Abnormal T-cell reactivity against paternal antigens in spontaneous abortion: adoptive transfer of pregnancy-induced CD4+CD25+ T regulatory cells prevents fetal rejection in a murine abortion model. AmJ Pathol 166:811–822PubMedGoogle Scholar
  9. 9.
    Saito S, Nishikawa K, Morii T, Narita N, Enomoto M, Ichijo M (1992) Expression of activation antigens CD69, HLA-DR, interleukin-2 receptor-alpha (IL-2R alpha) and IL-2R beta on T cells of human decidua at an early stage of pregnancy. Immunology 75:710–712PubMedGoogle Scholar
  10. 10.
    Wegmann TG, Lin H, Guilbert L, Mosmann TR (1993) Bidirectional cytokine interactions in the maternal–fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today 14:353–356PubMedCrossRefGoogle Scholar
  11. 11.
    Piccinni MP, Beloni L, Livi C, Maggi E, Scarselli G, Romagnani S (1998) Defective production of both leukemia inhibitory factor and type 2 T-helper cytokines by decidual T cells in unexplained recurrent abortions. Nat Med 4:1020–1024PubMedCrossRefGoogle Scholar
  12. 12.
    Saito S, Tsukaguchi N, Hasegawa T, Michimata T, Tsuda H, Narita N (1999) Distribution of Th1, Th2, and Th0 and the Th1/Th2 cell ratios in human peripheral and endometrial T cells. Am J Reprod Immunol 42:240–245PubMedGoogle Scholar
  13. 13.
    Chaouat G, Zourbas S, Ostojic S, Lappree-Delage G, Dubanchet S, Ledee N, Martal J (2002) A brief review of recent data on some cytokine expressions at the materno-fetal interface which might challenge the classical Th1/Th2 dichotomy. J Reprod Immunol 53:241–256PubMedCrossRefGoogle Scholar
  14. 14.
    Saito S (2000) Cytokine network at the feto-maternal interface.J Reprod Immunol 47:87–103PubMedCrossRefGoogle Scholar
  15. 15.
    Bluestone JA, Abbas AK (2003) Natural versus adaptive regulatory T cells. Nat Rev Immunol 3:253–257PubMedCrossRefGoogle Scholar
  16. 16.
    Aluvihare VR, Betz AG (2006) The role of regulatory T cells in alloantigen tolerance. Immunol Rev 212:330–343PubMedCrossRefGoogle Scholar
  17. 17.
    Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA (2001) CD4+CD25high regulatory cells in human peripheral blood. J Immunol 167:1245–1253PubMedGoogle Scholar
  18. 18.
    Saito S, Sasaki Y, Sakai M (2005) CD4+CD25high regulatory T cells in human pregnancy. J Reprod Immunol 65:111–120PubMedCrossRefGoogle Scholar
  19. 19.
    Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061PubMedCrossRefGoogle Scholar
  20. 20.
    Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY (2007) Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445:936–940, DOI 10.1038/nature05563 Google Scholar
  21. 21.
    Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, MacIsaac KD, Levine SS, Fraenkel E, von Boehmer H, Young RA (2007) Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445:931–935, DOI 10.1038/nature05478 Google Scholar
  22. 22.
    Nakamura K, Kitani A, Strober W (2001) Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 194:629–644PubMedCrossRefGoogle Scholar
  23. 23.
    Piccirillo CA, Letterio JJ, Thornton AM, McHugh RS, Mamura M, Mizuhara H, Shevach EM (2002) CD4+CD25+ regulatory T cells can mediate suppressor function in the absence of transforming growth factor beta1 production and responsiveness. J Exp Med 196:237–246PubMedCrossRefGoogle Scholar
  24. 24.
    Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G, Hipkiss EL, Ravi S, Kowalski J, Levitsky HI, Powell JD, Pardoll DM, Drake CG, Vignali DA (2004) Role of LAG-3 in regulatory T cells. Immunity 21:503–513PubMedCrossRefGoogle Scholar
  25. 25.
    Garin MI, Chu CC, Golshayan D, Cernuda-Morollon E, Wait R, Lechler RI (2007) Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood 109:2058–2065PubMedCrossRefGoogle Scholar
  26. 26.
    Choe YS, Shim C, Choi D, Lee CS, Lee KK, Kim K (1997) Expression of galectin-1 mRNA in the mouse uterus is under the control of ovarian steroids during blastocyst implantation. Mol Reprod Dev 48:261–266PubMedCrossRefGoogle Scholar
  27. 27.
    Polanczyk MJ, Hopke C, Vandenbark AA, Offner H (2006) Estrogen-mediated immunomodulation involves reduced activation of effector T cells, potentiation of Treg cells, and enhanced expression of the PD-1 costimulatory pathway. J Neurosci Res 84:370–378PubMedCrossRefGoogle Scholar
  28. 28.
    Prieto GA, Rosenstein Y (2006) Oestradiol potentiates the suppressive function of human CD4+CD25+ regulatory T cells by promoting their proliferation. Immunology 118:58–65PubMedCrossRefGoogle Scholar
  29. 29.
    Grohmann U, Orabona C, Fallarino F, Vacca C, Calcinaro F, Falorni A, Candeloro P, Belladonna ML, Bianchi R, Fioretti MC, Puccetti P (2002) CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 3:1097–1101PubMedCrossRefGoogle Scholar
  30. 30.
    Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281:1191–1193PubMedCrossRefGoogle Scholar
  31. 31.
    Miwa N, Hayakawa S, Miyazaki S, Myojo S, Sasaki Y, Sakai M, Takikawa O, Saito S (2005) IDO expression on decidual and peripheral blood dendritic cells and monocytes/macrophages after treatment with CTLA-4 or interferon-gamma increase in normal pregnancy but decrease in spontaneous abortion. Mol Hum Reprod 11:865–870PubMedCrossRefGoogle Scholar
  32. 32.
    Darrasse-Jeze G, Klatzmann D, Charlotte F, Salomon BL, Cohen JL (2006) CD4+CD25+ regulatory/suppressor T cells prevent allogeneic fetus rejection in mice. Immunol Lett 102:106–109PubMedCrossRefGoogle Scholar
  33. 33.
    Jasper MJ, Tremellen KP, Robertson SA (2006) Primary unexplained infertility is associated with reduced expression of the T-regulatory cell transcription factor Foxp3 in endometrial tissue. Mol Hum Reprod 12:301–308PubMedCrossRefGoogle Scholar
  34. 34.
    Venturi GM, Conway RM, Steeber DA, Tedder TF (2007) CD25+CD4+ regulatory T cell migration requires L-selectin expression: L-selectin transcriptional regulation balances constitutive receptor turnover. J Immunol 178:291–300PubMedGoogle Scholar
  35. 35.
    van den Heuvel M, Peralta C, Bashar S, Taylor S, Horrocks J, Croy BA (2005) Trafficking of peripheral blood CD56bright cells to the decidualizing uterus—new tricks for old dogmas? J Reprod Immunol 67:21–34PubMedCrossRefGoogle Scholar
  36. 36.
    Higuma-Myojo S, Sasaki Y, Miyazaki S, Sakai M, Siozaki A, Miwa N, Saito S (2005) Cytokine profile of natural killer cells in early human pregnancy. Am J Reprod Immunol 54:21–29PubMedCrossRefGoogle Scholar
  37. 37.
    Lash GE, Schiessl B, Kirkley M, Innes BA, Cooper A, Searle RF, Robson SC, Bulmer JN (2006) Expression of angiogenic growth factors by uterine natural killer cells during early pregnancy. J Leukoc Biol 80:572–580PubMedCrossRefGoogle Scholar
  38. 38.
    Levine RJ, Lam C, Qian C, Yu KF, Maynard SE, Sachs BP, Sibai BM, Epstein FH, Romero R, Thadhani R, Karumanchi SA (2006) Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med 355:992–1005PubMedCrossRefGoogle Scholar
  39. 39.
    Beilke JN, Kuhl NR, Van Kaer L, Gill RG (2005) NK cells promote islet allograft tolerance via a perforin-dependent mechanism. Nat Med 11:1059–1065PubMedCrossRefGoogle Scholar
  40. 40.
    Ranella A, Vassiliadis S, Mastora C, Valentina M, Dionyssopoulou E, Athanassakis I (2005) Constitutive intracellular expression of human leukocyte antigen (HLA)-DQ and HLA-DR but not HLA-DM in trophoblast cells. Hum Immunol 66:43–55PubMedCrossRefGoogle Scholar
  41. 41.
    Adams KM, Yan Z, Stevens AM, Nelson JL (2007) The changing maternal “self” hypothesis: a mechanism for maternal tolerance of the fetus. Placenta, DOI 10.1016/j.placenta.2006.07.003
  42. 42.
    Huppertz B, Kingdom J, Caniggia I, Desoye G, Black S, Korr H, Kaufmann P (2003) Hypoxia favours necrotic versus apoptotic shedding of placental syncytiotrophoblast into the maternal circulation. Placenta 24:181–190PubMedCrossRefGoogle Scholar
  43. 43.
    Ebata K, Shimizu Y, Nakayama Y, Minemura M, Murakami J, Kato T, Yasumura S, Takahara T, Sugiyama T, Saito S (2006) Immature NK cells suppress dendritic cell functions during the development of leukemia in a mouse model. J Immunol 176:4113–4124PubMedGoogle Scholar
  44. 44.
    Yu G, Xu X, Vu MD, Kilpatrick ED, Li XC (2006) NK cells promote transplant tolerance by killing donor antigen-presenting cells. J Exp Med 203:1851–1858PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Shigeru Saito
    • 1
  • Arihiro Shiozaki
    • 1
  • Yasushi Sasaki
    • 1
  • Akitoshi Nakashima
    • 1
  • Tomoko Shima
    • 1
  • Mika Ito
    • 1
  1. 1.Department of Obstetrics and GynecologyUniversity of ToyamaToyamaJapan

Personalised recommendations