Springer Seminars in Immunopathology

, Volume 28, Issue 4, pp 305–319 | Cite as

Activating and inhibitory FcγRs in autoimmune disorders

  • Falk NimmerjahnEmail author


Autoimmune disorders are characterized by the destruction of self-tissues by the immune system. Multiple checkpoints are in place to prevent autoreactivity under normal circumstances. Coexpression of activating and inhibitory Fc receptors (FcR) represents such a checkpoint by establishing a threshold for immune cell activation. In many human autoimmune diseases, however, balanced FcR expression is disturbed. Analysis of murine model systems provides strong evidence that aberrant FcR expression can result in uncontrolled immune responses and the initiation of autoimmune disease. This review will summarize this data and explain how this information might be used to better understand human autoimmune diseases and to develop novel therapeutic strategies.


Fc receptor Antibody Immune complex Cell activation Autoimmune disease 



This work was supported by the Cancer Research Institute. I apologize to all colleagues whose important work was not directly cited due to limitations of space. These references can be found in the numerous review articles referred to in this article. I would like to thank Jeffrey Ravetch for his support and Josie Clowney, Robert Anthony, and Diana Dudziak for critically reading the manuscript.


  1. 1.
    Tsao BP (2003) The genetics of human systemic lupus erythematosus. Trends Immunol 24:595–602PubMedGoogle Scholar
  2. 2.
    Bussel J (2006) Treatment of immune thrombocytopenic purpura in adults. Semin Hematol 43:S3–S10 (discussion S18–S19)PubMedGoogle Scholar
  3. 3.
    Martin F, Chan AC (2006) B cell immunobiology in disease: evolving concepts from the clinic. Annu Rev Immunol 24:467–496PubMedGoogle Scholar
  4. 4.
    Lanier LL (2001) Face off—the interplay between activating and inhibitory immune receptors. Curr Opin Immunol 13:326–331PubMedGoogle Scholar
  5. 5.
    Goodnow CC, Sprent J, de St Groth BF, Vinuesa CG (2005) Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 435:590–597PubMedGoogle Scholar
  6. 6.
    Grimaldi CM, Hicks R, Diamond B (2005) B cell selection and susceptibility to autoimmunity. J Immunol 174:1775–1781PubMedGoogle Scholar
  7. 7.
    Meffre E, Casellas R, Nussenzweig MC (2000) Antibody regulation of B cell development. Nat Immunol 1:379–385PubMedGoogle Scholar
  8. 8.
    Bona CA, Stevenson FK (2004) B cells producing pathogenic autoantibodies. In: Honjo T, Alt FW, Neuberger MS (eds) Molecular biology of B cells. Elsevier, Boston, pp 381–402Google Scholar
  9. 9.
    Ray SK, Putterman C, Diamond B (1996) Pathogenic autoantibodies are routinely generated during the response to foreign antigen: a paradigm for autoimmune disease. Proc Natl Acad Sci USA 93:2019–2024PubMedGoogle Scholar
  10. 10.
    Dijstelbloem HM, van de Winkel JG, Kallenberg CG (2001) Inflammation in autoimmunity: receptors for IgG revisited. Trends Immunol 22:510–516PubMedGoogle Scholar
  11. 11.
    Nimmerjahn F, Ravetch JV (2006) Fcgamma receptors: old friends and new family members. Immunity 24:19–28PubMedGoogle Scholar
  12. 12.
    Bolland S, Ravetch JV (2000) Spontaneous autoimmune disease in Fc(gamma)RIIB-deficient mice results from strain-specific epistasis. Immunity 13:277–285PubMedGoogle Scholar
  13. 13.
    Nishimura H, Nose M, Hiai H, Minato N, Honjo T (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11:141–151PubMedGoogle Scholar
  14. 14.
    O’Keefe TL, Williams GT, Batista FD, Neuberger MS (1999) Deficiency in CD22, a B cell-specific inhibitory receptor, is sufficient to predispose to development of high affinity autoantibodies. J Exp Med 189:1307–1313PubMedGoogle Scholar
  15. 15.
    Penninger JM, Timms E, Shahinian A, Jezo-Bremond A, Nishina H, Ionescu J, Hedrick SM, Mak TW (1995) Alloreactive gamma delta thymocytes utilize distinct costimulatory signals from peripheral T cells. J Immunol 155:3847–3855PubMedGoogle Scholar
  16. 16.
    Takai T, Ono M, Hikida M, Ohmori H, Ravetch JV (1996) Augmented humoral and anaphylactic responses in Fc gamma RII-deficient mice. Nature 379:346–349PubMedGoogle Scholar
  17. 17.
    Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH, Penninger JM, Timms E, Shahinian A, Jezo-Bremond A, Nishina H, Ionescu J, Hedrick SM, Mak TW (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3:541–547PubMedGoogle Scholar
  18. 18.
    Ravetch JV, Lanier LL (2000) Immune inhibitory receptors. Science 290:84–89PubMedGoogle Scholar
  19. 19.
    Carroll MC (2004) The complement system in regulation of adaptive immunity. Nat Immunol 5:981–986PubMedGoogle Scholar
  20. 20.
    Nguyen C, Limaye N, Wakeland EK (2002) Susceptibility genes in the pathogenesis of murine lupus. Arthritis Res 4:S255–S263 (Epub 2002 May 9)PubMedGoogle Scholar
  21. 21.
    Takai T (2002) Roles of Fc receptors in autoimmunity. Nat Rev Immunol 2:580–592PubMedGoogle Scholar
  22. 22.
    Ravetch JV (2003) Fc receptors. In: Paul WE (ed) Fundamental immunology. Lippincott-Raven, Philadelphia, pp 685–700Google Scholar
  23. 23.
    Hanayama R, Tanaka M, Miyasaka K, Aozasa K, Koike M, Uchiyama Y, Nagata S (2004) Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304:1147–1150PubMedGoogle Scholar
  24. 24.
    Qiu WQ, de Bruin D, Brownstein BH, Pearse R, Ravetch JV (1990) Organization of the human and mouse low-affinity Fc gamma R genes: duplication and recombination. Science 248:732–735PubMedGoogle Scholar
  25. 25.
    Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R, Moretta L (2001) Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 19:197–223PubMedGoogle Scholar
  26. 26.
    Clynes R, Ravetch JV (1995) Cytotoxic antibodies trigger inflammation through Fc receptors. Immunity 3:21–26PubMedGoogle Scholar
  27. 27.
    Park SY, Ueda S, Ohno H, Hamano Y, Tanaka M, Shiratori T, Yamazaki T, Arase H, Arase N, Karasawa A, Sato S, Ledermann B, Kondo Y, Okumura K, Ra C, Saito T (1998) Resistance of Fc receptor- deficient mice to fatal glomerulonephritis. J Clin Invest 102:1229–1238PubMedGoogle Scholar
  28. 28.
    Sylvestre DL, Ravetch JV (1994) Fc receptors initiate the Arthus reaction: redefining the inflammatory cascade. Science 265:1095–1098PubMedGoogle Scholar
  29. 29.
    Takai T, Li M, Sylvestre D, Clynes R, Ravetch JV (1994) FcR gamma chain deletion results in pleiotrophic effector cell defects. Cell 76:519–529PubMedGoogle Scholar
  30. 30.
    Zhang M, Zhang Z, Garmestani K, Goldman CK, Ravetch JV, Brechbiel MW, Carrasquillo JA, Waldmann TA (2004) Activating Fc receptors are required for antitumor efficacy of the antibodies directed toward CD25 in a murine model of adult t-cell leukemia. Cancer Res 64:5825–5829PubMedGoogle Scholar
  31. 31.
    Davis RS, Dennis G Jr, Odom MR, Gibson AW, Kimberly RP, Burrows PD, Cooper MD (2002) Fc receptor homologs: newest members of a remarkably diverse Fc receptor gene family. Immunol Rev 190:123–136PubMedGoogle Scholar
  32. 32.
    Mechetina LV, Najakshin AM, Alabyev BY, Chikaev NA, Taranin AV (2002) Identification of CD16-2, a novel mouse receptor homologous to CD16/Fc gamma RIII. Immunogenetics 54:463–468 (Epub 2002 Aug 02)PubMedGoogle Scholar
  33. 33.
    Nimmerjahn F, Bruhns P, Horiuchi K, Ravetch JV (2005) FcgammaRIV: a novel FcR with distinct IgG subclass specificity. Immunity 23:41–51PubMedGoogle Scholar
  34. 34.
    Hulett MD, Hogarth PM (1994) Molecular basis of Fc receptor function. Adv Immunol 57:1–127PubMedGoogle Scholar
  35. 35.
    Ravetch JV, Kinet JP (1991) Fc receptors. Annu Rev Immunol 9:457–492PubMedGoogle Scholar
  36. 36.
    Kaneko Y, Nimmerjahn F, Ravetch JV (2006) Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313:670–673PubMedGoogle Scholar
  37. 37.
    Galli SJ, Kalesnikoff J, Grimbaldeston MA, Piliponsky AM, Williams CM, Tsai M (2005) Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu Rev Immunol 23:749–786PubMedGoogle Scholar
  38. 38.
    Gould HJ, Sutton BJ, Beavil AJ, Beavil RL, McCloskey N, Coker HA, Fear D, Smurthwaite L (2003) The biology of IGE and the basis of allergic disease. Annu Rev Immunol 21:579–628PubMedGoogle Scholar
  39. 39.
    Torigoe C, Inman JK, Metzger H (1998) An unusual mechanism for ligand antagonism. Science 281:568–572PubMedGoogle Scholar
  40. 40.
    Lang ML, Shen L, Wade WF (1999) Gamma-chain dependent recruitment of tyrosine kinases to membrane rafts by the human IgA receptor Fc alpha R. J Immunol 163:5391–5398PubMedGoogle Scholar
  41. 41.
    Gulle H, Samstag A, Eibl MM, Wolf HM (1998) Physical and functional association of Fc alpha R with protein tyrosine kinase Lyn. Blood 91:383–391PubMedGoogle Scholar
  42. 42.
    Launay P, Grossetete B, Arcos-Fajardo M, Gaudin E, Torres SP, Beaudoin L, Patey-Mariaud de Serre N, Lehuen A, Monteiro RC (2000) Fcalpha receptor (CD89) mediates the development of immunoglobulin A (IgA) nephropathy (Berger’s disease). Evidence for pathogenic soluble receptor-Iga complexes in patients and CD89 transgenic mice. J Exp Med 191:1999–2009PubMedGoogle Scholar
  43. 43.
    Park RK, Izadi KD, Deo YM, Durden DL (1999) Role of Src in the modulation of multiple adaptor proteins in FcalphaRI oxidant signaling. Blood 94:2112–2120PubMedGoogle Scholar
  44. 44.
    Daeron M (1997) Fc receptor biology. Annu Rev Immunol 15:203–234PubMedGoogle Scholar
  45. 45.
    Bolland S, Ravetch JV (1999) Inhibitory pathways triggered by ITIM-containing receptors. Adv Immunol 72:149–177PubMedGoogle Scholar
  46. 46.
    Daeron M, Lesourne R (2006) Negative signaling in Fc receptor complexes. Adv Immunol 89:39–86PubMedGoogle Scholar
  47. 47.
    Pearse RN, Kawabe T, Bolland S, Guinamard R, Kurosaki T, Ravetch JV (1999) SHIP recruitment attenuates Fc gamma RIIB-induced B cell apoptosis. Immunity 10:753–760PubMedGoogle Scholar
  48. 48.
    Tzeng SJ, Bolland S, Inabe K, Kurosaki T, Pierce SK (2005) The B cell inhibitory Fc receptor triggers apoptosis by a novel c-Abl-family kinase dependent pathway. J Biol Chem 22:22Google Scholar
  49. 49.
    Wijngaarden S, van de Winkel JG, Jacobs KM, Bijlsma JW, Lafeber FP, van Roon JA (2004) A shift in the balance of inhibitory and activating Fcgamma receptors on monocytes toward the inhibitory Fcgamma receptor IIb is associated with prevention of monocyte activation in rheumatoid arthritis. Arthritis Rheum 50:3878–3887PubMedGoogle Scholar
  50. 50.
    de Haas M, Kleijer M, van Zwieten R, Roos D, von dem Borne AE (1995) Neutrophil Fc gamma RIIIb deficiency, nature, and clinical consequences: a study of 21 individuals from 14 families. Blood 86:2403–2413PubMedGoogle Scholar
  51. 51.
    Clark MR, Liu L, Clarkson SB, Ory PA, Goldstein IM (1990) An abnormality of the gene that encodes neutrophil Fc receptor III in a patient with systemic lupus erythematosus. J Clin Invest 86:341–346PubMedGoogle Scholar
  52. 52.
    Huizinga TW, Kuijpers RW, Kleijer M, Schulpen TW, Cuypers HT, Roos D, von dem Borne AE (1990) Maternal genomic neutrophil FcRIII deficiency leading to neonatal isoimmune neutropenia. Blood 76:1927–1932PubMedGoogle Scholar
  53. 53.
    van de Winkel JG, de Wit TP, Ernst LK, Capel PJ, Ceuppens JL (1995) Molecular basis for a familial defect in phagocyte expression of IgG receptor I (CD64). J Immunol 154:2896–2903PubMedGoogle Scholar
  54. 54.
    Nitschke L, Tsubata T (2004) Molecular interactions regulate BCR signal inhibition by CD22 and CD72. Trends Immunol 25:543–550PubMedGoogle Scholar
  55. 55.
    Ravetch JV, Bolland S (2001) IgG Fc receptors. Annu Rev Immunol 19:275–290PubMedGoogle Scholar
  56. 56.
    Bolland S, Yim YS, Tus K, Wakeland EK, Ravetch JV (2002) Genetic modifiers of systemic lupus erythematosus in FcgammaRIIB(−/−) mice. J Exp Med 195:1167–1174PubMedGoogle Scholar
  57. 57.
    Okazaki T, Otaka Y, Wang J, Hiai H, Takai T, Ravetch JV, Honjo T (2005) Hydronephrosis associated with antiurothelial and antinuclear autoantibodies in BALB/c−Fcgr2b−/−Pdcd1−/− mice. J Exp Med 202:1643–1648 (Epub 2005 Dec 13)PubMedGoogle Scholar
  58. 58.
    Clynes R, Calvani N, Croker BP, Richards HB (2005) Modulation of the immune response in pristane-induced lupus by expression of activation and inhibitory Fc receptors. Clin Exp Immunol 141:230–237PubMedGoogle Scholar
  59. 59.
    Fukuyama H, Nimmerjahn F, Ravetch JV (2005) The inhibitory Fcgamma receptor modulates autoimmunity by limiting the accumulation of immunoglobulin G+ anti-DNA plasma cells. Nat Immunol 6:99–106 (Epub 2004 Dec 12)PubMedGoogle Scholar
  60. 60.
    Witsch EJ, Cao H, Fukuyama H, Weigert M (2006) Light chain editing generates polyreactive antibodies in chronic graft-versus-host reaction. J Exp Med 203:1761–1772PubMedGoogle Scholar
  61. 61.
    Jiang Y, Hirose S, Abe M, Sanokawa-Akakura R, Ohtsuji M, Mi X, Li N, Xiu Y, Zhang D, Shirai J, Hamano Y, Fujii H, Shirai T (2000) Polymorphisms in IgG Fc receptor IIB regulatory regions associated with autoimmune susceptibility. Immunogenetics 51:429–435PubMedGoogle Scholar
  62. 62.
    Jiang Y, Hirose S, Sanokawa-Akakura R, Abe M, Mi X, Li N, Miura Y, Shirai J, Zhang D, Hamano Y, Shirai T (1999) Genetically determined aberrant down-regulation of FcgammaRIIB1 in germinal center B cells associated with hyper-IgG and IgG autoantibodies in murine systemic lupus erythematosus. Int Immunol 11:1685–1691PubMedGoogle Scholar
  63. 63.
    Pritchard NR, Cutler AJ, Uribe S, Chadban SJ, Morley BJ, Smith KG (2000) Autoimmune-prone mice share a promoter haplotype associated with reduced expression and function of the Fc receptor FcgammaRII. Curr Biol 10:227–230PubMedGoogle Scholar
  64. 64.
    Xiu Y, Nakamura K, Abe M, Li N, Wen XS, Jiang Y, Zhang D, Tsurui H, Matsuoka S, Hamano Y, Fujii H, Ono M, Takai T, Shimokawa T, Ra C, Shirai T, Hirose S (2002) Transcriptional regulation of Fcgr2b gene by polymorphic promoter region and its contribution to humoral immune responses. J Immunol 169:4340–4346PubMedGoogle Scholar
  65. 65.
    Blank MC, Stefanescu RN, Masuda E, Marti F, King PD, Redecha PB, Wurzburger RJ, Peterson MG, Tanaka S, Pricop L (2005) Decreased transcription of the human FCGR2B gene mediated by the −343 G/C promoter polymorphism and association with systemic lupus erythematosus. Hum Genet 117:220–227 (Epub 2005 May 14)PubMedGoogle Scholar
  66. 66.
    Mackay M, Stanevsky A, Wang T, Aranow C, Li M, Koenig S, Ravetch JV, Diamond B (2006) Selective dysregulation of the Fc{gamma}IIB receptor on memory B cells in SLE. J Exp Med 203:2157–2164PubMedGoogle Scholar
  67. 67.
    Su K, Li X, Edberg JC, Wu J, Ferguson P, Kimberly RP (2004) A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcgammaRIIb alters receptor expression and associates with autoimmunity. II. Differential binding of GATA4 and Yin-Yang1 transcription factors and correlated receptor expression and function. J Immunol 172:7192–7199PubMedGoogle Scholar
  68. 68.
    Su K, Wu J, Edberg JC, Li X, Ferguson P, Cooper GS, Langefeld CD, Kimberly RP (2004) A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcgammaRIIb alters receptor expression and associates with autoimmunity. I. Regulatory FCGR2B polymorphisms and their association with systemic lupus erythematosus. J Immunol 172:7186–7191PubMedGoogle Scholar
  69. 69.
    Enyedy EJ, Mitchell JP, Nambiar MP, Tsokos GC (2001) Defective FcgammaRIIb1 signaling contributes to enhanced calcium response in B cells from patients with systemic lupus erythematosus. Clin Immunol 101:130–135PubMedGoogle Scholar
  70. 70.
    Boruchov AM, Heller G, Veri MC, Bonvini E, Ravetch JV, Young JW (2005) Activating and inhibitory IgG Fc receptors on human DCs mediate opposing functions. J Clin Invest 15:15Google Scholar
  71. 71.
    Siriboonrit U, Tsuchiya N, Sirikong M, Kyogoku C, Bejrachandra S, Suthipinittharm P, Luangtrakool K, Srinak D, Thongpradit R, Fujiwara K, Chandanayingyong D, Tokunaga K (2003) Association of Fcgamma receptor IIb and IIIb polymorphisms with susceptibility to systemic lupus erythematosus in Thais. Tissue Antigens 61:374–383PubMedGoogle Scholar
  72. 72.
    Chu ZT, Tsuchiya N, Kyogoku C, Ohashi J, Qian YP, Xu SB, Mao CZ, Chu JY, Tokunaga K (2004) Association of Fcgamma receptor IIb polymorphism with susceptibility to systemic lupus erythematosus in Chinese: a common susceptibility gene in the Asian populations. Tissue Antigens 63:21–27PubMedGoogle Scholar
  73. 73.
    Kyogoku C, Dijstelbloem HM, Tsuchiya N, Hatta Y, Kato H, Yamaguchi A, Fukazawa T, Jansen MD, Hashimoto H, van de Winkel JG, Kallenberg CG, Tokunaga K (2002) Fcgamma receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: contribution of FCGR2B to genetic susceptibility. Arthritis Rheum 46:1242–1254PubMedGoogle Scholar
  74. 74.
    Tsuchiya N, Kyogoku C (2005) Role of Fc gamma receptor IIb polymorphism in the genetic background of systemic lupus erythematosus: insights from Asia. Autoimmunity 38:347–352PubMedGoogle Scholar
  75. 75.
    Li X, Wu J, Carter RH, Edberg JC, Su K, Cooper GS, Kimberly RP (2003) A novel polymorphism in the Fcgamma receptor IIB (CD32B) transmembrane region alters receptor signaling. Arthritis Rheum 48:3242–3252PubMedGoogle Scholar
  76. 76.
    Floto RA, Clatworthy MR, Heilbronn KR, Rosner DR, MacAry PA, Rankin A, Lehner PJ, Ouwehand WH, Allen JM, Watkins NA, Smith KG (2005) Loss of function of a lupus-associated FcgammaRIIb polymorphism through exclusion from lipid rafts. Nat Med 11:1056–1058 (Epub 2005 Sep 18)PubMedGoogle Scholar
  77. 77.
    Kono H, Kyogoku C, Suzuki T, Tsuchiya N, Honda H, Yamamoto K, Tokunaga K, Honda Z (2005) FcgammaRIIB Ile232Thr transmembrane polymorphism associated with human systemic lupus erythematosus decreases affinity to lipid rafts and attenuates inhibitory effects on B cell receptor signaling. Hum Mol Genet 14:2881–2892 (Epub 2005 Aug 22)PubMedGoogle Scholar
  78. 78.
    Steinman RM, Hawiger D, Liu K, Bonifaz L, Bonnyay D, Mahnke K, Iyoda T, Ravetch J, Dhodapkar M, Inaba K, Nussenzweig M (2003) Dendritic cell function in vivo during the steady state: a role in peripheral tolerance. Ann NY Acad Sci 987:15–25PubMedCrossRefGoogle Scholar
  79. 79.
    Dhodapkar KM, Krasovsky J, Williamson B, Dhodapkar MV (2002) Antitumor monoclonal antibodies enhance cross-presentation of cellular antigens and the generation of myeloma-specific killer T cells by dendritic cells. J Exp Med 195:125–133PubMedGoogle Scholar
  80. 80.
    Groh V, Li YQ, Cioca D, Hunder NN, Wang W, Riddell SR, Yee C, Spies T (2005) Efficient cross-priming of tumor antigen-specific T cells by dendritic cells sensitized with diverse anti-MICA opsonized tumor cells. Proc Natl Acad Sci USA 102:6461–6466 (Epub 2005 Apr 11)PubMedGoogle Scholar
  81. 81.
    Rafiq K, Bergtold A, Clynes R (2002) Immune complex-mediated antigen presentation induces tumor immunity. J Clin Invest 110:71–79PubMedGoogle Scholar
  82. 82.
    Regnault A, Lankar D, Lacabanne V, Rodriguez A, Thery C, Rescigno M, Saito T, Verbeek S, Bonnerot C, Ricciardi-Castagnoli P, Amigorena S (1999) Fcgamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J Exp Med 189:371–380PubMedGoogle Scholar
  83. 83.
    Dhodapkar KM, Kaufman JL, Ehlers M, Banerjee DK, Bonvini E, Koenig S, Steinman RM, Ravetch JV, Dhodapkar MV (2005) Selective blockade of inhibitory Fcgamma receptor enables human dendritic cell maturation with IL-12p70 production and immunity to antibody-coated tumor cells. Proc Natl Acad Sci USA 102:2910–2915 (Epub 2005 Feb 9)PubMedGoogle Scholar
  84. 84.
    Kalergis AM, Ravetch JV (2002) Inducing tumor immunity through the selective engagement of activating Fcgamma receptors on dendritic cells. J Exp Med 195:1653–1659PubMedGoogle Scholar
  85. 85.
    Samsom JN, van Berkel LA, van Helvoort JM, Unger WW, Jansen W, Thepen T, Mebius RE, Verbeek SS, Kraal G (2005) Fc gamma RIIB regulates nasal and oral tolerance: a role for dendritic cells. J Immunol 174:5279–5287PubMedGoogle Scholar
  86. 86.
    Bergtold A, Desai DD, Gavhane A, Clynes R (2005) Cell surface recycling of internalized antigen permits dendritic cell priming of B cells. Immunity 23:503–514PubMedGoogle Scholar
  87. 87.
    Kushnir N, Liu L, MacPherson GG (1998) Dendritic cells and resting B cells form clusters in vitro and in vivo: T cell independence, partial LFA-1 dependence, and regulation by cross-linking surface molecules. J Immunol 160:1774–1781PubMedGoogle Scholar
  88. 88.
    Wykes M, Pombo A, Jenkins C, MacPherson GG (1998) Dendritic cells interact directly with naive B lymphocytes to transfer antigen and initiate class switching in a primary T-dependent response. J Immunol 161:1313–1319PubMedGoogle Scholar
  89. 89.
    Delamarre L, Pack M, Chang H, Mellman I, Trombetta ES (2005) Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 307:1630–1634PubMedGoogle Scholar
  90. 90.
    Kraft S, Novak N (2006) Fc receptors as determinants of allergic reactions. Trends Immunol 27:88–95PubMedGoogle Scholar
  91. 91.
    Yuasa T, Kubo S, Yoshino T, Ujike A, Matsumura K, Ono M, Ravetch JV, Takai T (1999) Deletion of fcgamma receptor IIB renders H-2(b) mice susceptible to collagen-induced arthritis. J Exp Med 189:187–194PubMedGoogle Scholar
  92. 92.
    Coutelier JP, van der Logt JT, Heessen FW, Warnier G, Van Snick J (1987) IgG2a restriction of murine antibodies elicited by viral infections. J Exp Med 165:64–69PubMedGoogle Scholar
  93. 93.
    Fossati-Jimack L, Ioan-Facsinay A, Reininger L, Chicheportiche Y, Watanabe N, Saito T, Hofhuis FM, Gessner JE, Schiller C, Schmidt RE, Honjo T, Verbeek JS, Izui S (2000) Markedly different pathogenicity of four immunoglobulin G isotype-switch variants of an antierythrocyte autoantibody is based on their capacity to interact in vivo with the low-affinity Fcgamma receptor III. J Exp Med 191:1293–1302PubMedGoogle Scholar
  94. 94.
    Hamaguchi Y, Xiu Y, Komura K, Nimmerjahn F, Tedder TF (2006) Antibody isotype-specific engagement of Fcgamma receptors regulates B lymphocyte depletion during CD20 immunotherapy. J Exp Med 203:743–753 (Epub 2006 Mar 6)PubMedGoogle Scholar
  95. 95.
    Kipps TJ, Parham P, Punt J, Herzenberg LA (1985) Importance of immunoglobulin isotype in human antibody-dependent, cell-mediated cytotoxicity directed by murine monoclonal antibodies. J Exp Med 161:1–17PubMedGoogle Scholar
  96. 96.
    Markine-Goriaynoff D, Coutelier JP (2002) Increased efficacy of the immunoglobulin G2a subclass in antibody-mediated protection against lactate dehydrogenase-elevating virus–induced polioencephalomyelitis revealed with switch mutants. J Virol 76:432–435PubMedGoogle Scholar
  97. 97.
    Nimmerjahn F, Ravetch JV (2005) Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310:1510–1512PubMedGoogle Scholar
  98. 98.
    Schlageter AM, Kozel TR (1990) Opsonization of cryptococcus neoformans by a family of isotype–switch variant antibodies specific for the capsular polysaccharide. Infect Immun 58:1914–1918PubMedGoogle Scholar
  99. 99.
    Taborda CP, Rivera J, Zaragoza O, Casadevall A (2003) More is not necessarily better: prozone-like effects in passive immunization with IgG. J Immunol 170:3621–3630PubMedGoogle Scholar
  100. 100.
    Uchida J, Hamaguchi Y, Oliver JA, Ravetch JV, Poe JC, Haas KM, Tedder TF (2004) The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med 199:1659–1669PubMedGoogle Scholar
  101. 101.
    Kaneko Y, Nimmerjahn F, Madaio MP, Ravetch JV (2006) Pathology and protection in nephrotoxic nephritis is determined by selective engagement of specific Fc receptors. J Exp Med 203:789–797 (Epub 2006 Mar 6)PubMedGoogle Scholar
  102. 102.
    Bijl M, Dijstelbloem HM, Oost WW, Bootsma H, Derksen RH, Aten J, Limburg PC, Kallenberg CG (2002) IgG subclass distribution of autoantibodies differs between renal and extra-renal relapses in patients with systemic lupus erythematosus. Rheumatology 41:62–67PubMedGoogle Scholar
  103. 103.
    Imai H, Hamai K, Komatsuda A, Ohtani H, Miura AB (1997) IgG subclasses in patients with membranoproliferative glomerulonephritis, membranous nephropathy, and lupus nephritis. Kidney Int 51:270–276PubMedGoogle Scholar
  104. 104.
    Winkler TH, Henschel TA, Kalies I, Baenkler HW, Skvaril F, Kalden JR (1988) Constant isotype pattern of anti-dsDNA antibodies in patients with systemic lupus erythematosus. Clin Exp Immunol 72:434–439PubMedGoogle Scholar
  105. 105.
    Loizou S, Cofiner C, Weetman AP, Walport MJ (1992) Immunoglobulin class and IgG subclass distribution of anticardiolipin antibodies in patients with systemic lupus erythematosus and associated disorders. Clin Exp Immunol 90:434–439PubMedCrossRefGoogle Scholar
  106. 106.
    Bruhns P, Samuelsson A, Pollard JW, Ravetch JV (2003) Colony-stimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease. Immunity 18:573–581PubMedGoogle Scholar
  107. 107.
    Hazenbos WL, Gessner JE, Hofhuis FM, Kuipers H, Meyer D, Heijnen IA, Schmidt RE, Sandor M, Capel PJ, Daeron M, van de Winkel JG, Verbeek JS (1996) Impaired IgG-dependent anaphylaxis and Arthus reaction in Fc gamma RIII (CD16) deficient mice. Immunity 5:181–188PubMedGoogle Scholar
  108. 108.
    Hazenbos WL, Heijnen IA, Meyer D, Hofhuis FM, Renardel de Lavalette CR, Schmidt RE, Capel PJ, van de Winkel JG, Gessner JE, van den Berg TK, Verbeek JS (1998) Murine IgG1 complexes trigger immune effector functions predominantly via Fc gamma RIII (CD16). J Immunol 161:3026–3032PubMedGoogle Scholar
  109. 109.
    Ji H, Ohmura K, Mahmood U, Lee DM, Hofhuis FM, Boackle SA, Takahashi K, Holers VM, Walport M, Gerard C, Ezekowitz A, Carroll MC, Brenner M, Weissleder R, Verbeek JS, Duchatelle V, Degott C, Benoist C, Mathis D (2002) Arthritis critically dependent on innate immune system players. Immunity 16:157–168PubMedGoogle Scholar
  110. 110.
    Meyer D, Schiller C, Westermann J, Izui S, Hazenbos WL, Verbeek JS, Schmidt RE, Gessner JE (1998) FcgammaRIII (CD16)-deficient mice show IgG isotype-dependent protection to experimental autoimmune hemolytic anemia. Blood 92:3997–4002PubMedGoogle Scholar
  111. 111.
    Clynes R, Dumitru C, Ravetch JV (1998) Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 279:1052–1054PubMedGoogle Scholar
  112. 112.
    Clynes R, Maizes JS, Guinamard R, Ono M, Takai T, Ravetch JV (1999) Modulation of immune complex-induced inflammation in vivo by the coordinate expression of activation and inhibitory Fc receptors. J Exp Med 189:179–185PubMedGoogle Scholar
  113. 113.
    Sylvestre D, Clynes R, Ma M, Warren H, Carroll MC, Ravetch JV (1996) Immunoglobulin G-mediated inflammatory responses develop normally in complement-deficient mice. J Exp Med 184:2385–2392PubMedGoogle Scholar
  114. 114.
    Barnes N, Gavin AL, Tan PS, Mottram P, Koentgen F, Hogarth PM (2002) FcgammaRI-deficient mice show multiple alterations to inflammatory and immune responses. Immunity 16:379–389PubMedGoogle Scholar
  115. 115.
    Bevaart L, Jansen MJ, van Vugt MJ, Verbeek JS, van de Winkel JG, Leusen JH (2006) The high-affinity IgG receptor, FcgammaRI, plays a central role in antibody therapy of experimental melanoma. Cancer Res 66:1261–1264PubMedGoogle Scholar
  116. 116.
    Ioan-Facsinay A, de Kimpe SJ, Hellwig SM, van Lent PL, Hofhuis FM, van Ojik HH, Sedlik C, da Silveira SA, Gerber J, de Jong YF, Roozendaal R, Aarden LA, van den Berg WB, Saito T, Mosser D, Amigorena S, Izui S, van Ommen GJ, van Vugt M, van de Winkel JG, Verbeek JS (2002) FcgammaRI (CD64) contributes substantially to severity of arthritis, hypersensitivity responses, and protection from bacterial infection. Immunity 16:391–402PubMedGoogle Scholar
  117. 117.
    Azeredo da Silveira S, Kikuchi S, Fossati-Jimack L, Moll T, Saito T, Verbeek JS, Botto M, Walport MJ, Carroll M, Izui S (2002) Complement activation selectively potentiates the pathogenicity of the IgG2b and IgG3 isotypes of a high affinity anti-erythrocyte autoantibody. J Exp Med 195:665–672PubMedGoogle Scholar
  118. 118.
    Kumar V, Ali SR, Konrad S, Zwirner J, Verbeek JS, Schmidt RE, Gessner JE (2006) Cell-derived anaphylatoxins as key mediators of antibody-dependent type II autoimmunity in mice. J Clin Invest 116:512–520PubMedGoogle Scholar
  119. 119.
    Schmidt RE, Gessner JE (2005) Fc receptors and their interaction with complement in autoimmunity. Immunol Lett 100:56–67PubMedGoogle Scholar
  120. 120.
    Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Watier H (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 99:754–758PubMedGoogle Scholar
  121. 121.
    Weng WK, Czerwinski D, Timmerman J, Hsu FJ, Levy R (2004) Clinical outcome of lymphoma patients after idiotype vaccination is correlated with humoral immune response and immunoglobulin G Fc receptor genotype. J Clin Oncol 22:4717–4724 (Epub 2004 Oct 13)PubMedGoogle Scholar
  122. 122.
    Weng WK, Levy R (2003) Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 21:3940–3947 (Epub 2003 Sep 15)PubMedGoogle Scholar
  123. 123.
    Morgan AW, Griffiths B, Ponchel F, Montague BM, Ali M, Gardner PP, Gooi HC, Situnayake RD, Markham AF, Emery P, Isaacs JD (2000) Fcgamma receptor type IIIA is associated with rheumatoid arthritis in two distinct ethnic groups. Arthritis Rheum 43:2328–2334PubMedGoogle Scholar
  124. 124.
    Morgan AW, Keyte VH, Babbage SJ, Robinson JI, Ponchel F, Barrett JH, Bhakta BB, Bingham SJ, Buch MH, Conaghan PG, Gough A, Green M, Lawson CA, Pease CT, Markham AF, Ollier WE, Emery P, Worthington J, Isaacs JD (2003) FcgammaRIIIA-158V and rheumatoid arthritis: a confirmation study. Rheumatology 42:528–533PubMedGoogle Scholar
  125. 125.
    Magnusson V, Johanneson B, Lima G, Odeberg J, Alarcon-Segovia D, Alarcon-Riquelme ME (2004) Both risk alleles for FcgammaRIIA and FcgammaRIIIA are susceptibility factors for SLE: a unifying hypothesis. Genes Immun 5:130–137PubMedGoogle Scholar
  126. 126.
    Bazilio AP, Viana VS, Toledo R, Woronik V, Bonfa E, Monteiro RC (2004) Fc gamma RIIa polymorphism: a susceptibility factor for immune complex-mediated lupus nephritis in Brazilian patients. Nephrol Dial Transplant 19:1427–1431 (Epub 2004 Mar 5)PubMedGoogle Scholar
  127. 127.
    Dijstelbloem HM, Bijl M, Fijnheer R, Scheepers RH, Oost WW, Jansen MD, Sluiter WJ, Limburg PC, Derksen RH, van de Winkel JG, Kallenberg CG (2000) Fcgamma receptor polymorphisms in systemic lupus erythematosus: association with disease and in vivo clearance of immune complexes. Arthritis Rheum 43:2793–2800PubMedGoogle Scholar
  128. 128.
    Dijstelbloem HM, Hepkema BG, Kallenberg CG, van der Linden MW, Keijsers V, Huizinga TW, Jansen MD, van de Winkel JG (2002) The R–H polymorphism of FCgamma receptor IIa as a risk factor for systemic lupus erythematosus is independent of single-nucleotide polymorphisms in the interleukin-10 gene promoter. Arthritis Rheum 46:1125–1126PubMedGoogle Scholar
  129. 129.
    Gelmetti AP, Freitas AC, Woronik V, Barros RT, Bonfa E, Monteiro RC (2006) Polymorphism of the FcgammaRIIalpha IgG receptor in patients with lupus nephritis and glomerulopathy. J Rheumatol 33:523–530PubMedGoogle Scholar
  130. 130.
    Koene HR, Kleijer M, Swaak AJ, Sullivan KE, Bijl M, Petri MA, Kallenberg CG, Roos D, von dem Borne AE, de Haas M (1998) The Fc gammaRIIIA-158F allele is a risk factor for systemic lupus erythematosus. Arthritis Rheum 41:1813–1818PubMedGoogle Scholar
  131. 131.
    Manger K, Repp R, Jansen M, Geisselbrecht M, Wassmuth R, Westerdaal NA, Pfahlberg A, Manger B, Kalden JR, van de Winkel JG (2002) Fcgamma receptor IIa, IIIa, and IIIb polymorphisms in German patients with systemic lupus erythematosus: association with clinical symptoms. Ann Rheum Dis 61:786–792PubMedGoogle Scholar
  132. 132.
    Nieto A, Caliz R, Pascual M, Mataran L, Garcia S, Martin J (2000) Involvement of Fcgamma receptor IIIA genotypes in susceptibility to rheumatoid arthritis. Arthritis Rheum 43:735–739PubMedGoogle Scholar
  133. 133.
    Salmon JE, Millard S, Schachter LA, Arnett FC, Ginzler EM, Gourley MF, Ramsey-Goldman R, Peterson MG, Kimberly RP (1996) Fc gamma RIIA alleles are heritable risk factors for lupus nephritis in African Americans. J Clin Invest 97:1348–1354PubMedGoogle Scholar
  134. 134.
    Seligman VA, Suarez C, Lum R, Inda SE, Lin D, Li H, Olson JL, Seldin MF, Criswell LA (2001) The Fcgamma receptor IIIA-158F allele is a major risk factor for the development of lupus nephritis among Caucasians but not non-Caucasians. Arthritis Rheum 44:618–625PubMedGoogle Scholar
  135. 135.
    Tanaka Y, Suzuki Y, Tsuge T, Kanamaru Y, Horikoshi S, Monteiro RC, Tomino Y (2005) FcgammaRIIa-131R allele and FcgammaRIIIa-176V/V genotype are risk factors for progression of IgA nephropathy. Nephrol Dial Transplant 20:2439–2445PubMedGoogle Scholar
  136. 136.
    Yun HR, Koh HK, Kim SS, Chung WT, Kim DW, Hong KP, Song GG, Chang HK, Choe JY, Bae SC, Salmon JE, Yoo DH, Kim TY, Kim SY (2001) FcgammaRIIa/IIIa polymorphism and its association with clinical manifestations in Korean lupus patients. Lupus 10:466–472PubMedGoogle Scholar
  137. 137.
    Zuniga R, Ng S, Peterson MG, Reveille JD, Baethge BA, Alarcon GS, Salmon JE (2001) Low-binding alleles of Fcgamma receptor types IIA and IIIA are inherited independently and are associated with systemic lupus erythematosus in Hispanic patients. Arthritis Rheum 44:361–367PubMedGoogle Scholar
  138. 138.
    Gonzalez-Escribano MF, Aguilar F, Sanchez-Roman J, Nunez-Roldan A (2002) FcgammaRIIA, FcgammaRIIIA and FcgammaRIIIB polymorphisms in Spanish patients with systemic lupus erythematosus. Eur J Immunogenet 29:301–306PubMedGoogle Scholar
  139. 139.
    Hatta Y, Tsuchiya N, Ohashi J, Matsushita M, Fujiwara K, Hagiwara K, Juji T, Tokunaga K (1999) Association of Fc gamma receptor IIIB, but not of Fc gamma receptor IIA and IIIA polymorphisms with systemic lupus erythematosus in Japanese. Genes Immun 1:53–60PubMedGoogle Scholar
  140. 140.
    Aitman TJ, Dong R, Vyse TJ, Norsworthy PJ, Johnson MD, Smith J, Mangion J, Roberton-Lowe C, Marshall AJ, Petretto E, Hodges MD, Bhangal G, Patel SG, Sheehan-Rooney K, Duda M, Cook PR, Evans DJ, Domin J, Flint J, Boyle JJ, Pusey CD, Cook HT (2006) Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 439:851–855PubMedGoogle Scholar
  141. 141.
    Davies KA, Peters AM, Beynon HL, Walport MJ (1992) Immune complex processing in patients with systemic lupus erythematosus. In vivo imaging and clearance studies. J Clin Invest 90:2075–2083PubMedGoogle Scholar
  142. 142.
    Herrmann M, Voll RE, Zoller OM, Hagenhofer M, Ponner BB, Kalden JR (1998) Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum 41:1241–1250PubMedGoogle Scholar
  143. 143.
    Potter PK, Cortes-Hernandez J, Quartier P, Botto M, Walport MJ (2003) Lupus-prone mice have an abnormal response to thioglycolate and an impaired clearance of apoptotic cells. J Immunol 170:3223–3232PubMedGoogle Scholar
  144. 144.
    Lee HS, Chung YH, Kim TG, Kim TH, Jun JB, Jung S, Bae SC, Yoo DH (2003) Independent association of HLA-DR and FCgamma receptor polymorphisms in Korean patients with systemic lupus erythematosus. Rheumatology 42:1501–1507PubMedGoogle Scholar
  145. 145.
    Salmon JE, Ng S, Yoo DH, Kim TH, Kim SY, Song GG (1999) Altered distribution of Fcgamma receptor IIIA alleles in a cohort of Korean patients with lupus nephritis. Arthritis Rheum 42:818–819PubMedGoogle Scholar
  146. 146.
    Villarreal J, Crosdale D, Ollier W, Hajeer A, Thomson W, Ordi J, Balada E, Villardell M, Teh LS, Poulton K (2001) Mannose binding lectin and FcgammaRIIa (CD32) polymorphism in Spanish systemic lupus erythematosus patients. Rheumatology 40:1009–1012PubMedGoogle Scholar
  147. 147.
    Botto M, Theodoridis E, Thompson EM, Beynon HL, Briggs D, Isenberg DA, Walport MJ, Davies KA (1996) Fc gamma RIIa polymorphism in systemic lupus erythematosus (SLE): no association with disease. Clin Exp Immunol 104:264–268PubMedGoogle Scholar
  148. 148.
    Smyth LJ, Snowden N, Carthy D, Papasteriades C, Hajeer A, Ollier WE (1997) Fc gamma RIIa polymorphism in systemic lupus erythematosus. Ann Rheum Dis 56:744–746PubMedCrossRefGoogle Scholar
  149. 149.
    Yap SN, Phipps ME, Manivasagar M, Tan SY, Bosco JJ (1999) Human Fc gamma receptor IIA (FcgammaRIIA) genotyping and association with systemic lupus erythematosus (SLE) in Chinese and Malays in Malaysia. Lupus 8:305–310PubMedGoogle Scholar
  150. 150.
    Oh M, Petri MA, Kim NA, Sullivan KE (1999) Frequency of the Fc gamma RIIIA-158F allele in African American patients with systemic lupus erythematosus. J Rheumatol 26:1486–1489PubMedGoogle Scholar
  151. 151.
    Yap SN, Phipps ME, Manivasagar M, Bosco JJ (1999) Fc gamma receptor IIIB-NA gene frequencies in patients with systemic lupus erythematosus and healthy individuals of Malay and Chinese ethnicity. Immunol Lett 68:295–300PubMedGoogle Scholar
  152. 152.
    Gillespie SR, DeMartino RR, Zhu J, Chong HJ, Ramirez C, Shelburne CP, Bouton LA, Bailey DP, Gharse A, Mirmonsef P, Odom S, Gomez G, Rivera J, Fischer-Stenger K, Ryan JJ (2004) IL-10 inhibits Fc epsilon RI expression in mouse mast cells. J Immunol 172:3181–3188PubMedGoogle Scholar
  153. 153.
    Tridandapani S, Wardrop R, Baran CP, Wang Y, Opalek JM, Caligiuri MA, Marsh CB (2003) TGF-beta 1 suppresses [correction of supresses] myeloid Fc gamma receptor function by regulating the expression and function of the common gamma-subunit. J Immunol 170:4572–4577PubMedGoogle Scholar
  154. 154.
    Otten MA, van Egmond M (2004) The Fc receptor for IgA (FcalphaRI, CD89). Immunol Lett 92:23–31PubMedGoogle Scholar
  155. 155.
    Rudge EU, Cutler AJ, Pritchard NR, Smith KG (2002) Interleukin 4 reduces expression of inhibitory receptors on B cells and abolishes CD22 and Fc gamma RII-mediated B cell suppression. J Exp Med 195:1079–1085PubMedGoogle Scholar
  156. 156.
    Guyre PM, Morganelli PM, Miller R (1983) Recombinant immune interferon increases immunoglobulin G Fc receptors on cultured human mononuclear phagocytes. J Clin Invest 72:393–397PubMedGoogle Scholar
  157. 157.
    Shushakova N, Skokowa J, Schulman J, Baumann U, Zwirner J, Schmidt RE, Gessner JE (2002) C5a anaphylatoxin is a major regulator of activating versus inhibitory FcgammaRs in immune complex-induced lung disease. J Clin Invest 110:1823–1830PubMedGoogle Scholar
  158. 158.
    Coffman RL, Savelkoul HF, Lebman DA (1989) Cytokine regulation of immunoglobulin isotype switching and expression. Semin Immunol 1:55–63PubMedGoogle Scholar
  159. 159.
    Finkelman FD, Holmes J, Katona IM, Urban JF Jr, Beckmann MP, Park LS, Schooley KA, Coffman RL, Mosmann TR, Paul WE (1990) Lymphokine control of in vivo immunoglobulin isotype selection. Annu Rev Immunol 8:303–333PubMedGoogle Scholar
  160. 160.
    Shields RL, Namenuk AK, Hong K, Meng YG, Rae J, Briggs J, Xie D, Lai J, Stadlen A, Li B, Fox JA, Presta LG (2001) High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem 276:6591–6604PubMedGoogle Scholar
  161. 161.
    Okazaki A, Shoji-Hosaka E, Nakamura K, Wakitani M, Uchida K, Kakita S, Tsumoto K, Kumagai I, Shitara K (2004) Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between IgG1 and FcgammaRIIIa. J Mol Biol 336:1239–1249PubMedGoogle Scholar
  162. 162.
    Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, Weikert SH, Presta LG, Namenuk AK, Rae J, Briggs J, Xie D, Stadlen A, Li B, Fox JA (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277:26733–26740PubMedGoogle Scholar
  163. 163.
    Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, Hanai N, Shitara K (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278:3466–3473 (Epub 2002 Nov 8)PubMedGoogle Scholar
  164. 164.
    Bond A, Cooke A, Hay FC (1990) Glycosylation of IgG, immune complexes and IgG subclasses in the MRL-lpr/lpr mouse model of rheumatoid arthritis. Eur J Immunol 20:2229–2233PubMedGoogle Scholar
  165. 165.
    Matsumoto A, Shikata K, Takeuchi F, Kojima N, Mizuochi T (2000) Autoantibody activity of IgG rheumatoid factor increases with decreasing levels of galactosylation and sialylation. J Biochem (Tokyo) 128:621–628Google Scholar
  166. 166.
    Mizuochi T, Hamako J, Nose M, Titani K (1990) Structural changes in the oligosaccharide chains of IgG in autoimmune MRL/Mp-lpr/lpr mice. J Immunol 145:1794–1798PubMedGoogle Scholar
  167. 167.
    RadeMacher TW, Williams P, Dwek RA (1994) Agalactosyl glycoforms of IgG autoantibodies are pathogenic. Proc Natl Acad Sci USA 91:6123–6127PubMedGoogle Scholar
  168. 168.
    McGaha TL, Sorrentino B, Ravetch JV (2005) Restoration of tolerance in lupus by targeted inhibitory receptor expression. Science 307:590–593PubMedGoogle Scholar
  169. 169.
    Sherer Y, Shoenfeld Y (2006) Intravenous immunoglobulin for immunomodulation of systemic lupus erythematosus. Autoimmun Rev 5:153–155PubMedGoogle Scholar
  170. 170.
    Debre M, Bonnet MC, Fridman WH, Carosella E, Philippe N, Reinert P, Vilmer E, Kaplan C, Teillaud JL, Griscelli C (1993) Infusion of Fc gamma fragments for treatment of children with acute immune thrombocytopenic purpura. Lancet 342:945–949PubMedGoogle Scholar
  171. 171.
    Samuelsson A, Towers TL, Ravetch JV (2001) Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 291:484–486PubMedGoogle Scholar
  172. 172.
    Kim SH, Kim S, Evans CH, Ghivizzani SC, Oligino T, Robbins PD (2001) Effective treatment of established murine collagen-induced arthritis by systemic administration of dendritic cells genetically modified to express IL-4. J Immunol 166:3499–3505PubMedGoogle Scholar
  173. 173.
    Morita Y, Yang J, Gupta R, Shimizu K, Shelden EA, Endres J, Mule JJ, McDonagh KT, Fox DA (2001) Dendritic cells genetically engineered to express IL-4 inhibit murine collagen-induced arthritis. J Clin Invest 107:1275–1284PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Laboratory of Molecular Genetics and ImmunologyNew YorkUSA

Personalised recommendations