Advertisement

Springer Seminars in Immunopathology

, Volume 28, Issue 3, pp 267–279 | Cite as

DNA vaccines for HIV: challenges and opportunities

  • David A. Hokey
  • David B. WeinerEmail author
Review

Abstract

In December 2005, the UNAIDS and WHO reported that the global epidemic known as acquired immunodeficiency syndrome (AIDS) has claimed the lives of more than 25 million adults and children over the past 26 years. These figures included an estimated 3.1 million AIDS-related deaths in 2005. Despite enormous efforts to control the spread of human immunodeficiency virus (HIV) new infection rates are on the rise. An estimated 40.3 million people are now living with HIV, including 4.9 million new infections this past year. Nearly half of new HIV infections are in young people between the ages of 15 and 24. While drug therapies have helped sustain the lives of infected individuals in wealthy regions, they are relatively unavailable to the poorest global regions. This includes sub-Saharan Africa which has ∼25.8 million infected individuals, more than triple the number of infections of any other region in the world. It is widely believed that the greatest hope for controlling this devastating pandemic is a vaccine. In this review, we will discuss the current state of DNA-based vaccines and how they compare to other vaccination methods currently under investigation. We will also discuss innovative ideas for enhancing DNA vaccine efficacy and the progress being made toward developing an effective vaccine.

Keywords

Genetic vaccines CTL responses AIDS vaccines Vaccination Immune therapy 

References

  1. 1.
    Aguiar JC, Hedstrom RC, Rogers WO et al (2001) Enhancement of the immune response in rabbits to a malaria DNA vaccine by immunization with a needle-free jet device. Vaccine 20:275–280PubMedCrossRefGoogle Scholar
  2. 2.
    Albert ML, Sauter B, Bhardwaj N (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392:86–89PubMedCrossRefGoogle Scholar
  3. 3.
    Amara RR, Ibegbu C, Villinger F et al (2005) Studies using a viral challenge and CD8 T cell depletions on the roles of cellular and humoral immunity in the control of an SHIV-89.6P challenge in DNA/MVA-vaccinated macaques. Virology 343:246–255PubMedCrossRefGoogle Scholar
  4. 4.
    Amara RR, Villinger F, Altman JD et al (2001) Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science 292:69–74PubMedCrossRefGoogle Scholar
  5. 5.
    Amara RR, Villinger F, Staprans SI et al (2002) Different patterns of immune responses but similar control of a simian-human immunodeficiency virus 89.6P mucosal challenge by modified vaccinia virus Ankara (MVA) and DNA/MVA vaccines. J Virol 76:7625–7631PubMedCrossRefGoogle Scholar
  6. 6.
    Asea A, Rehli M, Kabingu E et al (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277:15028–15034PubMedCrossRefGoogle Scholar
  7. 7.
    Babiuk S, Baca-Estrada ME, Foldvari M et al (2004) Increased gene expression and inflammatory cell infiltration caused by electroporation are both important for improving the efficacy of DNA vaccines. J Biotechnol 110:1–10PubMedCrossRefGoogle Scholar
  8. 8.
    Babiuk S, Baca-Estrada ME, Foldvari M et al (2002) Electroporation improves the efficacy of DNA vaccines in large animals. Vaccine 20:3399–3408PubMedCrossRefGoogle Scholar
  9. 9.
    Bachy M, Boudet F, Bureau M et al (2001) Electric pulses increase the immunogenicity of an influenza DNA vaccine injected intramuscularly in the mouse. Vaccine 19:1688–1693PubMedCrossRefGoogle Scholar
  10. 10.
    Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252PubMedCrossRefGoogle Scholar
  11. 11.
    Barber DL, Wherry EJ, Masopust D et al (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–687PubMedCrossRefGoogle Scholar
  12. 12.
    Barouch DH, Craiu A, Santra S et al (2001) Elicitation of high-frequency cytotoxic T-lymphocyte responses against both dominant and subdominant simian-human immunodeficiency virus epitopes by DNA vaccination of rhesus monkeys. J Virol 75:2462–2467PubMedCrossRefGoogle Scholar
  13. 13.
    Barouch DH, Letvin NL, Seder RA (2004) The role of cytokine DNAs as vaccine adjuvants for optimizing cellular immune responses. Immunol Rev 202:266–274PubMedCrossRefGoogle Scholar
  14. 14.
    Barouch DH, Santra S, Schmitz JE et al (2000) Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination. Science 290:486–492PubMedCrossRefGoogle Scholar
  15. 15.
    Barouch DH, Santra S, Steenbeke TD et al (1998) Augmentation and suppression of immune responses to an HIV-1 DNA vaccine by plasmid cytokine/Ig administration. J Immunol 161:1875–1882PubMedGoogle Scholar
  16. 16.
    Barouch DH, Santra S, Tenner-Racz K et al (2002) Potent CD4+ T cell responses elicited by a bicistronic HIV-1 DNA vaccine expressing gp120 and GM-CSF. J Immunol 168:562–568PubMedGoogle Scholar
  17. 17.
    Bevan MJ (2004) Helping the CD8(+) T-cell response. Nat Rev Immunol 4:595–602PubMedCrossRefGoogle Scholar
  18. 18.
    Boyer JD, Chattergoon M, Muthumani K et al (2002) Next generation DNA vaccines for HIV-1. J Liposome Res 12:137–142PubMedCrossRefGoogle Scholar
  19. 19.
    Boyer JD, Cohen AD, Ugen KE et al (2000) Therapeutic immunization of HIV-infected chimpanzees using HIV-1 plasmid antigens and interleukin-12 expressing plasmids. AIDS 14:1515–1522PubMedCrossRefGoogle Scholar
  20. 20.
    Boyer JD, Robinson TM, Kutzler MA et al (2005) SIV DNA vaccine co-administered with IL-12 expression plasmid enhances CD8 SIV cellular immune responses in cynomolgus macaques. J Med Primatol 34:262–270PubMedCrossRefGoogle Scholar
  21. 21.
    Boyer JD, Robinson TM, Maciag PC et al (2005) DNA prime Listeria boost induces a cellular immune response to SIV antigens in the rhesus macaque model that is capable of limited suppression of SIV239 viral replication. Virology 333:88–101PubMedCrossRefGoogle Scholar
  22. 22.
    Boyer JD, Ugen KE, Wang B et al (1997) Protection of chimpanzees from high-dose heterologous HIV-1 challenge by DNA vaccination. Nat Med 3:526–532PubMedCrossRefGoogle Scholar
  23. 23.
    Calarota SA, Weiner DB (2004) Enhancement of human immunodeficiency virus type 1-DNA vaccine potency through incorporation of T-helper 1 molecular adjuvants. Immunol Rev 199:84–99PubMedCrossRefGoogle Scholar
  24. 24.
    Carbone FR, Bevan MJ (1990) Class I-restricted processing and presentation of exogenous cell-associated antigen in vivo. J Exp Med 171:377–387PubMedCrossRefGoogle Scholar
  25. 25.
    Casimiro DR, Bett AJ, Fu TM et al (2004) Heterologous human immunodeficiency virus type 1 priming-boosting immunization strategies involving replication-defective adenovirus and poxvirus vaccine vectors. J Virol 78:11434–11438PubMedCrossRefGoogle Scholar
  26. 26.
    Casimiro DR, Wang F, Schleif WA et al (2005) Attenuation of simian immunodeficiency virus SIVmac239 infection by prophylactic immunization with dna and recombinant adenoviral vaccine vectors expressing Gag. J Virol 79:15547–15555PubMedCrossRefGoogle Scholar
  27. 27.
    Chattergoon MA, Kim JJ, Yang JS et al (2000) Targeted antigen delivery to antigen-presenting cells including dendritic cells by engineered Fas-mediated apoptosis. Nat Biotechnol 18:974–979PubMedCrossRefGoogle Scholar
  28. 28.
    Chen SC, Jones DH, Fynan EF et al (1998) Protective immunity induced by oral immunization with a rotavirus DNA vaccine encapsulated in microparticles. J Virol 72:5757–5761PubMedGoogle Scholar
  29. 29.
    Condon C, Watkins SC, Celluzzi CM et al (1996) DNA-based immunization by in vivo transfection of dendritic cells. Nat Med 2:1122–1128PubMedCrossRefGoogle Scholar
  30. 30.
    Curtsinger JM, Lins DC, Mescher MF (2003) Signal 3 determines tolerance versus full activation of naive CD8 T cells: dissociating proliferation and development of effector function. J Exp Med 197:1141–1151PubMedCrossRefGoogle Scholar
  31. 31.
    Dayball K, Millar J, Miller M et al (2003) Electroporation enables plasmid vaccines to elicit CD8+ T cell responses in the absence of CD4+ T cells. J Immunol 171:3379–3384PubMedGoogle Scholar
  32. 32.
    Deml L, Bojak A, Steck S et al (2001) Multiple effects of codon usage optimization on expression and immunogenicity of DNA candidate vaccines encoding the human immunodeficiency virus type 1 Gag protein. J Virol 75:10991–11001PubMedCrossRefGoogle Scholar
  33. 33.
    Egan MA, Chong SY, Megati S et al (2005) Priming with plasmid DNAs expressing interleukin-12 and simian immunodeficiency virus gag enhances the immunogenicity and efficacy of an experimental AIDS vaccine based on recombinant vesicular stomatitis virus. AIDS Res Hum Retroviruses 21:629–643PubMedCrossRefGoogle Scholar
  34. 34.
    Felgner JH, Kumar R, Sridhar CN et al (1994) Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem 269:2550–2561PubMedGoogle Scholar
  35. 35.
    Fynan EF, Webster RG, Fuller DH et al (1993) DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci USA 90:11478–11482PubMedCrossRefGoogle Scholar
  36. 36.
    Gallucci S, Lolkema M, Matzinger P (1999) Natural adjuvants: endogenous activators of dendritic cells. Nat Med 5:1249–1255PubMedCrossRefGoogle Scholar
  37. 37.
    Gautier G, Humbert M, Deauvieau F et al (2005) A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukin-12p70 secretion by dendritic cells. J Exp Med 201:1435–1446PubMedCrossRefGoogle Scholar
  38. 38.
    Giri M, Ugen KE, Weiner DB (2004) DNA vaccines against human immunodeficiency virus type 1 in the past decade. Clin Microbiol Rev 17:370–389PubMedCrossRefGoogle Scholar
  39. 39.
    Glenn GM, Taylor DN, Li X et al (2000) Transcutaneous immunization: a human vaccine delivery strategy using a patch. Nat Med 6:1403–1406PubMedCrossRefGoogle Scholar
  40. 40.
    Gurunathan S, Klinman DM, Seder RA (2000) DNA vaccines: immunology, application, and optimization. Annu Rev Immunol 18:927–974PubMedCrossRefGoogle Scholar
  41. 41.
    Haensler J, Verdelet C, Sanchez V et al (1999) Intradermal DNA immunization by using jet-injectors in mice and monkeys. Vaccine 17:628–638PubMedCrossRefGoogle Scholar
  42. 42.
    Harshyne LA, Zimmer MI, Watkins SC et al (2003) A role for class A scavenger receptor in dendritic cell nibbling from live cells. J Immunol 170:2302–2309PubMedGoogle Scholar
  43. 43.
    Heath WR, Carbone FR (1999) Cytotoxic T lymphocyte activation by cross-priming. Curr Opin Immunol 11:314–318PubMedCrossRefGoogle Scholar
  44. 44.
    Heller LC, Heller R (2006) In vivo electroporation for gene therapy. Hum Gene Ther 17:1–8CrossRefGoogle Scholar
  45. 45.
    Herrmann JE, Chen SC, Jones DH et al (1999) Immune responses and protection obtained by oral immunization with rotavirus VP4 and VP7 DNA vaccines encapsulated in microparticles. Virology 259:148–153PubMedCrossRefGoogle Scholar
  46. 46.
    Hokey DA, Larregina AT, Erdos G et al (2005) Tumor cell loaded type-1 polarized dendritic cells induce Th1-mediated tumor immunity. Cancer Res 65:10059–10067PubMedCrossRefGoogle Scholar
  47. 47.
    Hsu KF, Hung CF, Cheng WF et al (2001) Enhancement of suicidal DNA vaccine potency by linking Mycobacterium tuberculosis heat shock protein 70 to an antigen. Gene Ther 8:376–383PubMedCrossRefGoogle Scholar
  48. 48.
    Jenne L, Arrighi JF, Jonuleit H et al (2000) Dendritic cells containing apoptotic melanoma cells prime human CD8+ T cells for efficient tumor cell lysis. Cancer Res 60:4446–4452PubMedGoogle Scholar
  49. 49.
    Kalinski P, Hilkens CM, Wierenga EA et al (1999) T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today 20:561–567PubMedCrossRefGoogle Scholar
  50. 50.
    Kent SJ, Dale CJ, Ranasinghe C et al (2005) Mucosally-administered human-simian immunodeficiency virus DNA and fowlpoxvirus-based recombinant vaccines reduce acute phase viral replication in macaques following vaginal challenge with CCR5-tropic SHIVSF162P3. Vaccine 23:5009–5021PubMedCrossRefGoogle Scholar
  51. 51.
    Klinman DM (2006) Adjuvant activity of CpG oligodeoxynucleotides. Int Rev Immunol 25:135–154PubMedCrossRefGoogle Scholar
  52. 52.
    Kotera Y, Shimizu K, Mule JJ (2001) Comparative analysis of necrotic and apoptotic tumor cells as a source of antigen(s) in dendritic cell-based immunization. Cancer Res 61:8105–8109PubMedGoogle Scholar
  53. 53.
    Kovacsovics-Bankowski M, Clark K, Benacerraf B et al (1993) Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages. Proc Natl Acad Sci USA 90:4942–4946PubMedCrossRefGoogle Scholar
  54. 54.
    Kovacsovics-Bankowski M, Rock KL (1995) A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 267:243–246PubMedCrossRefGoogle Scholar
  55. 55.
    Krieg AM (2006) Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov 5:471–484PubMedCrossRefGoogle Scholar
  56. 56.
    Kutzler MA, Robinson TM, Chattergoon MA et al (2005) Coimmunization with an optimized IL-15 plasmid results in enhanced function and longevity of CD8 T cells that are partially independent of CD4 T cell help. J Immunol 175:112–123PubMedGoogle Scholar
  57. 57.
    Kutzler MA, Weiner DB (2004) Developing DNA vaccines that call to dendritic cells. J Clin Invest 114:1241–1244PubMedGoogle Scholar
  58. 58.
    Lambert LA, Gibson GR, Maloney M et al (2001) Equipotent generation of protective antitumor immunity by various methods of dendritic cell loading with whole cell tumor antigens. J Immunother 24:232–236CrossRefGoogle Scholar
  59. 59.
    Lanzavecchia A, Sallusto F (2000) Dynamics of T lymphocyte responses: intermediates, effectors, and memory cells. Science 290:92–97PubMedCrossRefGoogle Scholar
  60. 60.
    Larregina AT, Watkins SC, Erdos G et al (2001) Direct transfection and activation of human cutaneous dendritic cells. Gene Ther 8:608–617PubMedCrossRefGoogle Scholar
  61. 61.
    Lori F, Trocio J, Bakare N et al (2005) DermaVir, a novel HIV immunisation technology. Vaccine 23:2030–2034PubMedCrossRefGoogle Scholar
  62. 62.
    MacGregor RR, Boyer JD, Ugen KE et al (2005) Plasmid vaccination of stable HIV-positive subjects on antiviral treatment results in enhanced CD8 T-cell immunity and increased control of viral “blips”. Vaccine 23:2066–2073PubMedCrossRefGoogle Scholar
  63. 63.
    Moore MW, Carbone FR, Bevan MJ (1988) Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell 54:777–785PubMedCrossRefGoogle Scholar
  64. 64.
    Napolitani G, Rinaldi A, Bertoni F et al (2005) Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol 6:769–776PubMedCrossRefGoogle Scholar
  65. 65.
    Nguyen KL, llano M, Akari H et al (2004) Codon optimization of the HIV-1 vpu and vif genes stabilizes their mRNA and allows for highly efficient Rev-independent expression. Virology 319:163–175PubMedCrossRefGoogle Scholar
  66. 66.
    Otero M, Calarota SA, Felber B et al (2004) Resiquimod is a modest adjuvant for HIV-1 gag-based genetic immunization in a mouse model. Vaccine 22:1782–1790PubMedCrossRefGoogle Scholar
  67. 67.
    Otten G, Schaefer M, Doe B et al (2004) Enhancement of DNA vaccine potency in rhesus macaques by electroporation. Vaccine 22:2489–2493PubMedCrossRefGoogle Scholar
  68. 68.
    Otten GR, Schaefer M, Doe B et al (2005) Enhanced potency of plasmid DNA microparticle human immunodeficiency virus vaccines in rhesus macaques by using a priming-boosting regimen with recombinant proteins. J Virol 79:8189–8200PubMedCrossRefGoogle Scholar
  69. 69.
    Pisabarro MT, Leung B, Kwong M et al (2006) Cutting edge: novel human dendritic cell- and monocyte-attracting chemokine-like protein identified by fold recognition methods. J Immunol 176:2069–2073PubMedGoogle Scholar
  70. 70.
    Porgador A, Irvine KR, Iwasaki A et al (1998) Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J Exp Med 188:1075–1082PubMedCrossRefGoogle Scholar
  71. 71.
    Prausnitz MR (2004) Microneedles for transdermal drug delivery. Adv Drug Deliv Rev 56:581–587PubMedCrossRefGoogle Scholar
  72. 72.
    Puaux AL, Delache B, Marconi S et al (2005) Loss of reactivity of vaccine-induced CD4 T cells in immunized monkeys after SIV/HIV challenge. AIDS 19:757–765PubMedCrossRefGoogle Scholar
  73. 73.
    Rosati M, von Gegerfelt A, Roth P et al (2005) DNA vaccines expressing different forms of simian immunodeficiency virus antigens decrease viremia upon SIVmac251 challenge. J Virol 79:8480–8492PubMedCrossRefGoogle Scholar
  74. 74.
    Sadagopal S, Amara RR, Montefiori DC et al (2005) Signature for long-term vaccine-mediated control of a Simian and human immunodeficiency virus 89.6P challenge: stable low-breadth and low-frequency T-cell response capable of coproducing gamma interferon and interleukin-2. J Virol 79:3243–3253PubMedCrossRefGoogle Scholar
  75. 75.
    Santra S, Barouch DH, Jackson SS et al (2000) Functional equivalency of B7-1 and B7-2 for costimulating plasmid DNA vaccine-elicited CTL responses. J Immunol 165:6791–6795PubMedGoogle Scholar
  76. 76.
    Santra S, Seaman MS, Xu L et al (2005) Replication-defective adenovirus serotype 5 vectors elicit durable cellular and humoral immune responses in nonhuman primates. J Virol 79:6516–6522PubMedCrossRefGoogle Scholar
  77. 77.
    Sasaki S, Amara RR, Oran AE et al (2001) Apoptosis-mediated enhancement of DNA-raised immune responses by mutant caspases. Nat Biotechnol 19:543–547PubMedCrossRefGoogle Scholar
  78. 78.
    Sauter B, Albert ML, Francisco L et al (2000) Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med 191:423–434PubMedCrossRefGoogle Scholar
  79. 79.
    Scheerlinck JP, Karlis J, Tjelle TE et al (2004) In vivo electroporation improves immune responses to DNA vaccination in sheep. Vaccine 22:1820–1825PubMedCrossRefGoogle Scholar
  80. 80.
    Selby M, Goldbeck C, Pertile T et al (2000) Enhancement of DNA vaccine potency by electroporation in vivo. J Biotechnol 83:147–152PubMedCrossRefGoogle Scholar
  81. 81.
    Shaif-Muthana M, McIntyre C, Sisley K et al (2000) Dead or alive: immunogenicity of human melanoma cells when presented by dendritic cells. Cancer Res 60:6441–6447PubMedGoogle Scholar
  82. 82.
    Shen L, Rock KL (2004) Cellular protein is the source of cross-priming antigen in vivo. Proc Natl Acad Sci USA 101:3035–3040PubMedCrossRefGoogle Scholar
  83. 83.
    Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–521PubMedCrossRefGoogle Scholar
  84. 84.
    Shi Y, Galusha SA, Rock KL (2006) Cutting edge: elimination of an endogenous adjuvant reduces the activation of CD8 T lymphocytes to transplanted cells and in an autoimmune diabetes model. J Immunol 176:3905–3908PubMedGoogle Scholar
  85. 85.
    Sin J, Kim JJ, Pachuk C et al (2000) DNA vaccines encoding interleukin-8 and RANTES enhance antigen-specific Th1-type CD4(+) T-cell-mediated protective immunity against herpes simplex virus type 2 in vivo. J Virol 74:11173–11180PubMedCrossRefGoogle Scholar
  86. 86.
    Sin JI, Weiner DB (2000) Improving DNA vaccines targeting viral infection. Intervirology 43:233–246PubMedCrossRefGoogle Scholar
  87. 87.
    Singh DK, Liu Z, Sheffer D et al (2005) A noninfectious simian/human immunodeficiency virus DNA vaccine that protects macaques against AIDS. J Virol 79:3419–3428PubMedCrossRefGoogle Scholar
  88. 88.
    Singh M, O’Hagan D (1999) Advances in vaccine adjuvants. Nat Biotechnol 17:1075–1081PubMedCrossRefGoogle Scholar
  89. 89.
    Smulevitch S, Bear J, Alicea C et al (2006) RTE and CTE mRNA export elements synergistically increase expression of unstable, Rev-dependent HIV and SIV mRNAs. Retrovirology 3:6CrossRefGoogle Scholar
  90. 90.
    Someya K, Ami Y, Nakasone T et al (2006) Induction of positive cellular and humoral immune responses by a prime-boost vaccine encoded with simian immunodeficiency virus gag/pol. J Immunol 176:1784–1795PubMedGoogle Scholar
  91. 91.
    Stambas J, Brown SA, Gutierrez A et al (2005) Long lived multi-isotype anti-HIV antibody responses following a prime-double boost immunization strategy. Vaccine 23:2454–2464PubMedCrossRefGoogle Scholar
  92. 92.
    Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296PubMedCrossRefGoogle Scholar
  93. 93.
    Su J, Luscher MA, Xiong Y et al (2005) Novel simian immunodeficiency virus CTL epitopes restricted by MHC class I molecule Mamu-B*01 are highly conserved for long term in DNA/MVA-vaccinated, SHIV-challenged rhesus macaques. Int Immunol 17:637–648PubMedCrossRefGoogle Scholar
  94. 94.
    Sumida SM, McKay PF, Truitt DM et al (2004) Recruitment and expansion of dendritic cells in vivo potentiate the immunogenicity of plasmid DNA vaccines. J Clin Invest 114:1334–1342PubMedGoogle Scholar
  95. 95.
    Tang DC, DeVit M, Johnston SA (1992) Genetic immunization is a simple method for eliciting an immune response. Nature 356:152–154PubMedCrossRefGoogle Scholar
  96. 96.
    Tang DC, Shi Z, Curiel DT (1997) Vaccination onto bare skin. Nature 388:729–730PubMedCrossRefGoogle Scholar
  97. 97.
    Titomirov AV, Sukharev S, Kistanova E (1991) In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim Biophys Acta 1088:131–134PubMedGoogle Scholar
  98. 98.
    Trimble C, Lin CT, Hung CF et al (2003) Comparison of the CD8+ T cell responses and antitumor effects generated by DNA vaccine administered through gene gun, biojector, and syringe. Vaccine 21:4036–4042PubMedCrossRefGoogle Scholar
  99. 99.
    Wang S, Farfan-Arribas DJ, Shen S et al (2006) Relative contributions of codon usage, promoter efficiency and leader sequence to the antigen expression and immunogenicity of HIV-1 Env DNA vaccine. Vaccine 24:4531–4540PubMedCrossRefGoogle Scholar
  100. 100.
    Whitmore MM, DeVeer MJ, Edling A et al (2004) Synergistic activation of innate immunity by double-stranded RNA and CpG DNA promotes enhanced antitumor activity. Cancer Res 64:5850–5860PubMedCrossRefGoogle Scholar
  101. 101.
    Widera G, Austin M, Rabussay D et al (2000) Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J Immunol 164:4635–4640PubMedGoogle Scholar
  102. 102.
    Wille-Reece U, Flynn BJ, Lore K et al (2006) Toll-like receptor agonists influence the magnitude and quality of memory T cell responses after prime-boost immunization in nonhuman primates. J Exp Med 203:1249–1258PubMedCrossRefGoogle Scholar
  103. 103.
    Wilson NS, Behrens GM, Lundie RJ et al (2006) Systemic activation of dendritic cells by Toll-like receptor ligands or malaria infection impairs cross-presentation and antiviral immunity. Nat Immunol 7:165–172PubMedCrossRefGoogle Scholar
  104. 104.
    Yu WH, Kashani-Sabet M, Liggitt D et al (1999) Topical gene delivery to murine skin. J Invest Dermatol 112:370–375PubMedCrossRefGoogle Scholar
  105. 105.
    Zhao YG, Peng B, Deng H et al (2006) Anti-HBV immune responses in rhesus macaques elicited by electroporation mediated DNA vaccination. Vaccine 24:897–903PubMedCrossRefGoogle Scholar
  106. 106.
    Zuhorn IS, Oberle V, Visser WH et al (2002) Phase behavior of cationic amphiphiles and their mixtures with helper lipid influences lipoplex shape, DNA translocation, and transfection efficiency. Biophys J 83:2096–2108PubMedCrossRefGoogle Scholar
  107. 107.
    zur Megede J, Chen MC, Doe B et al (2000) Increased expression and immunogenicity of sequence-modified human immunodeficiency virus type 1 gag gene. J Virol 74:2628–2635PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Pathology and Laboratory MedicineUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations