Advertisement

Springer Seminars in Immunopathology

, Volume 28, Issue 2, pp 175–184 | Cite as

Molecular and cellular basis for pathogenicity of autoantibodies: lessons from murine monoclonal autoantibodies

  • Lucie Baudino
  • Samareh Azeredo da Silveira
  • Munehiro Nakata
  • Shozo IzuiEmail author
Review

Abstract

The pathogenesis of autoantibody-mediated cellular and tissue lesions in autoimmune diseases is most straightforwardly attributable to the combined action of self-antigen binding properties and effector functions associated with the Fc regions of the different immunoglobulin (Ig) isotypes. The analysis of two different sets of monoclonal autoantibodies derived from lupus-prone mice revealed remarkable differences in the pathogenic potentials of different IgG subclasses: (1) the IgG2a and IgG2b subclasses of anti-red blood cell (RBC) autoantibodies are the most pathogenic and efficiently activate two classes of activating IgG Fc receptors (FcγRIII and FcγRIV) and complement; (2) the IgG3 subclass is less pathogenic and activate only complement; and (3) the IgG1 subclass is the least pathogenic and interact only with FcγRIII. In addition, because of the unique property of IgG3 to form self-associating complexes and generate cryoglobulins, this subclass of rheumatoid factor and anti-DNA autoantibodies became highly pathogenic and induced lupus-like nephritis and/or vasculitis. Since the switch to IgG2a and IgG3 is promoted by Th1 cytokine interferon γ, these results strongly suggest that Th1 autoimmune responses could be critically involved in the generation of more pathogenic autoantibodies in systemic lupus erythematosus. This finding is consistent with the observation that the progression of murine lupus nephritis is correlated with the relative dominance of Th1 autoimmune responses. Finally, the analysis of IgG glycosylation pattern revealed that more sialylated IgG autoantibodies remained poorly pathogenic because of limited Fc-associated effector functions and loss of cryoglobulin activity. This suggests that the terminal sialylation of the oligosaccharide side chains of IgG could be a significant factor determining the pathogenic potential of autoantibodies. Our results thus underline the importance of subpopulations of autoantibodies, induced by the help of Th1 cells, in the pathogenesis of autoantibody-mediated cellular and tissue injuries.

Keywords

SLE Autoimmune hemolytic anemia IgG Fc receptor Complement Cryoglobulin IgG glycosylation 

Notes

Acknowledgment

The studies from the authors’ laboratory discussed in this review were supported by a grant from the Swiss National Foundation for Scientific Research.

References

  1. 1.
    Abdelmoula M, Spertini F, Shibata T, Gyotoku Y, Luzuy S, Lambert PH, Izui S (1989) IgG3 is the major source of cryoglobulins in mice. J Immunol 143:526–532PubMedGoogle Scholar
  2. 2.
    Andrews BS, Eisenberg RA, Theofilopoulos AN, Izui S, Wilson CB, McConahey PJ, Murphy ED, Roths JB, Dixon FJ (1978) Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med 148:1198–1215PubMedCrossRefGoogle Scholar
  3. 3.
    Azeredo da Silveira S, Kikuchi S, Fossati-Jimack L, Moll T, Saito T, Verbeek JS, Botto M, Walport MJ, Carroll M, Izui S (2002) Complement activation selectively potentiates the pathogenicity of the IgG2b and IgG3 isotypes of a high affinity anti-erythrocyte autoantibody. J Exp Med 195:665–672PubMedCrossRefGoogle Scholar
  4. 4.
    Barnes N, Gavin AL, Tan PS, Mottram P, Koentgen F, Hogarth PM (2002) FcγRI-deficient mice show multiple alterations to inflammatory and immune responses. Immunity 16:379–389PubMedCrossRefGoogle Scholar
  5. 5.
    Berney T, Fulpius T, Shibata T, Reininger L, Van Snick J, Shan H, Weigert M, Marshak-Rothstein A, Izui S (1992) Selective pathogenicity of murine rheumatoid factors of the cryoprecipitable IgG3 subclass. Int Immunol 4:93–99PubMedGoogle Scholar
  6. 6.
    Brouet JC, Clauvel JP, Danon F, Klein M, Seligmann M (1974) Biological and clinical significance of cryoglobulins. A report of 86 cases. Am J Med 57:775–788PubMedCrossRefGoogle Scholar
  7. 7.
    Caulfield MJ, Stanko D, Calkins C (1989) Characterization of the spontaneous autoimmune (anti-erythrocyte) response in NZB mice using a pathogenic monoclonal autoantibody and its anti-idiotype. Immunology 66:233–237PubMedGoogle Scholar
  8. 8.
    Clynes R, Dumitru C, Ravetch JV (1998) Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 279:1052–1054PubMedCrossRefGoogle Scholar
  9. 9.
    Clynes R, Maizes JS, Guinamard R, Ono M, Takai T, Ravetch JV (1999) Modulation of immune complex-induced inflammation in vivo by the coordinate expressison of activation and inhibitory Fc receptors. J Exp Med 189:179–185PubMedCrossRefGoogle Scholar
  10. 10.
    Deocharan B, Qing X, Lichauco J, Putterman C (2002) α-Actinin is a cross-reactive renal target for pathogenic anti-DNA antibodies. J Immunol 168:3072–3078PubMedGoogle Scholar
  11. 11.
    Duncan AR, Winter G (1988) The binding site for C1q on IgG. Nature 332:738–740PubMedCrossRefGoogle Scholar
  12. 12.
    Duncan AR, Woof JM, Partridge LJ, Burton DR, Winter G (1988) Localization of the binding site for the human high-affinity Fc receptor on IgG. Nature 332:563–564PubMedCrossRefGoogle Scholar
  13. 13.
    Fearon DT (1979) Regulation of the amplification C3 convertase of human complement by an inhibitory protein isolated from human erythrocyte membrane. Proc Natl Acad Sci USA 76:5867–5871PubMedCrossRefGoogle Scholar
  14. 14.
    Finck BK, Chan B, Wofsy D (1994) Interleukin 6 promotes murine lupus in NZB/NZW F1 mice. J Clin Invest 94:585–591PubMedGoogle Scholar
  15. 15.
    Fossati-Jimack L, Reininger L, Chicheportiche Y, Clynes R, Ravetch JV, Honjo T, Izui S (1999) High pathogenic potential of low-affinity autoantibodies in experimental autoimmune hemolytic anemia. J Exp Med 190:1689–1696PubMedCrossRefGoogle Scholar
  16. 16.
    Fossati-Jimack L, Azeredo da Silveira S, Moll M, Kina T, Kuypers FA, Oldenborg P-A, Reininger L, Izui S (2002) Selective increase of autoimmune epitope expression on aged erythrocytes in mice: implications in anti-erythrocyte autoimmune responses. J Autoimmun 18:17–25PubMedCrossRefGoogle Scholar
  17. 17.
    Fulpius T, Spertini F, Reininger L, Izui S (1993) Immunoglobulin heavy chain constant region determines the pathogenicity and the antigen-binding activity of rheumatoid factor. Proc Natl Acad Sci USA 90:2345–2349PubMedCrossRefGoogle Scholar
  18. 18.
    Fulpius T, Lemoine R, Berney T, Pastore Y, Moll S, Izui S (1996) Polymorphonuclear leukocytes play a key role in the generation of “wire-loop” lesions induced by a murine IgG3 rheumatoid factor. Kidney Int 49:647–655PubMedGoogle Scholar
  19. 19.
    Hazenbos WLW, Gessner JE, Hofhuis FMA, Kuipers H, Meyer D, Heijnen IAFM, Schmidt RE, Sandor M, Capel PJA, Daëron M, Van de Winkel JGJ, Verbeek JS (1996) Impaired IgG-dependent anaphylaxis and Arthus reaction in FcγRIII (CD16) deficient mice. Immunity 5:181–188PubMedCrossRefGoogle Scholar
  20. 20.
    Hazenbos WLW, Heijnen IAFM, Meyer D, Hofhuis FMA, de Lavalette CR, Schmidt RE, Capel PJA, Van de Winkel JGJ, Gessner JE, van den Berg TK, Verbeek JS (1998) Murine IgG1 complexes trigger immune effector functions predominantly via FcγRIII (CD16). J Immunol 161:3026–3032PubMedGoogle Scholar
  21. 21.
    Holers VM, Girardi G, Mo L, Guthridge JM, Molina H, Pierangeli SS, Espinola R, Xiaowei LE, Mao D, Vialpando CG, Salmon JE (2002) Complement C3 activation is required for antiphospholipid antibody-induced fetal loss. J Exp Med 195:211–220PubMedCrossRefGoogle Scholar
  22. 22.
    Ioan-Facsinay A, de Kimpe SJ, Hellwig SMM, van Lent PL, Hofhuis FMA, van Ojik HH, Sedlik C, da Silveira SA, Gerber J, de Jong YF, Roozendaal R, Arden LA, van den Berg WB, Saito T, Mosser D, Amigorena S, Izui S, van Ommen GJB, van Vugt M, van de Winkel JGJ, Verbeek JS (2002) FcγRI (CD64) contributes substantially to severity of arthritis, hypersensitivity responses, and protection from bacterial infection. Immunity 16:391–402PubMedCrossRefGoogle Scholar
  23. 23.
    Ishida H, Muchamuel T, Sakaguchi S, Andrade S, Menon S, Howard M (1994) Continuous administration of anti-interleukin 10 antibodies delays onset of autoimmunity in NZB/W F1 mice. J Exp Med 179:305–310PubMedCrossRefGoogle Scholar
  24. 24.
    Itoh J, Nose M, Takahashi S, Ono M, Terasaki S, Kondoh E, Kyogoku M (1993) Induction of different types of glomerulonephritis by monoclonal antibodies derived from an MRL/lpr lupus mouse. Am J Pathol 143:1436–1443PubMedGoogle Scholar
  25. 25.
    Izui S, McConahey PJ, Clark JP, Hang LM, Hara I, Dixon FJ (1981) Retroviral gp70 immune complexes in NZB×NZW F2 mice with murine lupus nephritis. J Exp Med 154:517–528PubMedCrossRefGoogle Scholar
  26. 26.
    Izui S, Fulpius T, Reininger L, Pastore Y, Kobayakawa T (1998) Role of neutrophils in murine cryoglobulinemia. Inflamm Res 47:S145–S150PubMedCrossRefGoogle Scholar
  27. 27.
    Izui S, Ibnou-Zekri N, Fossati-Jimack L, Iwamoto M (2000) Lessons from BXSB and related mouse models. Int Rev Immunol 19:447–472PubMedGoogle Scholar
  28. 28.
    Kandiah DA, Sali A, Sheng Y, Victoria EJ, Marquis DM, Coutts SM, Krilis SA (1998) Current insights into the “antiphospholipid” syndrome: clinical, immunological, and molecular aspects. Adv Immunol 70:507–563PubMedGoogle Scholar
  29. 29.
    Kaneko Y, Nimmerjahn F, Madaio MP, Ravetch JV (2006) Pathology and protection in nephrotoxic nephritis is determined by selective engagement of specific Fc receptors. J Exp Med 203:789–797PubMedCrossRefGoogle Scholar
  30. 30.
    Kikuchi S, Pastore Y, Fossati-Jimack L, Kuroki A, Yoshida H, Fulpius T, Araki K, Takahashi S, Lemoine R, Reininger L, Izui S (2002) A transgenic mouse model of autoimmune glomerulonephritis and necrotizing arteritis associated with cryoglobulinemia. J Immunol 169:4644–4650PubMedGoogle Scholar
  31. 31.
    Kuroda Y, Kuroki A, Kikuchi S, Funase T, Nakata M, Izui S (2005) A critical role for sialylation in cryoglobulin activity of murine IgG3 monoclonal antibodies. J Immunol 175:1056–1061PubMedGoogle Scholar
  32. 32.
    Kuroki A, Kuroda Y, Kikuchi S, Lajaunias F, Fulpius T, Pastore Y, Fossati-Jimack L, Reininger L, Toda T, Nakata M, Kojima N, Mizuochi T, Izui S (2002) Level of galactosylation determines cryoglobulin activity of murine IgG3 monoclonal rheumatoid factor. Blood 99:2922–2928PubMedCrossRefGoogle Scholar
  33. 33.
    Lanoue A, Batista FD, Stewart M, Neuberger MS (2002) Interaction of CD22 with α2,6-linked sialoglycoconjugates: innate recognition of self to dampen B cell autoreactivity? Eur J Immunol 32:348–355PubMedCrossRefGoogle Scholar
  34. 34.
    Lemoine R, Berney T, Shibata T, Fulpius T, Gyotoku Y, Shimada H, Sawada S, Izui S (1992) Induction of “wire-loop” lesions by murine monoclonal IgG3 cryoglobulins. Kidney Int 41:65–72PubMedGoogle Scholar
  35. 35.
    Lund J, Takahashi N, Pound JD, Goodall M, Jefferis R (1996) Multiple interactions of IgG with its core oligosaccharide can modulate recognition by complement and human Fcγ receptor I and influence the synthesis of its oligosaccharide chains. J Immunol 157:4963–4969PubMedGoogle Scholar
  36. 36.
    Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB (1995) Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nature Med 1:237–243PubMedCrossRefGoogle Scholar
  37. 37.
    Matsumoto K, Watanabe N, Akikusa B, Kurasawa K, Matsumura R, Saito Y, Iwamoto I, Saito T (2003) Fc receptor-independent development of autoimmune glomerulonephritis in lupus-prone MRL/lpr mice. Arthritis Rheum 48:486–494PubMedCrossRefGoogle Scholar
  38. 38.
    Matsuura E, Igarashi Y, Yasuda T, Triplett DA, Koike T (1994) Anticardiolipin antibodies recognize β2-glycoprotein I structure altered by interacting with an oxygen modified solid phase surface. J Exp Med 179:457–462PubMedCrossRefGoogle Scholar
  39. 39.
    Miwa T, Zhou L, Hilliard B, Molina H, Song WC (2002) Crry, but not CD59 and DAF, is indispensable for murine erythrocyte protection in vivo from spontaneous complement attack. Blood 99:3707–3716PubMedCrossRefGoogle Scholar
  40. 40.
    Mizuochi T, Hamako J, Nose M, Titani K (1990) Structural changes in the oligosaccharide chains of IgG in autoimmune MRL/Mp-lpr/lpr mice. J Immunol 145:1794–1798PubMedGoogle Scholar
  41. 41.
    Mohan C, Morel L, Yang P, Watanabe H, Croker B, Gilkeson G, Wakeland EK (1999) Genetic dissection of lupus pathogenesis: a recipe for nephrophilic autoantibodies. J Clin Invest 103:1685–1695PubMedGoogle Scholar
  42. 42.
    Molina H, Miwa T, Zhou L, Hilliard B, Mastellos D, Maldonado MA, Lambris JD, Song WC (2002) Complement-mediated clearance of erythrocytes: mechanism and delineation of the regulatory roles of Crry and DAF. Decay-accelerating factor. Blood 100:4544–4549PubMedCrossRefGoogle Scholar
  43. 43.
    Moll S, Menoud PA, Fulpius T, Pastore Y, Takahashi S, Fossati L, Vassalli JD, Sappino AP, Schifferli JA, Izui S (1995) Induction of plasminogen activator inhibitor type 1 in murine lupus-like glomerulonephritis. Kidney Int 48:1459–1468PubMedGoogle Scholar
  44. 44.
    Mostoslavsky G, Fischel R, Yachimovich N, Yarkoni Y, Rosenmann E, Monestier M, Baniyash M, Eilat D (2001) Lupus anti-DNA autoantibodies cross-react with a glomerular structural protein: a case for tissue injury by molecular mimicry. Eur J Immunol 31:1221–1227PubMedCrossRefGoogle Scholar
  45. 45.
    Nimmerjahn F, Ravetch JV (2005) Divergent immunoglobulin-G subclass activity through selective Fc receptor binding. Science 310:1510–1512PubMedCrossRefGoogle Scholar
  46. 46.
    Nimmerjahn F, Ravetch JV (2006) Fcγ receptors: old friends and new family members. Immunity 24:19–28PubMedCrossRefGoogle Scholar
  47. 47.
    Nimmerjahn F, Bruhns P, Horiuchi K, Ravetch JV (2005) FcγRIV: a novel FcR with distinct IgG subclass specificity. Immunity 23:41–51PubMedCrossRefGoogle Scholar
  48. 48.
    Nisitani S, Tsubata T, Murakami M, Honjo T (1995) Administration of interleukin-5 or -10 activates B-1 cells and induces autoimmune hemolytic anemia in anti-erythrocyte autoantibody-transgenic mice. Eur J Immunol 25:3047–3052PubMedGoogle Scholar
  49. 49.
    Panka DJ, Salant DJ, Jacobson BA, Minto AW, Marshak-Rothstein A (1995) The effect of VH residues 6 and 23 on IgG3 cryoprecipitation and glomerular deposition. Eur J Immunol 25:279–284PubMedGoogle Scholar
  50. 50.
    Parekh RB, Dwek RA, Sutton BJ, Fernandes DL, Leung A, Stanworth D, Rademacher TW, Mizuochi T, Taniguchi T, Matsuta K, Takeuchi F, Nagano Y, Miyamoto T, Kobata A (1985) Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316:452–457PubMedCrossRefGoogle Scholar
  51. 51.
    Peng SL, Szabo SJ, Glimcher LH (2002) T-bet regulates IgG class switching and pathogenic autoantibody production. Proc Natl Acad Sci USA 99:5545–5550PubMedCrossRefGoogle Scholar
  52. 52.
    Ravetch JV, Bolland S (2001) IgG Fc receptors. Annu Rev Immunol 19:275–290PubMedCrossRefGoogle Scholar
  53. 53.
    Reininger L, Berney T, Shibata T, Spertini F, Merino R, Izui S (1990) Cryoglobulinemia induced by a murine IgG3 rheumatoid factor: Skin vasculitis and glomerulonephritis arise from distinct pathogenic mechanisms. Proc Natl Acad Sci USA 87:10038–10042PubMedCrossRefGoogle Scholar
  54. 54.
    Samuelsson A, Towers TL, Ravetch JV (2001) Anti-inflammatory activity of IVIG mediated through the inhibitory receptor. Science 291:484–486PubMedCrossRefGoogle Scholar
  55. 55.
    Santiago ML, Fossati L, Jacquet C, Müller W, Izui S, Reininger L (1997) Interleukin-4 protects against a genetically linked lupus-like autoimmune syndrome. J Exp Med 185:65–70PubMedCrossRefGoogle Scholar
  56. 56.
    Schiller C, Janssen-Graalfs I, Baumann U, Schwerter-Strumpf K, Izui S, Takai T, Schmidt RE, Gessner JE (1999) Mouse FcγRII is a negative regulator of FcγRIII in IgG immune complex triggered inflammation but not in autoantibody induced hemolysis. Eur J Immunol 30:481–490CrossRefGoogle Scholar
  57. 57.
    Shibata T, Berney T, Reininger L, Chicheportiche Y, Ozaki S, Shirai T, Izui S (1990) Monoclonal anti-erythrocyte autoantibodies derived from NZB mice cause autoimmune hemolytic anemia by two distinct pathogenic mechanisms. Int Immunol 2:1133–1141PubMedGoogle Scholar
  58. 58.
    Sylvestre DL, Clynes R, Ma M, Warren H, Carroll MC, Ravetch JV (1996) Immunoglobulin G-mediated inflammatory responses develop normally in complement deficient mice. J Exp Med 184:2385–2392PubMedCrossRefGoogle Scholar
  59. 59.
    Takahashi S, Nose M, Sasaki J, Yamamoto T, Kyogoku M (1991) IgG3 production in MRL/lpr mice is responsible for development of lupus nephritis. J Immunol 147:515–519PubMedGoogle Scholar
  60. 60.
    Takahashi S, Itoh J, Nose M, Ono M, Yamamoto T, Kyogoku M (1993) Cloning and cDNA sequence analysis of nephritogenic monoclonal antibodies derived from an MRL/lpr lupus mouse. Mol Immunol 30:177–182PubMedCrossRefGoogle Scholar
  61. 61.
    Takahashi S, Fossati L, Iwamoto M, Merino R, Motta R, Kobayakawa T, Izui S (1996) Imbalance towards Th1 predominance is associated with acceleration of lupus-like autoimmune syndrome in MRL mice. J Clin Invest 97:1597–1604PubMedCrossRefGoogle Scholar
  62. 62.
    Takai T (2002) Roles of Fc receptors in autoimmunity. Nat Rev Immunol 2:580–592PubMedGoogle Scholar
  63. 63.
    Takai T, Ono M, Hikida M, Ohmori H, Ravetch JV (1996) Augmented humoral and anaphylactic responses in FcγRII-deficient mice. Nature 379:346–349PubMedCrossRefGoogle Scholar
  64. 64.
    Tang T, Rosenkranz A, Assmann KJM, Goodman MJ, Gutierrez-Ramos JC, Carroll MC, Cotran RS, Mayadas TN (1997) A role of Mac-1(CD11b/CD18) in immune complex-stimulated neutrophil function in vivo: Mac-1 deficiency abrogates sustained Fcγ receptor-dependent neutrophil adhesion and complement-dependent proteinuria in acute glomerulonephritis. J Exp Med 186:1853–1863PubMedCrossRefGoogle Scholar
  65. 65.
    Trcka J, Moroi Y, Clynes RA, Goldberg SM, Bergtold A, Perales MA, Ma M, Ferrone CR, Carroll MC, Ravetch JV, Houghton AN (2002) Redundant and alternative roles for activating Fc receptors and complement in an antibody-dependent model of autoimmune vitiligo. Immunity 16:861–868PubMedCrossRefGoogle Scholar
  66. 66.
    Ujike A, Ishikawa Y, Ono M, Yuasa T, Yoshino T, Fukumoto M, Ravetch JV, Takai T (1999) Modulation of IgE-mediated systemic anaphylaxis by low-affinity Fc receptors for IgG. J Exp Med 189:1573–1579PubMedCrossRefGoogle Scholar
  67. 67.
    Wang Y, Hu Q, Madri JA, Rollins SA, Chodera A, Matis LA (1996) Amelioration of lupus-like autoimmune disease in NZB/W F1 mice after treatment with a blocking monoclonal antibody specific for complement component C5. Proc Natl Acad Sci USA 93:8563–8568PubMedCrossRefGoogle Scholar
  68. 68.
    Watanabe N, Akikusa B, Park SY, Ohno H, Fossati L, Vecchietti G, Gessner JE, Schmidt RE, Verbeek JS, Ryffel B, Iwamoto I, Izui S, Saito T (1999) Mast cells induce autoantibody-mediated vasculitis syndrome through tumor necrosis factor production upon triggering Fcγ receptors. Blood 94:3855–3863PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Lucie Baudino
    • 1
  • Samareh Azeredo da Silveira
    • 1
  • Munehiro Nakata
    • 2
  • Shozo Izui
    • 1
    Email author
  1. 1.Department of Pathology and ImmunologyUniversity of GenevaGeneva 4Switzerland
  2. 2.Department of Applied BiochemistryTokai UniversityHiratsukaJapan

Personalised recommendations