Advertisement

Springer Seminars in Immunopathology

, Volume 28, Issue 2, pp 185–193 | Cite as

TCRζ mRNA splice variant forms observed in the peripheral blood T cells from systemic lupus erythematosus patients

  • Kensei Tsuzaka
  • Kyoko Nozaki
  • Chika Kumazawa
  • Kiyono Shiraishi
  • Yumiko Setoyama
  • Keiko Yoshimoto
  • Tohru Abe
  • Tsutomus Takeuchi
Review

Abstract

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease of unknown etiology. Tyrosine phosphorylation and protein expression of the T-cell receptor ζ chain (ζ) have been reported to be significantly decreased in SLE T cells. In addition, ζ mRNA with alternatively spliced 3′ untranslated region (ζmRNA/as-3′UTR) is detected predominantly in SLE T cells, and aberrant ζ mRNA accompanied by the mutations in the open reading frame including ζ mRNA lacking exon7 (ζmRNA/exon7-) is observed in SLE T cells. These ζ mRNA splice variant forms exhibit a reduction in the expression of TCR/CD3 complex and ζ protein on their cell surface due to the instability of ζ mRNA splice variant forms as well as the reduction in interleukin (IL)-2 production after stimulating with anti-CD3 antibody. Data from cDNA microarray showed that 36 genes encoding cytokines and chemokines, including IL-2, IL-15, IL-18, and TGF-β2, were down-regulated in the MA5.8 cells transfected with the ζ mRNA splice variant forms. Another 16 genes were up-regulated and included genes associated with membranous proteins and cell damage granules, including the genes encoding poliovirus-receptor-related 2, syndecan-1, and granzyme A.

Keywords

Systemic Lupus Erythematosus Systemic Lupus Erythematosus Patient Reverse Transcriptase Polymerase Chain Reaction Solute Carrier Family Guanine Nucleotide Binding Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Mills JA (1994) Systemic lupus erythematosus. N Engl J Med 30:1871CrossRefGoogle Scholar
  2. 2.
    Samelson LE, Davidson WF, Morse HC 3rd et al (1986) Abnormal tyrosine phosphorylation on T-cell receptor in lymphoproliferative disorders. Nature 324:674PubMedCrossRefGoogle Scholar
  3. 3.
    Tsao BP, Cantor RM, Kalunian KC et al (1997) Evidence for linkage of a candidate chromosome 1 region to human systemic lupus erythematosus. J Clin Invest 99:725PubMedGoogle Scholar
  4. 4.
    Davies EJ, Tikly M, Wordsworth BP et al (1998) Mannose-binding protein gene polymorphism in South African systemic lupus erythematosus. Br J Rheumatol 37:465PubMedCrossRefGoogle Scholar
  5. 5.
    Tsao BP, Cantor RM, Grossman JM et al (1999) PARP alleles within the linked chromosomal region are associated with systemic lupus erythematosus. J Clin Invest 103:1135PubMedGoogle Scholar
  6. 6.
    Moser KL, Neas BR, Salmon JE et al (1998) Genome scan of human systemic lupus erythematosus: evidence for linkage on chromosome 1q in African–American pedigrees. Proc Natl Acad Sci U S A 95:14869PubMedCrossRefGoogle Scholar
  7. 7.
    Gaffney PM, Kearns GM, Shark KB et al (1998) A genome-wide search for susceptibility genes in human systemic lupus erythematosus sib-pair families. Proc Natl Acad Sci U S A 95:14875PubMedCrossRefGoogle Scholar
  8. 8.
    Salmon JE, Millard S, Schachter LA et al (1996) Fc gamma RIIA alleles are heritable risk factors for lupus nephritis in African Americans. J Clin Invest 97:1348PubMedGoogle Scholar
  9. 9.
    Zipris D, Lazarus AH, Crow AR et al (1991) Defective thymic T cell activation by concanavalin A and anti-CD3 in autoimmune nonobese diabetic mice. Evidence for thymic T cell anergy that correlates with the onset of insulitis. J Immunol 146:3763PubMedGoogle Scholar
  10. 10.
    Berman MA, Sandborg CI, Wang Z et al (1996) Decreased IL-4 production in new onset type I insulin-dependent diabetes mellitus. J Immunol 157:4690PubMedGoogle Scholar
  11. 11.
    Wilson SB, Kent SC, Patton KT et al (1998) Extreme Th1 bias of invariant Valpha24JalphaQ T cells in type 1 diabetes. Nature 39:177Google Scholar
  12. 12.
    Gottlieb AB, Lahita RG, Chiorazzi N et al (1979) Immune function in systemic lupus erythematosus: impairment of in vitro T cell proliferation and in vivo antibody response to exogenous antigen. J Clin Invest 63:885PubMedGoogle Scholar
  13. 13.
    Fox DA, Millard JA, Treisman J et al (1991) Defective CD2 pathway T cell activation in systemic lupus erythematosus. Arthritis Rheum 34:561PubMedGoogle Scholar
  14. 14.
    Huang YP, Miescher PA, Zubler RH (1986) The interleukin 2 secretion defect in vitro in systemic lupus erythematosus is reversible in rested cultured T cells. J Immunol 137:3515PubMedGoogle Scholar
  15. 15.
    Linker-Israeli M (1992) Cytokine abnormalities in human lupus. Clin Immunol Immunopathol 63:10PubMedCrossRefGoogle Scholar
  16. 16.
    Horwitz DA, Gray JD, Behrendsen SC et al (1998) Decreased production of interleukin-12 and other Th1-type cytokines in patients with recent-onset systemic lupus erythematosus. Arthritis Rheum 41:838PubMedCrossRefGoogle Scholar
  17. 17.
    Stohl W, Elliot JE, Li L et al (1997) Impaired nonrestricted cytolytic activity in systemic lupus erythematosus. Arthritis Rheum 40:1130PubMedGoogle Scholar
  18. 18.
    Takeuchi T, Tanaka S, Steinberg AD et al (1988) Defective expression of the 2H4 molecule after autologous mixed lymphocyte activation in systemic lupus erythematosus patients. J Clin Invest 82:1288PubMedGoogle Scholar
  19. 19.
    Takeuchi T, Tsuzaka K, Pang M et al (1998) TCRζ chain lacking exon 7 in two patients with systemic lupus erythematosus. Int Immunol 10:911PubMedCrossRefGoogle Scholar
  20. 20.
    Liossis SN, Ding XZ, Dennis GJ et al (1998) Altered pattern of TCR/CD3-mediated protein-tyrosyl phosphorylation in T cells from patients with systemic lupus erythematosus. Deficient expression of the T cell receptor ζ chain. J Clin Invest 101:1448PubMedGoogle Scholar
  21. 21.
    Brundula V, Rivas LJ, Blasini AM et al (1999) Diminished levels of T cell receptor ζ chains in peripheral blood T lymphocytes from patients with systemic lupus erythematosus. Arthritis Rheum 42:1908PubMedCrossRefGoogle Scholar
  22. 22.
    Tsuzaka K, Takeuchi T, Onoda N et al (1998) Mutations in T cell receptor ζ chain mRNA of peripheral T cells from systemic lupus erythematosus. J Autoimmun 11:381PubMedCrossRefGoogle Scholar
  23. 23.
    Irving BA, Weiss A (1991) The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 64:891PubMedCrossRefGoogle Scholar
  24. 24.
    Irving BA, Chan AC, Weiss A (1993) Functional characterization of a signal transducing motif present in the T cell antigen receptor zeta chain. J Exp Med 177:1093PubMedCrossRefGoogle Scholar
  25. 25.
    Exley M, Varticovski L, Peter M et al (1994) Association of phosphatidylinositol 3-kinase with a specific sequence of the T cell receptor zeta chain dependent on T cell activation. J Biol Chem 269:15140PubMedGoogle Scholar
  26. 26.
    Ravichandran KS, Lorenz U, Shoelson SE et al (1995) Interaction of Shc with Grb2 regulates association of Grb2 with mSOS. Mol Cell Biol 15:593PubMedGoogle Scholar
  27. 27.
    Rozdzial MM, Malissen B, Finkel TH (1995) Tyrosine-phosphorylated T cell receptor zeta chain associates with the actin cytoskeleton upon activation of mature T lymphocytes. Immunity 3:623PubMedCrossRefGoogle Scholar
  28. 28.
    Romeo C, Amiot M, Seed B (1992) Sequence requirements for induction of cytolysis by the T cell antigen/Fc receptor zeta chain. Cell 68:889PubMedCrossRefGoogle Scholar
  29. 29.
    Qian D, Griswold-Prenner I, Rosner MR et al (1993) Multiple components of the T cell antigen receptor complex become tyrosine-phosphorylated upon activation. J Biol Chem 268:4488PubMedGoogle Scholar
  30. 30.
    Peter ME, Hall A, Ruhlman A et al (1992) The T-cell receptor zeta chain contains a GTP/GDP binding site. EMBO J 11:933PubMedGoogle Scholar
  31. 31.
    Tsuzaka K, Onoda N, Yoshimoto K et al (2002) T-cell receptor ζ mRNA with alternatively spliced 3′ untranslated region is generated predominantly in the peripheral blood T cells of systemic lupus erythematosus patients. Mod Rheumatol 12:167CrossRefGoogle Scholar
  32. 32.
    Nambiar MP, Enyedy EJ, Warke VG et al (2001) Polymorphisms/mutations of TCR ζ chain promoter and 3′ untranslated region and selective expression of TCR ζ chain with an alternatively spliced 3′ untranslated region in patients with systemic lupus erythematosus. J Autoimmun 16:133PubMedCrossRefGoogle Scholar
  33. 33.
    Tsuzaka K, Fukuhara I, Setoyama Y et al (2003) TCRζ mRNA with an alternatively spliced 3′ untranslated region detected in SLE patients leads to the downregulation of TCRζ and TCR/CD3 complex. J Immunol 171:2496PubMedGoogle Scholar
  34. 34.
    Tsuzaka K, Setoyama Y, Yoshimoto K et al (2005) A splice variant of the TCR ζ mRNA lacking exon 7 leads to the down-regulation of TCR ζ, the TCR/CD3 complex, and IL-2 production in SLE T cells. J Immunol 174:3518PubMedGoogle Scholar
  35. 35.
    Takeuchi T, Amano K, Sekine H et al (1993) Upregulated expression and function of integrin adhesive receptors in systemic lupus erythematosus patients with vasculitis. J Clin Invest 92:3008PubMedCrossRefGoogle Scholar
  36. 36.
    Richardson BC, Hooper F, Yung RL et al (1994) Lymphocyte function-associated antigen 1 overexpression and T cell autoreactivity. Arthritis Rheum 37:1363PubMedGoogle Scholar
  37. 37.
    Pang M, Abe T, Fujihara T et al (1998) αEβ7, a novel integrin adhesion molecule is upregulated on T cells from SLE patients with specific epithelial involvement. Arthritis Rheum 41:1456PubMedCrossRefGoogle Scholar
  38. 38.
    Tsuzaka K, Nozaki K, Kumazawa C et al (2006) DNA microarray gene expression profile of T cells with the splice variants of TCRζ mRNA observed in SLE. J Immunol 176:949PubMedGoogle Scholar
  39. 39.
    Bassell G, Singer RH (1997) mRNA and cytoskeletal filaments. Curr Opin Cell Biol 9:109PubMedCrossRefGoogle Scholar
  40. 40.
    Tsai KC, Cansino VV, Kohn DT et al (1997) Post-transcriptional regulation of the GAP-43 gene by specific sequences in the 3′ untranslated region of the mRNA. J Neurosci 17:1950PubMedGoogle Scholar
  41. 41.
    Veyrune JL, Hesketh J, Blanchard JM (1997) 3′ untranslated regions of c-myc and c-fos mRNAs: multifunctional elements regulating mRNA translation, degradation and subcellular localization. Prog Mol Subcell Biol 18:35PubMedGoogle Scholar
  42. 42.
    Leitner KL, Leimbacher MW, Peterbauer A et al (2003) Low tetrahydrobiopterin biosynthetic capacity of human monocytes is caused by exon skipping in 6-pyruvoyl tetrahydropterin synthase. Biochem J 373:681PubMedCrossRefGoogle Scholar
  43. 43.
    Krummheuer J, Lenz C, Kammler S et al (2001) Influence of the small leader exons 2 and 3 on human immunodeficiency virus type 1 gene expression. Virology 286:276PubMedCrossRefGoogle Scholar
  44. 44.
    Schwarze U, Schievink WI, Petty E et al (2001) Haploinsufficiency for one COL3A1 allele of type III procollagen results in a phenotype similar to the vascular form of Ehlers–Danlos syndrome, Ehlers–Danlos syndrome type IV. Am J Hum Genet 69:989PubMedCrossRefGoogle Scholar
  45. 45.
    Kawamoto S (1994) Evidence for an internal regulatory region in a human nonmuscle myosin heavy chain gene. J Biol Chem 269:15101PubMedGoogle Scholar
  46. 46.
    Heath JK, Southby J, Fukumoto S et al (1995) Epidermal growth factor-stimulated parathyroid hormone-related protein expression involves increased gene transcription and mRNA stability. Biochem J 307:159PubMedGoogle Scholar
  47. 47.
    Kokenyesi R, Bernfield M (1994) Core protein structure and sequence determine the site and presence of heparan sulfate and chondroitin sulfate on syndecan-1. J Biol Chem 269:12304PubMedGoogle Scholar
  48. 48.
    Gotte M (2003) Syndecans in inflammation. FASEB J 17:575PubMedCrossRefGoogle Scholar
  49. 49.
    Couchman JR (2003) Syndecans: proteoglycan regulators of cell-surface microdomains? Nat Rev Mol Cell Biol 4:926PubMedCrossRefGoogle Scholar
  50. 50.
    Kato M, Wang H, Bernfield M et al (1994) Cell surface syndecan-1 on distinct cell types differs in fine structure and ligand binding of its heparan sulfate chains. J Biol Chem 269:18881PubMedGoogle Scholar
  51. 51.
    Seagal J, Leider N, Wildbaum G et al (2003) Increased plasma cell frequency and accumulation of abnormall syndecan-1plus T-cells in Igμ-deficient/lpr mice. Int Immunology 15:1045CrossRefGoogle Scholar
  52. 52.
    Dhodapkar MV, Abe E, Theus A et al (1998) Syndecan-1 is a multifunctional regulator of myeloma pathobiology: control of tumor cell survival, growth, and bone cell differentiation. Blood 91:2679PubMedGoogle Scholar
  53. 53.
    Eberle F, Dubreuil P, Mattei MG et al (1995) The human PRR2 gene, related to the human poliovirus receptor gene (PVR), is the true homolog of the murine MPH gene. Gene 159:267PubMedCrossRefGoogle Scholar
  54. 54.
    Lopez M, Aoubala M, Jordier F et al (1998) The human poliovirus receptor related 2 protein is a new hematopoietic/endothelial homophilic adhesion molecule. Blood 92:4602PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Kensei Tsuzaka
    • 1
    • 2
  • Kyoko Nozaki
    • 2
  • Chika Kumazawa
    • 2
  • Kiyono Shiraishi
    • 2
  • Yumiko Setoyama
    • 1
  • Keiko Yoshimoto
    • 1
  • Tohru Abe
    • 1
  • Tsutomus Takeuchi
    • 1
  1. 1.Division of Rheumatology, Department of Internal Medicine, Saitama Medical CenterSaitama Medical UniversityKawagoeJapan
  2. 2.Project Research Division, Research Center for Genomic MedicineSaitama Medical UniversityHidakaJapan

Personalised recommendations