Small molecule inhibitor of TLR4 inhibits ovarian cancer cell proliferation: new insight into the anticancer effect of TAK-242 (Resatorvid)

  • Bahareh Kashani
  • Zahra Zandi
  • Davood Bashash
  • Azam Zaghal
  • Majid Momeny
  • Ensieh M. Poursani
  • Atieh Pourbagheri-Sigaroodi
  • Seyed A. Mousavi
  • Seyed H. GhaffariEmail author
Original Article



Despite all advances in the treatment of ovarian cancer (OC), it remains the most lethal gynecological malignancy worldwide. There are growing amounts of evidence indicating the role of inflammation in initiating chemoresistance. Therefore, Toll-like receptor 4 (TLR4), a mediator of inflammation in cancer cells, may be a proper anticancer target.


The effects of TLR4 activation by LPS was studied using MTT, colony formation, staining, scratch, and qRT-PCR assays as the first step. Then the same assays, in addition to anoikis resistance, cell cycle and annexin V/PI apoptosis tests, were used to investigate whether the inhibition of TLR4 using a small molecule inhibitor, TAK-242, could suppress the proliferation of various OC cell lines: A2780CP, 2008C13, SKOV3, and A2780S.


The activation of TLR4 using LPS showed enhanced proliferation and invasion in the TLR4-expressing cell line (SKOV3). Next, treatment with the inhibitor revealed that TAK-242 suppressed the inflammatory condition of ovarian cancer cells, as evident by the down-regulation of IL-6 gene expression. We also found that TAK-242 halted cancer cell proliferation by inducing cell cycle arrest and apoptosis through the modulation of genes involved in these processes. Given the fact that the overexpression of TLR4 contributes to drug resistance, it was tempting to investigate the effect of TAK-242 in a combined-modality strategy. Interestingly, we found enhanced cytotoxicity when TAK-242 was used in combination with doxorubicin.


TAK-242 serves as an appealing therapeutic strategy in the TLR4-expressing OC cells, either in the context of monotherapy or in combination with a chemotherapeutic drug.


Toll-like receptor 4 (TLR4) TAK-242 Resatorvid LPS Ovarian cancer Targeted therapy 



This work is supported by a grant from Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Pavlov MJ et al (2018) Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for the treatment of advanced epithelial and recurrent ovarian carcinoma: a single center experience. Int J Hyperth 34(5):564–569CrossRefGoogle Scholar
  2. 2.
    Ryerson AB et al (2007) Symptoms, diagnoses, and time to key diagnostic procedures among older US women with ovarian cancer. Obstet Gynecol 109(5):1053–1061PubMedCrossRefGoogle Scholar
  3. 3.
    Shah MM, Landen CN (2014) Ovarian cancer stem cells: are they real and why are they important? Gynecol Oncol 132(2):483–489PubMedCrossRefGoogle Scholar
  4. 4.
    Beaufort CM et al (2014) Ovarian cancer cell line panel (OCCP): clinical importance of in vitro morphological subtypes. PLoS One 9(9):e103988PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Korkmaz T, Seber S, Basaran G (2016) Review of the current role of targeted therapies as maintenance therapies in first and second line treatment of epithelial ovarian cancer; In the light of completed trials. Crit Rev Oncol Hematol 98:180–188PubMedCrossRefGoogle Scholar
  6. 6.
    Bagnato A, Rosano L (2012) Understanding and overcoming chemoresistance in ovarian cancer: emerging role of the endothelin axis. Curr Oncol 19(1):36–38PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Koti M et al (2015) A distinct pre-existing inflammatory tumour microenvironment is associated with chemotherapy resistance in high-grade serous epithelial ovarian cancer. Br J Cancer 113(12):1746PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Crusz SM, Balkwill FR (2015) Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol 12(10):584–596PubMedCrossRefGoogle Scholar
  9. 9.
    Vyas D, Laput G, Vyas AK (2014) Chemotherapy-enhanced inflammation may lead to the failure of therapy and metastasis. Onco Targets Ther 7:1015–1023PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Sato Y et al (2009) Cancer cells expressing toll-like receptors and the tumor microenvironment. Cancer Microenviron 2(1):205–214PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Mai CW, Kang YB, Pichika MR (2013) Should a Toll-like receptor 4 (TLR-4) agonist or antagonist be designed to treat cancer? TLR-4: its expression and effects in the ten most common cancers. OncoTargets Ther 6:1573Google Scholar
  12. 12.
    Szajnik M et al (2009) TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer. Oncogene 28(49):4353PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Yamada Y et al (2011) New insights into pattern recognition receptors and their ligands in gynecologic pathologies. Hum Immunol 72(3):213–218PubMedCrossRefGoogle Scholar
  14. 14.
    Coffelt SB, Scandurro AB (2008) Tumors sound the alarmin (s). Cancer Res 68(16):6482–6485PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Chan JK et al (2012) Alarmins: awaiting a clinical response. J Clin Investig 122(8):2711–2719PubMedCrossRefGoogle Scholar
  16. 16.
    Ran S (2015) The role of TLR4 in chemotherapy-driven metastasis. Cancer Res 75(12):2405–2410PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Doyle SE et al (2002) IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17(3):251–263PubMedCrossRefGoogle Scholar
  18. 18.
    Vaure C, Liu Y (2014) A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol 5:316PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Brown J et al (2011) TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. J Dent Res 90(4):417–427PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Rajput S, Volk-Draper LD, Ran S (2013) TLR4 is a novel determinant of the response to paclitaxel in breast cancer. Mol Cancer Ther 12(8):1676–1687PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kawamoto T et al (2008) TAK-242 selectively suppresses Toll-like receptor 4-signaling mediated by the intracellular domain. Eur J Pharmacol 584(1):40–48PubMedCrossRefGoogle Scholar
  22. 22.
    Ii M et al (2006) A novel cyclohexene derivative, ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl) sulfamoyl] cyclohex-1-ene-1-carboxylate (TAK-242), selectively inhibits toll-like receptor 4-mediated cytokine production through suppression of intracellular signaling. Mol Pharmacol 69(4):1288–1295PubMedCrossRefGoogle Scholar
  23. 23.
    Matsunaga N et al (2011) TAK-242 (resatorvid), a small-molecule inhibitor of Toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Mol Pharmacol 79(1):34–41PubMedCrossRefGoogle Scholar
  24. 24.
    Takashima K et al (2009) Analysis of binding site for the novel small-molecule TLR4 signal transduction inhibitor TAK-242 and its therapeutic effect on mouse sepsis model. Br J Pharmacol 157(7):1250–1262PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Seki H et al (2010) Effect of Toll-like receptor 4 inhibitor on LPS-induced lung injury. Inflamm Res 59(10):837–845PubMedCrossRefGoogle Scholar
  26. 26.
    Fenhammar J et al (2011) Toll-like receptor 4 inhibitor TAK-242 attenuates acute kidney injury in endotoxemic sheep. Anesthesiol J Am Soc Anesthesiol 114(5):1130–1137Google Scholar
  27. 27.
    Li M et al (2017) TLR4 antagonist suppresses airway remodeling in asthma by inhibiting the T-helper 2 response. Exp Ther Med 14(4):2911–2916PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Zhang Y et al (2015) TAK-242, a toll-like receptor 4 antagonist, protects against aldosterone-induced cardiac and renal injury. PLoS One 10(11):e0142456PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Blohm-Mangone K et al (2018) Pharmacological TLR4 antagonism using topical resatorvid blocks solar UV-induced skin tumorigenesis in SKH-1 mice. Cancer Prev Res (Phila) 11(5):265–278CrossRefGoogle Scholar
  30. 30.
    Abe T et al (1996) Inhibition of nucleolar function and morphological change by adriamycin associated with heat shock protein 70 accumulation. Jpn J Cancer Res 87(9):945–951PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Ohtsuboa T et al (2000) Enhancement of heat-induced heat shock protein (hsp) 72 accumulation by doxorubicin (Dox) in vitro. Cancer Lett 159(1):49–55PubMedCrossRefGoogle Scholar
  32. 32.
    Gabrielson K et al (2007) Heat shock protein 90 and ErbB2 in the cardiac response to doxorubicin injury. Cancer Res 67(4):1436–1441PubMedCrossRefGoogle Scholar
  33. 33.
    Nossov V et al (2008) The early detection of ovarian cancer: from traditional methods to proteomics. Can we really do better than serum CA-125? Am J Obstet Gynecol 199(3):215–223PubMedCrossRefGoogle Scholar
  34. 34.
    Harper EI, Sheedy EF, Stack MS (2018) With great age comes great metastatic ability: ovarian cancer and the appeal of the aging peritoneal. microenvironment. Cancers 10(7):230PubMedCentralCrossRefGoogle Scholar
  35. 35.
    Lu YC, Yeh WC, Ohashi PS (2008) LPS/TLR4 signal transduction pathway. Cytokine 42(2):145–151PubMedCrossRefGoogle Scholar
  36. 36.
    Awasthi S (2014) Toll-like receptor-4 modulation for cancer immunotherapy. Front Immunol 5:328PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Dey G et al (2017) Therapeutic implication of ‘Iturin A’ for targeting MD-2/TLR4 complex to overcome angiogenesis and invasion. Cell Signal 35:24–36PubMedCrossRefGoogle Scholar
  38. 38.
    Zandi Z et al (2019) TLR4 blockade using TAK-242 suppresses ovarian and breast cancer cells invasion through the inhibition of extracellular matrix degradation and epithelial-mesenchymal transition. Eur J Pharmacol 853:256–263PubMedCrossRefGoogle Scholar
  39. 39.
    Liu H et al (2016) Atractylenolide I modulates ovarian cancer cell-mediated immunosuppression by blocking MD-2/TLR4 complex-mediated MyD88/NF-κB signaling in vitro. J Trans Med 14(1):104CrossRefGoogle Scholar
  40. 40.
    Chuffa LGA et al (2015) Melatonin attenuates the TLR4-mediated inflammatory response through MyD88-and TRIF-dependent signaling pathways in an in vivo model of ovarian cancer. BMC Cancer 15(1):34PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Lee Y et al (2012) Interleukin-8 and its receptor CXCR41 in the tumour microenvironment promote colon cancer growth, progression and metastasis. Br J Cancer 106(11):1833PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ara T, DeClerck YA (2010) Interleukin-6 in bone metastasis and cancer progression. Eur J Cancer 46(7):1223–1231PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Arcangeletti MC et al (2013) Toll-like receptor 4 is involved in the cell cycle modulation and required for effective human cytomegalovirus infection in THP-1 macrophages. Virology 440(1):19–30PubMedCrossRefGoogle Scholar
  44. 44.
    Wang Y et al (2015) Downregulation of toll-like receptor 4 induces suppressive effects on hepatitis B virus-related hepatocellular carcinoma via ERK1/2 signaling. BMC Cancer 15:821PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Hasan UA, Trinchieri G, Vlach J (2005) Toll-like receptor signaling stimulates cell cycle entry and progression in fibroblasts. J Biol Chem 280(21):20620–20627PubMedCrossRefGoogle Scholar
  46. 46.
    Dattaroy D et al (2018) Sparstolonin B (SsnB) attenuates liver fibrosis via a parallel conjugate pathway involving P53-P21 axis, TGF-beta signaling and focal adhesion that is TLR4 dependent. Eur J Pharmacol 841:33–48PubMedCrossRefGoogle Scholar
  47. 47.
    Yang C-R et al (2000) Coordinate modulation of Sp1, NF-kappa B, and p53 in confluent human malignant melanoma cells after ionizing radiation. FASEB J 14(2):379–390PubMedCrossRefGoogle Scholar
  48. 48.
    Momeny M et al (2018) Blockade of nuclear factor-κB (NF-κB) pathway inhibits growth and induces apoptosis in chemoresistant ovarian carcinoma cells. Int J Biochem Cell Biol 99:1–9PubMedCrossRefGoogle Scholar
  49. 49.
    Wang Y et al (2012) Clusterin confers resistance to TNF-alpha-induced apoptosis in breast cancer cells through NF-kappaB activation and Bcl-2 overexpression. J Chemother 24(6):348–357PubMedCrossRefGoogle Scholar
  50. 50.
    Kim J et al (2010) TNF-α-induced ROS production triggering apoptosis is directly linked to Romo1 and Bcl-X L. Cell Death Differ 17(9):1420PubMedCrossRefGoogle Scholar
  51. 51.
    Jones VS et al (2016) Cytokines in cancer drug resistance: cues to new therapeutic strategies. Biochim Biophys Acta 1865(2):255–265PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bahareh Kashani
    • 1
    • 2
  • Zahra Zandi
    • 1
    • 2
  • Davood Bashash
    • 3
  • Azam Zaghal
    • 1
  • Majid Momeny
    • 4
  • Ensieh M. Poursani
    • 1
  • Atieh Pourbagheri-Sigaroodi
    • 1
  • Seyed A. Mousavi
    • 1
  • Seyed H. Ghaffari
    • 1
    Email author
  1. 1.Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of MedicineTehran University of Medical SciencesTehranIran
  2. 2.Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
  3. 3.Department of Hematology and Blood Banking, School of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
  4. 4.Turku Centre for BiotechnologyUniversity of Turku and Åbo Akademi UniversityTurkuFinland

Personalised recommendations