The pharmacokinetic interaction between irinotecan and sunitinib

  • Lili Jiang
  • Li Wang
  • Zhongmin Zhang
  • Zhen Wang
  • Xiaoyu Wang
  • Shujuan Wang
  • Xiaowei Luan
  • Yangliu Xia
  • Yong LiuEmail author
Original Article


The previous clinical trials found that the co-administration of irinotecan with sunitinib exhibited a synergistic antitumor effect. In the current study, we aimed to investigate whether the synergistic effect is related to a potential pharmacokinetic interaction between sunitinib and irinotecan. The inhibitory effects of sunitinib on SN-38 glucuronidation were determined by measuring the formation rates for SN38 glucuronide using recombinant human UGT isoforms and human liver microsomes (HLMs) in the absence or presence of sunitinib. Our data indicated that sunitinib exhibited competitive inhibition against SN-38 glucuronidation by UGT1A1, but inhibitory effects of sunitinib were weak in pooled human liver microsomes (HLMs) (Ki = 119.00 μM) and recombinant UGT1A1 (Ki = 42.71 μM). Our further prediction study partly explains the possible mechanism of synergistic antitumor activity of sunitinib and irinotecan in the combined treatment and provides a basis for design of clinical studies for the development and optimization of this combination.


Sunitinib Irinotecan SN-38 Pharmacokinetic interaction 



This study was financially supported by the National Key Research and Development Program of China (2017YFC1702006), the Dalian Science and Technology Innovation Foundation (2018J13SN114). All funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with ethical standards

Conflict of interest

All the authors declare that they have no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Senter PD, Beam KS, Mixan B, Wahl AF (2001) Identification and activities of human carboxylesterases for the activation of CPT-11, a clinically approved anticancer drug. Bioconjugate Chem 12(6):1074–1080CrossRefGoogle Scholar
  2. 2.
    Hanioka N, Ozawa S, Jinno H, Ando M, Saito Y, Sawada J (2001) Human liver UDP-glucuronosyltransferase isoforms involved in the glucuronidation of 7-ethyl-10-hydroxycamptothecin. Xenobiotica 31(10):687–699CrossRefGoogle Scholar
  3. 3.
    Iyer L, King CD, Whitington PF, Green MD, Roy SK, Tephly TR, Coffman BL, Ratain MJ (1998) Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest 101(4):847–854CrossRefGoogle Scholar
  4. 4.
    de Jong FA, de Jonge MJ, Verweij J, Mathijssen RH (2006) Role of pharmacogenetics in irinotecan therapy. Cancer Lett 234(1):90–106CrossRefGoogle Scholar
  5. 5.
    Mathijssen RH, van Alphen RJ, Verweij J, Loos WJ, Nooter K, Stoter G, Sparreboom A (2001) Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res 7(8):2182–2194PubMedGoogle Scholar
  6. 6.
    Faivre S, Delbaldo C, Vera K, Robert C, Lozahic S, Lassau N, Bello C, Deprimo S, Brega N, Massimini G, Armand JP, Scigalla P, Raymond E (2006) Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol 24(1):25–35CrossRefGoogle Scholar
  7. 7.
    Abrams TJ, Lee LB, Murray LJ, Pryer NK, Cherrington JM (2003) SU11248 inhibits KIT and platelet-derived growth factor receptor beta in preclinical models of human small cell lung cancer. Mol Cancer Ther 2(5):471–478CrossRefGoogle Scholar
  8. 8.
    Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG, Li G, Schreck RE, Abrams TJ, Ngai TJ, Lee LB, Murray LJ, Carver J, Chan E, Moss KG, Haznedar JO, Sukbuntherng J, Blake RA, Sun L, Tang C, Miller T, Shirazian S, McMahon G, Cherrington JM (2003) In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 9(1):327–337PubMedGoogle Scholar
  9. 9.
    van Erp NP, Gelderblom H, Guchelaar HJ (2009) Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev 35(8):692–706CrossRefGoogle Scholar
  10. 10.
    Motzer RJ, Escudier B, Gannon A, Figlin RA (2017) Sunitinib: ten years of successful clinical use and study in advanced renal cell carcinoma. Oncologist 22(1):41–52CrossRefGoogle Scholar
  11. 11.
    Gore ME, Szczylik C, Porta C, Bracarda S, Bjarnason GA, Oudard S, Lee SH, Haanen J, Castellano D, Vrdoljak E, Schoffski P, Mainwaring P, Hawkins RE, Crino L, Kim TM, Carteni G, Eberhardt WE, Zhang K, Fly K, Matczak E, Lechuga MJ, Hariharan S, Bukowski R (2015) Final results from the large sunitinib global expanded-access trial in metastatic renal cell carcinoma. Brit J Cancer 113(1):12–19CrossRefGoogle Scholar
  12. 12.
    Di Desidero T, Antonelli A, Orlandi P, Ferrari SM, Fioravanti A, Ali G, Fontanini G, Basolo F, Francia G, Bocci G (2017) Synergistic efficacy of irinotecan and sunitinib combination in preclinical models of anaplastic thyroid cancer. Cancer Lett 411:35–43CrossRefGoogle Scholar
  13. 13.
    Maitani Y, Saito H, Seishi Y, Iwase Y, Yamauchi T, Higashiyama K, Sugino T (2012) A combination of liposomal sunitinib plus liposomal irinotecan and liposome co-loaded with two drugs enhanced antitumor activity in PC12-bearing mouse. J Drug Target 20(10):873–882CrossRefGoogle Scholar
  14. 14.
    Liu Y, Ramirez J, House L, Ratain MJ (2010) The UGT1A1*28 polymorphism correlates with erlotinib’s effect on SN-38 glucuronidation. Eur J Cancer 46(11):2097–2103CrossRefGoogle Scholar
  15. 15.
    Yong WP, Ramirez J, Innocenti F, Ratain MJ (2005) Effects of ketoconazole on glucuronidation by UDP-glucuronosyltransferase enzymes. Clin Cancer Res 11(18):6699–6704CrossRefGoogle Scholar
  16. 16.
    Copeland RA (2000) Enzyme: A Practical Introduction to Structure, Mechanism, and Data Analysis. Sov Appl Mech 26(6):515–523Google Scholar
  17. 17.
    Liu Y, Ramirez J, House L, Ratain MJ (2010) Comparison of the drug-drug interactions potential of erlotinib and gefitinib via inhibition of UDP-glucuronosyltransferases. Drug Metab Dispos 38(1):32–39CrossRefGoogle Scholar
  18. 18.
    Brett EH, Carlo LB, Dongwoo K, Michael A (2009) A population pharmacokinetic meta-analysis of sunitinib malate (SU11248) and its primary metabolite (SU12662) in healthy volunteers and oncology patients. Clin Cancer Res 15(7):2497–2506CrossRefGoogle Scholar
  19. 19.
    Liew MH, Ng S, Chew CC, Koo TW, Chee YL, Chee ELC, Modamio P, Fernández C, Mariño EL, Segarra I (2017) Sunitinib-paracetamol sex-divergent pharmacokinetics and tissue distribution drug-drug interaction in mice. Invest New Drugs 35(2):145–157CrossRefGoogle Scholar
  20. 20.
    Ito K, Brown HS, Houston JB (2004) Database analyses for the prediction of in vivo drug-drug interactions from in vitro data. Br J Clin Pharmacol 57:473–486CrossRefGoogle Scholar
  21. 21.
    Jayanthan A, Bernoux D, Bose P, Riabowol K, Narendran A (2011) Multi-tyrosine kinase inhibitors in preclinical studies for pediatric CNS AT/RT: evidence for synergy with Topoisomerase-I inhibition. Cancer Cell Int 11(1):44CrossRefGoogle Scholar
  22. 22.
    Ramchandani RP, Wang Y, Booth BP, Ibrahim A, Johnson JR, Rahman A, Mehta M, Innocenti F, Ratain MJ, Gobburu JV (2007) The role of SN-38 exposure, UGT1A1*28 polymorphism, and baseline bilirubin level in predicting severe irinotecan toxicity. J Clin Pharmacol 47(1):78–86CrossRefGoogle Scholar
  23. 23.
    Chen S, Yueh MF, Bigo C, Barbier O, Wang K, Karin M, Nguyen N, Tukey RH (2013) Intestinal glucuronidation protects against chemotherapy-induced toxicity by irinotecan (CPT-11). Proc Natl Acad Sci USA 110(47):19143–19148CrossRefGoogle Scholar
  24. 24.
    Marsh S, Hoskins JM (2010) Irinotecan pharmacogenomics. Pharmacogenomics 11(7):1003–1010CrossRefGoogle Scholar
  25. 25.
    Boven E, Massard C, Armand JP, Tillier C, Hartog V, Brega NM, Countouriotis AM, Ruiz-Garcia A, Soria JC (2010) A phase I, dose-finding study of sunitinib in combination with irinotecan in patients with advanced solid tumours. Brit J Cancer 103(7):993–1000CrossRefGoogle Scholar
  26. 26.
    Carrato A, Swieboda-Sadlej A, Staszewska-Skurczynska M, Lim R, Roman L, Shparyk Y, Bondarenko I, Jonker DJ, Sun Y, De la Cruz JA, Williams JA, Korytowsky B, Christensen JG, Lin X, Tursi JM, Lechuga MJ, Van Cutsem E (2013) Fluorouracil, leucovorin, and irinotecan plus either sunitinib or placebo in metastatic colorectal cancer: a randomized, phase III trial. J Clin Oncol 31(10):1341–1347CrossRefGoogle Scholar
  27. 27.
    Spigel DR, Greco FA, Rubin MS, Shipley D, Thompson DS, Lubiner ET, Eakle JF, Quinn R, Burris HA, Hainsworth JD (2012) Phase II study of maintenance sunitinib following irinotecan and carboplatin as first-line treatment for patients with extensive-stage small-cell lung cancer. Lung Cancer 77(2):359–364CrossRefGoogle Scholar
  28. 28.
    Qvortrup C, Jensen BV, Jorgensen TL, Nielsen D, Bjerregaard JK, Pfeiffer P (2010) Addition of sunitinib to cetuximab and irinotecan in patients with heavily pre-treated advanced colorectal cancer. Acta Oncol 49(6):833–836CrossRefGoogle Scholar
  29. 29.
    de Jong FA, de Jonge MJ, Verweij J, Mathijssen RH (2006) Role of pharmacogenetics in irinotecan therapy. Cancer Lett 234(1):90–106CrossRefGoogle Scholar
  30. 30.
    Iyer L, Das S, Janisch L, Wen M, Ramírez J, Karrison T, Fleming GF, Vokes EE, Schilsky RL, Ratain MJ (2002) UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J 2(1):43–47CrossRefGoogle Scholar
  31. 31.
    Hoskins JM, Goldberg RM, Qu P, Ibrahim JG, McLeod HL (2007) UGT1A1* 28 genotype and irinotecan-induced neutropenia: dose matters. J Natl Cancer Inst 99(17):1290–1295CrossRefGoogle Scholar
  32. 32.
    Ando Y, Saka H, Ando M, Sawa T, Muro K, Ueoka H, Yokoyama A, Saitoh S, Shimokata K, Hasegawa Y (2000) Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Can Res 60(24):6921–6926Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lili Jiang
    • 1
  • Li Wang
    • 1
  • Zhongmin Zhang
    • 1
  • Zhen Wang
    • 1
  • Xiaoyu Wang
    • 1
  • Shujuan Wang
    • 1
  • Xiaowei Luan
    • 1
  • Yangliu Xia
    • 1
  • Yong Liu
    • 1
    Email author
  1. 1.School of Life and Pharmaceutical SciencesDalian University of TechnologyPanjinChina

Personalised recommendations