Cancer Chemotherapy and Pharmacology

, Volume 84, Issue 6, pp 1339–1348 | Cite as

Population pharmacokinetic analysis of high-dose methotrexate in pediatric and adult oncology patients

  • Sonoko Kawakatsu
  • Mina Nikanjam
  • Mark Lin
  • Sonny Le
  • Ila Saunders
  • Dennis John Kuo
  • Edmund V. CapparelliEmail author
Original Article



High-dose methotrexate (HD-MTX) is widely used in pediatric and adult oncology treatment regimens. This study aimed to develop a population pharmacokinetic model to characterize pediatric and adult MTX exposure across various disease types and dosing regimens, and to evaluate exposure–toxicity relationships.


MTX pharmacokinetic data from pediatric and adult patients were collected. A population pharmacokinetic model was developed to determine the effects of age, liver function, renal function, and demographics on MTX disposition. The final model was used in Monte Carlo simulations to generate expected exposures for different dosing regimens. The association of toxicity, determined through chart review, and MTX area under the curve (AUC) was modeled using logistic regression.


The analysis included 5116 MTX concentrations from 320 patients (135 adult, age 19–79 years; 185 pediatric, age 0.6–19 years). Estimated glomerular filtration rate (eGFR) and treatment cycle number were independent predictors of clearance (CL). CL varied 2.1-fold over the range of study eGFR values and increased 14% for treatment cycle numbers greater than 7. Higher MTX AUC was associated with higher risk of nephrotoxicity in adults, and neurotoxicity and hepatotoxicity in pediatrics.


This study represents one of the most comprehensive evaluations of HD-MTX PK across a wide range of ages and disease types. After accounting for differences in renal function, age did not impact CL, although toxicity patterns differed by age. The model allows for early identification of patients with slowed MTX clearance and at higher risk of toxicity.


Methotrexate Pediatric Population pharmacokinetic modeling Oncology 



The authors would like to thank Dr. Sam Martinez, Dr. Jeremiah Momper, Dr. Lawrence Alejandro, and Dr. Don Barkauskas for help with the project. Funding support was provided by a Research in Pediatric and Developmental Pharmacology NIH grant (1U54HD090259-01, Dr. Capparelli).

Compliance with ethical standards

Conflict of interest

Dr. Capparelli serves on the data safety and monitoring board for Melinta Pharmaceuticals, Cempra Pharmaceuticals and The Medicines Company.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Supplementary material

280_2019_3966_MOESM1_ESM.pdf (1.2 mb)
Supplementary material 1 (PDF 1229 kb)


  1. 1.
    Goldman ID, Matherly LH (1985) The cellular pharmacology of methotrexate. Pharmacol Ther 28(1):77–102CrossRefGoogle Scholar
  2. 2.
    Ackland SP, Schilsky RL (1987) High-dose methotrexate: a critical reappraisal. J Clin Oncol 5(12):2017–2031. CrossRefPubMedGoogle Scholar
  3. 3.
    Howard SC, McCormick J, Pui CH, Buddington RK, Harvey RD (2016) Preventing and managing toxicities of high-dose methotrexate. Oncologist 21(12):1471–1482. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Widemann BC, Adamson PC (2006) Understanding and managing methotrexate nephrotoxicity. Oncologist 11(6):694–703. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Widemann BC, Balis FM, Kim A, Boron M, Jayaprakash N, Shalabi A, O’Brien M, Eby M, Cole DE, Murphy RF, Fox E, Ivy P, Adamson PC (2010) Glucarpidase, leucovorin, and thymidine for high-dose methotrexate-induced renal dysfunction: clinical and pharmacologic factors affecting outcome. J Clin Oncol 28(25):3979–3986. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Monjanel S, Rigault JP, Cano JP, Carcassonne Y, Favre R (1979) High-dose methotrexate: preliminary evaluation of a pharmacokinetic approach. Cancer Chemother Pharmacol 3(3):189–196CrossRefGoogle Scholar
  7. 7.
    Abelson HT, Fosburg MT, Beardsley GP, Goorin AM, Gorka C, Link M, Link D (1983) Methotrexate-induced renal impairment: clinical studies and rescue from systemic toxicity with high-dose leucovorin and thymidine. J Clin Oncol 1(3):208–216. CrossRefPubMedGoogle Scholar
  8. 8.
    Widemann BC, Balis FM, Kempf-Bielack B, Bielack S, Pratt CB, Ferrari S, Bacci G, Craft AW, Adamson PC (2004) High-dose methotrexate-induced nephrotoxicity in patients with osteosarcoma. Cancer 100(10):2222–2232. CrossRefPubMedGoogle Scholar
  9. 9.
    Green JM (2012) Glucarpidase to combat toxic levels of methotrexate in patients. Ther Clin Risk Manag 8:403–413. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ramsey LB, Balis FM, O’Brien MM, Schmiegelow K, Pauley JL, Bleyer A, Widemann BC, Askenazi D, Bergeron S, Shirali A, Schwartz S, Vinks AA, Heldrup J (2018) Consensus guideline for use of glucarpidase in patients with high-dose methotrexate induced acute kidney injury and delayed methotrexate clearance. Oncologist 23(1):52–61. CrossRefPubMedGoogle Scholar
  11. 11.
    Glucarpidase Package Insert (2019) Accessed May 7 2019
  12. 12.
    Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16(1):31–41. CrossRefPubMedGoogle Scholar
  13. 13.
    Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20(3):629–637. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zhang W, Zhang Q, Tian X, Zhao H, Lu W, Zhen J, Niu X (2015) Population pharmacokinetics of high-dose methotrexate after intravenous administration in Chinese osteosarcoma patients from a single institution. Chin Med J (Engl) 128(1):111–118. CrossRefGoogle Scholar
  15. 15.
    Min Y, Qiang F, Peng L, Zhu Z (2009) High dose methotrexate population pharmacokinetics and Bayesian estimation in patients with lymphoid malignancy. Biopharm Drug Dispos 30(8):437–447. CrossRefPubMedGoogle Scholar
  16. 16.
    Johansson AM, Hill N, Perisoglou M, Whelan J, Karlsson MO, Standing JF (2011) A population pharmacokinetic/pharmacodynamic model of methotrexate and mucositis scores in osteosarcoma. Ther Drug Monit 33(6):711–718. CrossRefPubMedGoogle Scholar
  17. 17.
    Comandone A, Passera R, Boglione A, Tagini V, Ferrari S, Cattel L (2005) High dose methotrexate in adult patients with osteosarcoma: clinical and pharmacokinetic results. Acta Oncol 44(4):406–411. CrossRefPubMedGoogle Scholar
  18. 18.
    Mei S, Li X, Jiang X, Yu K, Lin S, Zhao Z (2018) Population pharmacokinetics of high-dose methotrexate in patients with primary central nervous system lymphoma. J Pharm Sci 107(5):1454–1460. CrossRefPubMedGoogle Scholar
  19. 19.
    Fukuhara K, Ikawa K, Morikawa N, Kumagai K (2008) Population pharmacokinetics of high-dose methotrexate in Japanese adult patients with malignancies: a concurrent analysis of the serum and urine concentration data. J Clin Pharm Ther 33(6):677–684. CrossRefPubMedGoogle Scholar
  20. 20.
    Dupuis C, Mercier C, Yang C, Monjanel-Mouterde S, Ciccolini J, Fanciullino R, Pourroy B, Deville JL, Duffaud F, Bagarry-Liegey D, Durand A, Iliadis A, Favre R (2008) High-dose methotrexate in adults with osteosarcoma: a population pharmacokinetics study and validation of a new limited sampling strategy. Anticancer Drugs 19(3):267–273CrossRefGoogle Scholar
  21. 21.
    Hui KH, Chu HM, Fong PS, Cheng WTF, Lam TN (2019) Population pharmacokinetic study and individual dose adjustments of high-dose methotrexate in Chinese pediatric patients with acute lymphoblastic leukemia or osteosarcoma. J Clin Pharmacol 59(4):566–577. CrossRefPubMedGoogle Scholar
  22. 22.
    Nader A, Zahran N, Alshammaa A, Altaweel H, Kassem N, Wilby KJ (2017) Population pharmacokinetics of intravenous methotrexate in patients with hematological malignancies: utilization of routine clinical monitoring parameters. Eur J Drug Metab Pharmacokinet 42(2):221–228. CrossRefPubMedGoogle Scholar
  23. 23.
    Relling MV, Fairclough D, Ayers D, Crom WR, Rodman JH, Pui CH, Evans WE (1994) Patient characteristics associated with high-risk methotrexate concentrations and toxicity. J Clin Oncol 12(8):1667–1672. CrossRefPubMedGoogle Scholar
  24. 24.
    Widemann BC, Balis FM, Murphy RF, Sorensen JM, Montello MJ, O’Brien M, Adamson PC (1997) Carboxypeptidase-G2, thymidine, and leucovorin rescue in cancer patients with methotrexate-induced renal dysfunction. J Clin Oncol 15(5):2125–2134. CrossRefPubMedGoogle Scholar
  25. 25.
    Tsurusawa M, Gosho M, Mori T, Mitsui T, Sunami S, Kobayashi R, Fukano R, Tanaka F, Fujita N, Inada H, Koh K, Takimoto T, Saito A, Fujimoto J, Nakazawa A, Horibe K, Lymphoma committee of the Japanese Pediatric Leukemia/lymphoma Study G (2015) Statistical analysis of relation between plasma methotrexate concentration and toxicity in high-dose methotrexate therapy of childhood nonHodgkin lymphoma. Pediatr Blood Cancer 62(2):279–284. CrossRefPubMedGoogle Scholar
  26. 26.
    Rask C, Albertioni F, Bentzen SM, Schroeder H, Peterson C (1998) Clinical and pharmacokinetic risk factors for high-dose methotrexate-induced toxicity in children with acute lymphoblastic leukemia–a logistic regression analysis. Acta Oncol 37(3):277–284CrossRefGoogle Scholar
  27. 27.
    Buchen S, Ngampolo D, Melton RG, Hasan C, Zoubek A, Henze G, Bode U, Fleischhack G (2005) Carboxypeptidase G2 rescue in patients with methotrexate intoxication and renal failure. Br J Cancer 92(3):480–487. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bhojwani D, Sabin ND, Pei D, Yang JJ, Khan RB, Panetta JC, Krull KR, Inaba H, Rubnitz JE, Metzger ML, Howard SC, Ribeiro RC, Cheng C, Reddick WE, Jeha S, Sandlund JT, Evans WE, Pui CH, Relling MV (2014) Methotrexate-induced neurotoxicity and leukoencephalopathy in childhood acute lymphoblastic leukemia. J Clin Oncol 32(9):949–959. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hegyi M, Gulacsi A, Csagoly E, Csordas K, Eipel OT, Erdelyi DJ, Muller J, Nemes K, Lautner-Csorba O, Kovacs GT (2012) Clinical relations of methotrexate pharmacokinetics in the treatment for pediatric osteosarcoma. J Cancer Res Clin Oncol 138(10):1697–1702. CrossRefPubMedGoogle Scholar
  30. 30.
    Joerger M, Huitema AD, Krahenbuhl S, Schellens JH, Cerny T, Reni M, Zucca E, Cavalli F, Ferreri AJ (2010) Methotrexate area under the curve is an important outcome predictor in patients with primary CNS lymphoma: a pharmacokinetic-pharmacodynamic analysis from the IELSG no. 20 trial. Br J Cancer 102(4):673–677. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sonoko Kawakatsu
    • 1
  • Mina Nikanjam
    • 2
  • Mark Lin
    • 3
  • Sonny Le
    • 4
  • Ila Saunders
    • 1
  • Dennis John Kuo
    • 5
    • 6
  • Edmund V. Capparelli
    • 7
    Email author
  1. 1.UC San Diego Skaggs School of Pharmacy and Pharmaceutical SciencesLa JollaUSA
  2. 2.Division of Hematology-OncologyUniversity of California San DiegoLa JollaUSA
  3. 3.UCSF Benioff Children’s Hospital OaklandOaklandUSA
  4. 4.Department of PharmacyUCSD HealthLa JollaUSA
  5. 5.Division of Pediatric Hematology-OncologyUniversity of California San DiegoLa JollaUSA
  6. 6.Rady Children’s Hospital San DiegoSan DiegoUSA
  7. 7.Division of Host-Microbe Systems and TherapeuticsUniversity of California San DiegoLa JollaUSA

Personalised recommendations