Cancer Chemotherapy and Pharmacology

, Volume 83, Issue 5, pp 975–991 | Cite as

TGFβ receptor inhibitor galunisertib is linked to inflammation- and remodeling-related proteins in patients with pancreatic cancer

  • Davide MelisiEmail author
  • Rocio Garcia-Carbonero
  • Teresa Macarulla
  • Denis Pezet
  • Gael Deplanque
  • Martin Fuchs
  • Jorg Trojan
  • Mark Kozloff
  • Francesca Simionato
  • Ann Cleverly
  • Claire Smith
  • Shuaicheng Wang
  • Michael Man
  • Kyla E. Driscoll
  • Shawn T. Estrem
  • Michael M. F. Lahn
  • Karim A. Benhadji
  • Josep Tabernero
Original Article



Galunisertib, the first small molecule transforming growth factor beta (TGFβ) receptor inhibitor, plus gemcitabine resulted in the improvement of survival in patients with unresectable pancreatic cancer, but markers to identify patients likely to respond are lacking.


In the Phase 1b/2 JBAJ study, 156 patients were randomized 2:1 to galunisertib + gemcitabine (N = 104) or placebo + gemcitabine (N = 52). Clinical outcome data were integrated with baseline markers and pharmacodynamic markers while patients were on treatment, including circulating proteins using a multi-analyte panel, T cell subset evaluation, and miRNA profiling.


Baseline biomarkers associated with overall prognosis regardless of treatment included CA19-9 and TGF-β1. In addition, IP-10, FSH, MIP-1α, and PAI-1 were potential predictive proteins. Baseline proteins that were changed during treatment included amphiregulin, CA15-3, cathepsin D, P-selectin, RAGE, sortilin, COMP, eotaxin-2, N-BNP, osteopontin, and thrombospondin-4. Plasma miRNA with potential prognostic value included miR-21-5p, miR-301a-3p, miR-210-3p, and miR-141-3p, while those with potential predictive value included miR-424-5p, miR-483-3p, and miR-10b-5p.


Galunisertib + gemcitabine resulted in improvement of overall survival, and 4 proteins (IP-10, FSH, MIP-1α, PAI-1) were potentially predictive for this combination treatment. Future studies should also include baseline evaluation of miR-424-5p, miR-483-3p, and miR-10b-5p.

Trial registration NCT01373164.


Galunisertib TGF-β1 CA19-9 Pancreatic cancer 



The study team thanks patients and families for their willingness to participate in this study. We also thank all site staff and investigators at the institutions, and the trial personnel at Eli Lilly and Company and Covance. Work in the unit of the corresponding author was supported by the Investigator Grant no. 19111 through the Associazione Italiana per la Ricerca sul Cancro, Italy. Writing assistance was provided by Ananya Biswas (Eli Lilly Services India Pvt. Ltd., India).


This study was funded by Eli Lilly and Company, Indianapolis, Indiana, USA (Grant Number 230-0061-07472).

Compliance with ethical standards

Conflict of interest

Ann Cleverly, Ivelina Gueorguieva, Karim A. Benhadji, Shawn T. Estrem, Kyla Driscoll, and Michael Man are employees of Eli Lilly and Company, Indianapolis, Indiana, USA, and may hold company stock. Michael M. F. Lahn and Claire Smith are former employees of Eli Lilly and Company and hold company stock. Josep Tabernero has had an advisory role for Bayer, Boehringer Ingelheim, Genentech/Roche, Lilly, MSD, Merck Serono, Merrimack, Novartis, Peptomyc, Roche, Sanofi, Symphogen, and Taiho. Denis Pezet has had an advisory role for Sanofi, Novartis, and Roche.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

280_2019_3807_MOESM1_ESM.docx (21 mb)
Supplementary material 1 (DOCX 21524 KB)


  1. 1.
    Seufferlein T, Bachet JB, Van Custem E, Rougier P, ESMO Guidelines Working Group (2012) Pancreatic adenocarcinoma: ESMO-ESDO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 23(suppl 7):vii33–vii40CrossRefGoogle Scholar
  2. 2.
    Von Hoff DD, Ervin T, Arena FP et al (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369(18):1691–1703CrossRefGoogle Scholar
  3. 3.
    National Comprehensive Cancer Network (NCCN) (2016) NCCN clinical practice guidelines in oncology: Pancreatic adenocarcinoma v.1.2014. Accessed Oct 2018
  4. 4.
    Long J, Zhang Y, Yu X et al (2011) Overcoming drug resistance in pancreatic cancer. Expert Opin Ther Targets 15(7):817–828CrossRefGoogle Scholar
  5. 5.
    Villanueva A, García C, Paules AB et al (1998) Disruption of the antiproliferative TGF-beta signaling pathways in human pancreatic cancer cells. Oncogene 17(15):1969–1978CrossRefGoogle Scholar
  6. 6.
    Craven KE, Gore J, Wilson JL, Korc M (2016) Angiogenic gene signature in human pancreatic cancer correlates with TGF-beta and inflammatory transcriptomes. Oncotarget 7(1):323–341CrossRefGoogle Scholar
  7. 7.
    Bailey P, Chang DK, Nones K et al (2016) Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531(7592):47–52CrossRefGoogle Scholar
  8. 8.
    Javle M, Li Y, Tan D, Dong X et al (2014) Biomarkers of TGF-beta signaling pathway and prognosis of pancreatic cancer. PLoS One 9(1):e85942CrossRefGoogle Scholar
  9. 9.
    Melisi D, Garcia-Carbonero R, Macarulla T et al (2018) Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer. Br J Cancer 119(10):1208–1214CrossRefGoogle Scholar
  10. 10.
    Kozloff M, Garcia-Carbonero R, Nadal T et al (2013) Phase Ib study evaluating safety and pharmacokinetics (PK) of the oral transforming growth factor-beta (TGF-β) receptor I kinase inhibitor LY2157299 monohydrate (LY) when combined with gemcitabine in patients with advanced cancer. In: 2013 ASCO annual meeting, Chicago (J Clin Oncol 31(suppl; abstr 2563)) Google Scholar
  11. 11.
    Han B, Enas NH, McEntegart D (2009) Randomization by minimization for unbalanced treatment allocation. Stat Med 28(27):3329–3346CrossRefGoogle Scholar
  12. 12.
    Kovacs RJ, Maldonado G, Azaro A et al (2015) Cardiac safety of TGF-beta receptor I kinase inhibitor LY2157299 monohydrate in cancer patients in a first-in-human dose study. Cardiovasc Toxicol 15(4):309–323CrossRefGoogle Scholar
  13. 13.
    Rodon J, Carducci MA, Sepulveda-Sánchez JM et al (2015) First-in-human dose study of the novel transforming growth factor-beta receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma. Clin Cancer Res 21(3):553–560CrossRefGoogle Scholar
  14. 14.
    Gueorguieva I, Cleverly AL, Stauber A et al (2014) Defining a therapeutic window for the novel TGF-beta inhibitor LY2157299 monohydrate based on a pharmacokinetic/pharmacodynamic model. Br J Clin Pharmacol 77(5):796–807CrossRefGoogle Scholar
  15. 15.
    Baron U, Floess S, Wieczorek G et al (2007) DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3(+) conventional T cells. Eur J Immunol 37(9):2378–2389CrossRefGoogle Scholar
  16. 16.
    Loh WY, He X, Man M (2015) A regression tree approach to identifying subgroups with differential treatment effects. Stat Med 34(11):1818–1833CrossRefGoogle Scholar
  17. 17.
    Chiorean EG, Von Hoff DD, Reni M et al (2016) CA19-9 decrease at 8 weeks as a predictor of overall survival in a randomized phase III trial (MPACT) of weekly nab-paclitaxel plus gemcitabine versus gemcitabine alone in patients with metastatic pancreatic cancer. Ann Oncol 27(4):654–660CrossRefGoogle Scholar
  18. 18.
    Shevde LA, Samant RS (2014) Role of osteopontin in the pathophysiology of cancer. Matrix Biol 37:131–141CrossRefGoogle Scholar
  19. 19.
    Chen J, Chen LJ, Xia YL et al (2013) Identification and verification of transthyretin as a potential biomarker for pancreatic ductal adenocarcinoma. J Cancer Res Clin Oncol 139(7):1117–1127CrossRefGoogle Scholar
  20. 20.
    Haglund C (1986) Tumour marker antigen CA125 in pancreatic cancer: a comparison with CA19-9 and CEA. Br J Cancer 54(6):897–901CrossRefGoogle Scholar
  21. 21.
    Damaskos C, Garmpis N, Maratzas T et al (2014) Nuclear receptors in pancreatic tumor cells. Anticancer Res 34(12):6897–6911Google Scholar
  22. 22.
    Lunardi S, Jamieson NB, Lim SY et al (2014) IP-10/CXCL10 induction in human pancreatic cancer stroma influences lymphocytes recruitment and correlates with poor survival. Oncotarget 5(22):11064–11080CrossRefGoogle Scholar
  23. 23.
    Liu J, Luo X, Xu Y et al (2016) Single-stranded DNA binding protein Ssbp3 induces differentiation of mouse embryonic stem cells into trophoblast-like cells. Stem Cell Res Ther 7(1):79CrossRefGoogle Scholar
  24. 24.
    Inngjerdingen M, Damaj B, Maghazachi AA (2001) Expression and regulation of chemokine receptors in human natural killer cells. Blood 97(2):367–375CrossRefGoogle Scholar
  25. 25.
    Patterson SJ, Pesenacker AM, Wang AY et al (2016) T regulatory cell chemokine production mediates pathogenic T cell attraction and suppression. J Clin Invest 126(3):1039–1051CrossRefGoogle Scholar
  26. 26.
    Rosengren S, Corr M, Boyle DL (2010) Platelet-derived growth factor and transforming growth factor beta synergistically potentiate inflammatory mediator synthesis by fibroblast-like synoviocytes. Arthritis Res Ther 12(2):R65CrossRefGoogle Scholar
  27. 27.
    Moon MY, Kim HJ, Kim JG et al (2013) Small GTPase Rap1 regulates cell migration through regulation of small GTPase RhoA activity in response to transforming growth factor-β1. J Cell Physiol 228(11):2119–2126CrossRefGoogle Scholar
  28. 28.
    Lupu-Meiri M, Geras-Raaka E, Lupu R et al (2012) Knock-down of plasminogen-activator inhibitor-1 enhances expression of E-cadherin and promotes epithelial differentiation of human pancreatic adenocarcinoma cells. J Cell Physiol 227(11):3621–3628CrossRefGoogle Scholar
  29. 29.
    Wu K, Hu G, He X et al (2013) MicroRNA-424-5p suppresses the expression of SOCS6 in pancreatic cancer. Pathol Oncol Res 19(4):739–748CrossRefGoogle Scholar
  30. 30.
    Preis M, Gardner TB, Gordon SR et al (2011) MicroRNA-10b expression correlates with response to neoadjuvant therapy and survival in pancreatic ductal adenocarcinoma. Clin Cancer Res 17(17):5812–5821CrossRefGoogle Scholar
  31. 31.
    Llobet-Navas D, Rodriguez-Barrueco R, de la Iglesia-Vicente J et al (2014) The microRNA 424/503 cluster reduces CDC25A expression during cell cycle arrest imposed by transforming growth factor β in mammary epithelial cells. Mol Cell Biol 34(23):4216–4231CrossRefGoogle Scholar
  32. 32.
    Xiao X, Huang C, Zhao C et al (2015) Regulation of myofibroblast differentiation by miR-424 during epithelial-to-mesenchymal transition. Arch Biochem Biophys 566:49–57CrossRefGoogle Scholar
  33. 33.
    Wei S, Li Q, Li Z, Wang L, Zhang L, Xu Z (2016) miR-424-5p promotes proliferation of gastric cancer by targeting Smad3 through TGF-β signaling pathway. Oncotarget 7(46):75185–75196Google Scholar
  34. 34.
    Ouyang H, Gore J, Deitz S, Korc M (2014) microRNA-10b enhances pancreatic cancer cell invasion by suppressing TIP30 expression and promoting EGF and TGF-β actions. Oncogene 33(38):4664–4674CrossRefGoogle Scholar
  35. 35.
    Ma C, Wei F, Xia H et al (2017) MicroRNA-10b mediates TGF-β1-regulated glioblastoma proliferation, migration and epithelial-mesenchymal transition. Int J Oncol 50(5):1739–1748CrossRefGoogle Scholar
  36. 36.
    Yu Q, Xu C, Yuan W et al (2017) Evaluation of plasma micrornas as diagnostic and prognostic biomarkers in pancreatic adenocarcinoma: mir-196a and mir-210 could be negative and positive prognostic markers, respectively. Biomed Res Int 2017:6495867Google Scholar
  37. 37.
    Abue M, Yokoyama M, Shibuya R et al (2015) Circulating miR-483-3p and miR-21 is highly expressed in plasma of pancreatic cancer. Int J Oncol 46(2):539–547CrossRefGoogle Scholar
  38. 38.
    Wang P, Zhuang L, Zhang J et al (2013) The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL. Mol Oncol 7(3):334–345CrossRefGoogle Scholar
  39. 39.
    Zhao G, Zhang JG, Liu Y et al (2013) miR-148b functions as a tumor suppressor in pancreatic cancer by targeting AMPKα1. Mol Cancer Ther 12(1):83–93CrossRefGoogle Scholar
  40. 40.
    Greither T, Grochola LF, Udelnow A et al (2010) Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival. Int J Cancer 126(1):73–80CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Davide Melisi
    • 1
    Email author
  • Rocio Garcia-Carbonero
    • 2
  • Teresa Macarulla
    • 3
  • Denis Pezet
    • 4
  • Gael Deplanque
    • 5
  • Martin Fuchs
    • 6
  • Jorg Trojan
    • 7
  • Mark Kozloff
    • 8
  • Francesca Simionato
    • 1
  • Ann Cleverly
    • 9
  • Claire Smith
    • 9
  • Shuaicheng Wang
    • 10
  • Michael Man
    • 11
  • Kyla E. Driscoll
    • 11
  • Shawn T. Estrem
    • 11
  • Michael M. F. Lahn
    • 11
  • Karim A. Benhadji
    • 11
  • Josep Tabernero
    • 3
  1. 1.Digestive Molecular Clinical Oncology Research Unit, Section of Medical Oncology, Department of MedicineUniversità degli studi di VeronaVeronaItaly
  2. 2.University Hospital Doce de Octubre, Institute of Health Research Hospital 12 de Octubre (imas12), UCM, CNIO, CIBERONCMadridSpain
  3. 3.Vall d’Hebron University Hospital, Vall d’Hebron Institute of OncologyAutonomous University of Barcelona, CIBERONCBarcelonaSpain
  4. 4.Digestive Surgery Service, CHU Clermont-FerrandUniversity Clermont AuvergneClermont-FerrandFrance
  5. 5.Medical OncologySaint Joseph HospitalParisFrance
  6. 6.Hospital Bogenhausen, Municipal Hospital Munich GmbHMunichGermany
  7. 7.Goethe University Medical CenterFrankfurtGermany
  8. 8.Ingalls Memorial HospitalHarveyUSA
  9. 9.Eli Lilly and CompanyErl WoodUK
  10. 10.BioStat Solutions, IncFrederickUSA
  11. 11.Eli Lilly and CompanyIndianapolisUSA

Personalised recommendations