Advertisement

FOXC2 promotes epithelial–mesenchymal transition and cisplatin resistance of non-small cell lung cancer cells

  • Yuwen He
  • Hui Xie
  • Pengjiu Yu
  • Shunjun Jiang
  • Li Wei
Original Article

Abstract

Purpose

Platinum-based drugs, particularly cisplatin (DDP), are used in the treatment of non-small cell lung cancer (NSCLC). However, development of drug resistance remains the major therapeutic barrier in NSCLC.

Methods

The potential cisplatin resistance-related genes were identified from the global transcriptomes of cisplatin-resistant A549/DDP cells using microarray analysis. Gain- and loss-of-function assays were performed to analyze the effects of Forkhead Box Protein C2 (FOXC2) on the in vitro and in vivo sensitivity of NSCLC cells to cisplatin and its possible molecular mechanisms.

Results

Using global transcriptome analysis, we found that FOXC2 was one of the most upregulated molecules in A549/DDP cells compared with A549 cells. We further confirmed that the expression of FOXC2 was significantly increased in cisplatin-resistant NSCLC tissues. FOXC2 knockdown significantly increased the in vitro and in vivo sensitivity of A549/DDP cells to cisplatin, whereas overexpression of FOXC2 increased cisplatin resistance in cisplatin-sensitive NSCLC cells. Moreover, we found that FOXC2 promoted cisplatin resistance by induction of epithelial–mesenchymal transition (EMT) in NSCLC cells. Furthermore, FOXC2 activated the AKT/GSK3β signaling pathway, and then increased the protein expression of EMT-related transcription factor Snail. Inhibition of AKT or knockdown of Snail reversed FOXC2-induced EMT and cisplatin resistance of NSCLC cells.

Conclusion

FOXC2 enhanced cisplatin resistance of NSCLC cells through activating AKT/GSK3β/Snail/EMT signaling pathway, which may be a potential novel therapeutic target for overcoming drug resistance in human NSCLCs.

Keywords

FOXC2 Non-small cell lung cancer Epithelial–mesenchymal transition Cisplatin resistance Snail 

Notes

Funding

This study was supported by grants from the National Natural Science Foundation of China (Grant no. 81503103).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The study was approved by the Institutional Animal Care and Use Committee of Guangzhou medical University.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30.  https://doi.org/10.3322/caac.21332 CrossRefGoogle Scholar
  2. 2.
    Kim ES (2016) Chemotherapy resistance in lung cancer. Adv Exp Med Biol 893:189–209.  https://doi.org/10.1007/978-3-319-24223-1_10 CrossRefPubMedGoogle Scholar
  3. 3.
    Mittal V (2018) Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol 13:395–412.  https://doi.org/10.1146/annurev-pathol-020117-043854 CrossRefPubMedGoogle Scholar
  4. 4.
    Nurwidya F, Takahashi F, Murakami A, Takahashi K (2012) Epithelial mesenchymal transition in drug resistance and metastasis of lung cancer. Cancer Res Treat 44(3):151–156.  https://doi.org/10.4143/crt.2012.44.3.151 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, Choi H, El Rayes T, Ryu S, Troeger J, Schwabe RF, Vahdat LT, Altorki NK, Mittal V, Gao D (2015) Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527(7579):472–476.  https://doi.org/10.1038/nature15748 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29(34):4741–4751.  https://doi.org/10.1038/onc.2010.215 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lazarova D, Bordonaro M (2017) ZEB1 mediates drug resistance and EMT in p300-deficient CRC. J Cancer 8(8):1453–1459.  https://doi.org/10.7150/jca.18762 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wang X, Ling MT, Guan XY, Tsao SW, Cheung HW, Lee DT, Wong YC (2004) Identification of a novel function of TWIST, a bHLH protein, in the development of acquired taxol resistance in human cancer cells. Oncogene 23(2):474–482.  https://doi.org/10.1038/sj.onc.1207128 CrossRefPubMedGoogle Scholar
  9. 9.
    Sui H, Zhu L, Deng W, Li Q (2014) Epithelial–mesenchymal transition and drug resistance: role, molecular mechanisms, and therapeutic strategies. Oncol Res Treat 37(10):584–589.  https://doi.org/10.1159/000367802 CrossRefPubMedGoogle Scholar
  10. 10.
    Wang T, Zheng L, Wang Q, Hu YW (2018) Emerging roles and mechanisms of FOXC2 in cancer. Clin Chim Acta 479:84–93.  https://doi.org/10.1016/j.cca.2018.01.019 CrossRefPubMedGoogle Scholar
  11. 11.
    Hollier BG, Tinnirello AA, Werden SJ, Evans KW, Taube JH, Sarkar TR, Sphyris N, Shariati M, Kumar SV, Battula VL, Herschkowitz JI, Guerra R, Chang JT, Miura N, Rosen JM, Mani SA (2013) FOXC2 expression links epithelial–mesenchymal transition and stem cell properties in breast cancer. Cancer Res 73(6):1981–1992.  https://doi.org/10.1158/0008-5472.CAN-12-2962 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mani SA, Yang J, Brooks M, Schwaninger G, Zhou A, Miura N, Kutok JL, Hartwell K, Richardson AL, Weinberg RA (2007) Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc Natl Acad Sci USA 104(24):10069–10074.  https://doi.org/10.1073/pnas.0703900104 CrossRefPubMedGoogle Scholar
  13. 13.
    Paranjape AN, Soundararajan R, Werden SJ, Joseph R, Taube JH, Liu H, Rodriguez-Canales J, Sphyris N, Wistuba I, Miura N, Dhillon J, Mahajan N, Mahajan K, Chang JT, Ittmann M, Maity SN, Logothetis C, Tang DG, Mani SA (2016) Inhibition of FOXC2 restores epithelial phenotype and drug sensitivity in prostate cancer cells with stem-cell properties. Oncogene 35(46):5963–5976.  https://doi.org/10.1038/onc.2015.498 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cui YM, Jiao HL, Ye YP, Chen CM, Wang JX, Tang N, Li TT, Lin J, Qi L, Wu P, Wang SY, He MR, Liang L, Bian XW, Liao WT, Ding YQ (2015) FOXC2 promotes colorectal cancer metastasis by directly targeting MET. Oncogene 34(33):4379–4390.  https://doi.org/10.1038/onc.2014.368 CrossRefPubMedGoogle Scholar
  15. 15.
    Lim JC, Koh VC, Tan JS, Tan WJ, Thike AA, Tan PH (2015) Prognostic significance of epithelial–mesenchymal transition proteins Twist and Foxc2 in phyllodes tumours of the breast. Breast Cancer Res Treat 150(1):19–29.  https://doi.org/10.1007/s10549-015-3296-4 CrossRefPubMedGoogle Scholar
  16. 16.
    Watanabe T, Kobunai T, Yamamoto Y, Matsuda K, Ishihara S, Nozawa K, Iinuma H, Kanazawa T, Tanaka T, Konishi T (2011) Gene expression of mesenchyme forkhead 1 (FOXC2) significantly correlates with the degree of lymph node metastasis in colorectal cancer. Int Surg 96(3):207–216CrossRefGoogle Scholar
  17. 17.
    Jiang W, Pang X-G, Wang Q, Shen Y-X, Chen X-K, Xi J-J (2012) Prognostic role of twist, slug, and Foxc2 expression in stage I non-small-cell lung cancer after curative resection. Clinical lung cancer 13(4):280–287CrossRefGoogle Scholar
  18. 18.
    Jiang W, Fan H, Qian C, Ding J, Wang Q, Pang X (2016) Prognostic value of high FoxC2 expression in resectable non-small cell lung cancer, alone or in combination with E-cadherin expression. BMC Cancer 16:16.  https://doi.org/10.1186/s12885-016-2056-0 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhou Z, Zhang L, Xie B, Wang X, Yang X, Ding N, Zhang J, Liu Q, Tan G, Feng D, Sun LQ (2015) FOXC2 promotes chemoresistance in nasopharyngeal carcinomas via induction of epithelial mesenchymal transition. Cancer Lett 363(2):137–145.  https://doi.org/10.1016/j.canlet.2015.04.008 CrossRefPubMedGoogle Scholar
  20. 20.
    Li C, Ding H, Tian J, Wu L, Wang Y, Xing Y, Chen M (2016) Forkhead Box Protein C2 (FOXC2) promotes the resistance of human ovarian cancer cells to cisplatin in vitro and in vivo. Cell Physiol Biochem 39(1):242–252.  https://doi.org/10.1159/000445620 CrossRefPubMedGoogle Scholar
  21. 21.
    Cai J, Tian AX, Wang QS, Kong PZ, Du X, Li XQ, Feng YM (2015) FOXF2 suppresses the FOXC2-mediated epithelial–mesenchymal transition and multidrug resistance of basal-like breast cancer. Cancer Lett 367(2):129–137.  https://doi.org/10.1016/j.canlet.2015.07.001 CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang CL, Zhu KP, Ma XL (2017) Antisense lncRNA FOXC2-AS1 promotes doxorubicin resistance in osteosarcoma by increasing the expression of FOXC2. Cancer Lett 396:66–75.  https://doi.org/10.1016/j.canlet.2017.03.018 CrossRefPubMedGoogle Scholar
  23. 23.
    Liu H, Gu Y, Yin J, Zheng G, Wang C, Zhang Z, Deng M, Liu J, Jia X, He Z (2014) SET-mediated NDRG1 inhibition is involved in acquisition of epithelial-to-mesenchymal transition phenotype and cisplatin resistance in human lung cancer cell. Cell Signal 26(12):2710–2720.  https://doi.org/10.1016/j.cellsig.2014.08.010 CrossRefPubMedGoogle Scholar
  24. 24.
    Fennell D, Summers Y, Cadranel J, Benepal T, Christoph D, Lal R, Das M, Maxwell F, Visseren-Grul C, Ferry D (2016) Cisplatin in the modern era: the backbone of first-line chemotherapy for non-small cell lung cancer. Cancer Treatment Rev 44:42–50CrossRefGoogle Scholar
  25. 25.
    Yu YH, Chen HA, Chen PS, Cheng YJ, Hsu WH, Chang YW, Chen YH, Jan Y, Hsiao M, Chang TY, Liu YH, Jeng YM, Wu CH, Huang MT, Su YH, Hung MC, Chien MH, Chen CY, Kuo ML, Su JL (2013) MiR-520 h-mediated FOXC2 regulation is critical for inhibition of lung cancer progression by resveratrol. Oncogene 32(4):431–443.  https://doi.org/10.1038/onc.2012.74 CrossRefPubMedGoogle Scholar
  26. 26.
    Cui YM, Jiang D, Zhang SH, Wu P, Ye YP, Chen CM, Tang N, Liang L, Li TT, Qi L, Wang SY, Jiao HL, Lin J, Ding YQ, Liao WT (2014) FOXC2 promotes colorectal cancer proliferation through inhibition of FOXO3a and activation of MAPK and AKT signaling pathways. Cancer Lett 353(1):87–94.  https://doi.org/10.1016/j.canlet.2014.07.008 CrossRefPubMedGoogle Scholar
  27. 27.
    Hall MD, Okabe M, Shen DW, Liang XJ, Gottesman MM (2008) The role of cellular accumulation in determining sensitivity to platinum-based chemotherapy. Annu Rev Pharmacol Toxicol 48:495–535.  https://doi.org/10.1146/annurev.pharmtox.48.080907.180426 CrossRefPubMedGoogle Scholar
  28. 28.
    Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13(10):714–726.  https://doi.org/10.1038/nrc3599 CrossRefPubMedGoogle Scholar
  29. 29.
    Wang J, Wei Q, Wang X, Tang S, Liu H, Zhang F, Mohammed MK, Huang J, Guo D, Lu M, Liu F, Liu J, Ma C, Hu X, Haydon RC, He TC, Luu HH (2016) Transition to resistance: an unexpected role of the EMT in cancer chemoresistance. Genes Dis 3(1):3–6.  https://doi.org/10.1016/j.gendis.2016.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Rosano L, Cianfrocca R, Spinella F, Di Castro V, Nicotra MR, Lucidi A, Ferrandina G, Natali PG, Bagnato A (2011) Acquisition of chemoresistance and EMT phenotype is linked with activation of the endothelin A receptor pathway in ovarian carcinoma cells. Clin Cancer Res 17(8):2350–2360.  https://doi.org/10.1158/1078-0432.CCR-10-2325 CrossRefPubMedGoogle Scholar
  31. 31.
    Ren J, Chen Y, Song H, Chen L, Wang R (2013) Inhibition of ZEB1 reverses EMT and chemoresistance in docetaxel-resistant human lung adenocarcinoma cell line. J Cell Biochem 114(6):1395–1403.  https://doi.org/10.1002/jcb.24481 CrossRefGoogle Scholar
  32. 32.
    Haslehurst AM, Koti M, Dharsee M, Nuin P, Evans K, Geraci J, Childs T, Chen J, Li J, Weberpals J, Davey S, Squire J, Park PC, Feilotter H (2012) EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer 12:91.  https://doi.org/10.1186/1471-2407-12-91 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ansieau S (2013) EMT in breast cancer stem cell generation. Cancer Lett 338(1):63–68.  https://doi.org/10.1016/j.canlet.2012.05.014 CrossRefPubMedGoogle Scholar
  34. 34.
    Wang H, Zhang G, Zhang H, Zhang F, Zhou B, Ning F, Wang HS, Cai SH, Du J (2014) Acquisition of epithelial–mesenchymal transition phenotype and cancer stem cell-like properties in cisplatin-resistant lung cancer cells through AKT/beta-catenin/Snail signaling pathway. Eur J Pharmacol 723:156–166.  https://doi.org/10.1016/j.ejphar.2013.12.004 CrossRefPubMedGoogle Scholar
  35. 35.
    Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296(5573):1655–1657.  https://doi.org/10.1126/science.296.5573.1655 CrossRefGoogle Scholar
  36. 36.
    Liu ZC, Chen XH, Song HX, Wang HS, Zhang G, Wang H, Chen DY, Fang R, Liu H, Cai SH, Du J (2014) Snail regulated by PKC/GSK-3beta pathway is crucial for EGF-induced epithelial–mesenchymal transition (EMT) of cancer cells. Cell Tissue Res 358(2):491–502.  https://doi.org/10.1007/s00441-014-1953-2 CrossRefPubMedGoogle Scholar
  37. 37.
    Wang H, Wang HS, Zhou BH, Li CL, Zhang F, Wang XF, Zhang G, Bu XZ, Cai SH, Du J (2013) Epithelial–mesenchymal transition (EMT) induced by TNF-alpha requires AKT/GSK-3beta-mediated stabilization of snail in colorectal cancer. PLoS One 8(2):e56664.  https://doi.org/10.1371/journal.pone.0056664 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yuwen He
    • 1
  • Hui Xie
    • 1
  • Pengjiu Yu
    • 1
  • Shunjun Jiang
    • 1
  • Li Wei
    • 1
  1. 1.Department of PharmacyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina

Personalised recommendations