Cancer Chemotherapy and Pharmacology

, Volume 82, Issue 1, pp 159–164 | Cite as

Bioequivalence study of single-dose lenalidomide capsule vs. Revlimid® capsule in healthy Chinese males

  • Jin Wang
  • Lu Qi
  • Zejuan Wang
  • Gang Chen
  • Chen Liu
  • Ying Liu
  • Xiaona Liu
  • Yu Wang
  • Chunpu Lei
  • Xinghe WangEmail author
Clinical Trial Report



Lenalidomide is a 4-amino-glutaryl derivative of thalidomide and belongs to a new generation of immunomodulatory agents for the treatment of patients with myelodysplastic syndrome and multiple myeloma. The aim of this study is to evaluate the bioequivalence and safety of a capsule containing 25 mg of a test formulation of lenalidomide and a 25 mg Revlimid® capsule in healthy, Chinese adult males for good quality anti-cancer medicine with lower costs.


This was a single-center, randomized, open-label, single-dose, two-period, crossover pharmacokinetic study. Forty-eight healthy, adult Chinese males were administered a test lenalidomide or Revlimid® capsule, 24 in a fasted and 24 in a fed state, followed by crossover to the other capsule.


Twenty-four subjects in the fasting group and 23 in the postprandial group completed the clinical trial. Subjects administered test lenalidomide and Revlimid® capsules in the fasting state had a Cmax of 564 ± 153 and 609 ± 121 ng/mL, respectively; an AUC0−t of 1660 ± 211 and 1660 ± 235 h ng/mL, respectively; and an AUC0−∞ of 1670 ± 210 and 1670 ± 237 h ng/mL, respectively. In the fed state, the subjects had a Cmax of 389 ± 105 and 383 ± 101 ng/mL, respectively; an AUC0−t of 1770 ± 314 and 1740 ± 360 h ng/mL, respectively; and an AUC0−∞ of 1800 ± 316 and 1760 ± 362 h ng/mL, respectively. Both capsules were well tolerated, with no serious adverse events observed.


According to the criteria for bioequivalence, the test formulation of lenalidomide and Revlimid® was determined to be bioequivalent.


Lenalidomide Revlimid® Pharmacokinetics Bioequivalence LS-MS/MS 


Author contributions

JW and XHW made substantial contributions to the conception and design of this study, to the acquisition of data, and to the analysis and interpretation of the data. LQ, ZJW, GC, CL, XNL, YW, YL, and CPL made substantial contributions to the implementation of the study. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors indicate that they have no conflicts of interest regarding the content of this article.


  1. 1.
    Gupta D, Treon SP, Shima Y et al (2001) Adherence of multiple myeloma cells to bone marrow stromal cells up regulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 15:1950–1961CrossRefPubMedGoogle Scholar
  2. 2.
    Lentzsch S, LeBlanc R, Podar K et al (2003) Immunomodulatory analogs of thalidomide inhibit growth of Hs Sultan cells and angiogenesis in vivo. Leukemia 17:41–44CrossRefPubMedGoogle Scholar
  3. 3.
    Mitsiades N, Mitsiades CS, Poulaki V et al (2002) Apoptosis signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 99:4525–4530CrossRefPubMedGoogle Scholar
  4. 4.
    Ghosh N, Grunwald MR, Fasan O, Bhutani M (2015) Expanding role of lenalidomide in hematologic malignancies. Cancer Manag Res 7:105–119CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    List A, Kurtin S, Roe DJ et al (2005) Efficacy of lenalidomide in myelodysplastic syndromes. N Engl J Med 352(6):549–557CrossRefPubMedGoogle Scholar
  6. 6.
    Melchert M, Kale V, List A (2007) The role of lenalidomide in the treatment of patients with chromosome 5q deletion and other myelodysplastic syndromes. Curr Opin Hematol 14(2):123–129CrossRefPubMedGoogle Scholar
  7. 7.
    Richardson PG, Blood E, Mitsiades CS et al (2006) A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma. Blood 108(10):3458–3464CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chen N, Lau H, Choudhury S et al (2010) Distribution of lenalidomide into semen of healthy men after multiple oral doses. J Clin Pharmacol 50(7):767–774CrossRefPubMedGoogle Scholar
  9. 9.
    Kelly RJ, Smith TJ (2014) Delivering maximum clinical benefit at an affordable price: engaging stakeholders in cancer care. Lancet Oncol 15:e112–e118CrossRefPubMedGoogle Scholar
  10. 10.
    Howard DH, Bach PB, Berndt ER et al (2015) Pricing in the market for anticancer drugs. J Econ Perspect 29:139–162CrossRefPubMedGoogle Scholar
  11. 11.
    Tefferi A, Kantarjian H, Rajkumar SV et al (2015) In support of a patient-driven initiative and petition to lower the high price of cancer drugs. Mayo Clin Proc 90:996–1000CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kantarjian HM, Fojo T, Mathisen M et al (2013) Cancer drugs in the United States: Justum Pretium—the just price. J Clin Oncol 31:3600–3604CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Godman B, Wild C, Haycox A (2017) Patent expiry and costs for anti-cancer medicines for clinical use. Gener Biosimilars Initiat J 6(3):105–106CrossRefGoogle Scholar
  14. 14.
    Godman B, Wettermark B, van Woerkom M et al. (2014) Multiple policies to enhance prescribing efficiency for established medicines in Europe with a particular focus on demand-side measures: findings and future implications. Front Pharmacol 5:106PubMedPubMedCentralGoogle Scholar
  15. 15.
    Godman B, Bishop I, Finlayson AE et al (2013) Reforms and initiatives in Scotland in recent years to encourage the prescribing of generic drugs, their influence and implications for other countries. Expert Rev Pharmacoecon Outcomes Res 13:469–482CrossRefPubMedGoogle Scholar
  16. 16.
    Woerkom M, Piepenbrink H, Godman B et al (2012) Ongoing measures to enhance the efficiency of prescribing of proton pump inhibitors and statins in The Netherlands: influence and future implications. J Comp Effect Res 1:527–538CrossRefGoogle Scholar
  17. 17.
    Chen N, Kasserra C, Reyes J et al (2012) Single-dose pharmacokinetics of lenalidomide in healthy volunteers: dose proportionality, food effect, and racial sensitivity. Cancer Chemother Pharmacol 70(5):717–725CrossRefPubMedGoogle Scholar
  18. 18.
    Chen N, Zhou S, Palmisano M (2017) Clinical pharmacokinetics and pharmacodynamics of lenalidomide. Clin Pharmacokinet 56(2):139–152CrossRefPubMedGoogle Scholar
  19. 19.
    Chen N, Wen L, Lau H et al (2012) Pharmacokinetics, metabolism and excretion of [14-C]-lenalidomide following oral administration in healthy male subjects. Cancer Chemother Pharmacol 69:789–797CrossRefPubMedGoogle Scholar
  20. 20.
    Chen N, Ye Y, Liu L et al (2013) Lenalidomide at therapeutic and supratherapeutic doses does not prolong QTc intervals in the thorough QTc study conducted in healthy men. Basic Clin Pharmacol Toxicol 113(3):179–186CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    FDA Contains Nonbinding Recommendations, Draft Guidance on Lenalidomide (2013)

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jin Wang
    • 1
  • Lu Qi
    • 1
  • Zejuan Wang
    • 1
  • Gang Chen
    • 1
  • Chen Liu
    • 1
  • Ying Liu
    • 1
  • Xiaona Liu
    • 1
  • Yu Wang
    • 1
  • Chunpu Lei
    • 1
  • Xinghe Wang
    • 1
    Email author
  1. 1.Phase I Clinical Centre, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina

Personalised recommendations