Cancer Chemotherapy and Pharmacology

, Volume 81, Issue 6, pp 1083–1093 | Cite as

A first-in-class inhibitor, MLN4924 (pevonedistat), induces cell-cycle arrest, senescence, and apoptosis in human renal cell carcinoma by suppressing UBE2M-dependent neddylation modification

  • Bo Xu
  • Yuyou Deng
  • Ran Bi
  • Haoran Guo
  • Chang Shu
  • Neelam Kumari Shah
  • Junliang Chang
  • Guanchen Liu
  • Yujun Du
  • Wei Wei
  • Chunxi Wang
Original Article



MLN4924 is a second-generation inhibitor that targets ubiquitin–proteasome system by inhibiting neddylation activation enzyme (NAE), and subsequently blocking the neddylation-dependent activation of Cullin-RING E3 ligases (CRLs), which leads to the accumulation of CRLs substrates and hence, suppressing diverse tumor development. In this study, we investigated the potential application of this first-in-class inhibitor MLN4924 in the treatment of human renal cell carcinoma both in vitro and in vivo.


The impact of MLN4924 on renal cancer cells was determined by measuring viability (MTS), proliferation cell count test and clonogenic assays, cell cycle progression (flow cytometry with propidium iodide staining), apoptosis (flow cytometry with annexin V-FITC labeling) and DNA damage (immunofluorescent staining). The cell cycle regulatory molecules, apoptosis-related molecules, and cell stress-related proteins were examined by Western blotting. The influence of tumor cell migration was analyzed by wound healing assays. A well-established SCID xenograft mouse model was used to evaluate the effects of MLN4924 on tumor growth in vivo.


The data showed that MLN4924 induced a dose-dependent cytotoxicity, anti-proliferation, anti-migration, and apoptosis in human renal cancer cells; and caused cell cycle arrested at the G2 phase. In addition, the E2 conjugating enzymes of Neddylation UBE2M played a major role in the proliferation control of renal cancer cells. Finally, we confirmed MLN4924 inhibited tumor growth in a RCC xenograft mouse model with minimal general toxicity.


We concluded that MLN4924 induces apoptosis and cell cycle arrest. These findings implied that MLN4924 provides a novel strategy for the treatment of RCC.


MLN4924 (pevonedistat) Renal cell carcinoma Neddylation Cullin-RING E3 ligases NEDD8 



The study was funded by the National Natural Science Foundation of China (81772183 and 31600132), the Chinese Ministry of Science and Technology (2018ZX10731101-003-004), Department of Science and Technology of Jilin Province (No. 20180101127JC) and the Fundamental Research Funds for the Central Universities and Program for JLU Science and Technology Innovative Research Team.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving animal experiments were in accordance with the ethical standards of China research committee and the protocol approved by the Ethics Committee of the First Hospital of Jilin University.


  1. 1.
    Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, Negrier S, Chevreau C, Solska E, Desai AA, Rolland F, Demkow T, Hutson TE, Gore M, Freeman S, Schwartz B, Shan M, Simantov R, Bukowski RM (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356:125–134CrossRefPubMedGoogle Scholar
  2. 2.
    Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Staehler M, Negrier S, Chevreau C, Desai AA, Rolland F, Demkow T, Hutson TE, Gore M, Gore M, Anderson S, Hofilena G, Shan M, Pena C, Lathia C, Bukowski RM (2009) Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J Clin Oncol 27:3312–3318CrossRefPubMedGoogle Scholar
  3. 3.
    Motzer RJ, Hutson TE, Cella D, Reeves J, Hawkins R, Guo J, Nathan P, Staehler M, de Souza P, Merchan JR, Boleti E, Fife K, Jin J, Jones R, Uemura H, De Giorgi U, Harmenberg U, Wang J, Sternberg CN, Deen K, McCann L, Hackshaw MD, Crescenzo R, Pandite LN, Choueiri TK (2013) Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N Engl J Med 369:722–731CrossRefPubMedGoogle Scholar
  4. 4.
    Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Oudard S, Negrier S, Szczylik C, Pili R, Bjarnason GA, Garcia-del-Muro X, Sosman JA, Solska E, Wilding G, Thompson JA, Kim ST, Chen I, Huang X, Figlin RA (2009) Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol 27:3584–3590CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rini BI, Wilding G, Hudes G, Stadler WM, Kim S, Tarazi J, Rosbrook B, Trask PC, Wood L, Dutcher JP (2009) Phase II study of axitinib in sorafenib-refractory metastatic renal cell carcinoma. J Clin Oncol 27:4462–4468CrossRefPubMedGoogle Scholar
  6. 6.
    Adams J (2004) The development of proteasome inhibitors as anticancer drugs. Cancer cell 5:417–421CrossRefPubMedGoogle Scholar
  7. 7.
    Schwartz AL, Ciechanover A (2009) Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol 49:73–96CrossRefPubMedGoogle Scholar
  8. 8.
    Nakayama KI, Nakayama K (2006) Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 6:369–381CrossRefPubMedGoogle Scholar
  9. 9.
    Petroski MD, Deshaies RJ (2005) Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6:9–20CrossRefPubMedGoogle Scholar
  10. 10.
    Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M, Conaway RC, Conaway JW, Harper JW, Pavletich NP (2002) Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416:703–709CrossRefPubMedGoogle Scholar
  11. 11.
    Yang D, Li L, Liu H, Wu L, Luo Z, Li H, Zheng S, Gao H, Chu Y, Sun Y, Liu J, Jia L (2013) Induction of autophagy and senescence by knockdown of ROC1 E3 ubiquitin ligase to suppress the growth of liver cancer cells. Cell Death Differ 20:235–247CrossRefPubMedGoogle Scholar
  12. 12.
    Jia L, Bickel JS, Wu J, Morgan MA, Li H, Yang J, Yu X, Chan RC, Sun Y (2011) RBX1 (RING box protein 1) E3 ubiquitin ligase is required for genomic integrity by modulating DNA replication licensing proteins. J Biol Chem 286:3379–3386CrossRefPubMedGoogle Scholar
  13. 13.
    Watson IR, Irwin MS, Ohh M (2011) NEDD8 pathways in cancer. Sine Quibus Non Cancer cell 19:168–176CrossRefPubMedGoogle Scholar
  14. 14.
    Milhollen MA, Traore T, Adams-Duffy J, Thomas MP, Berger AJ, Dang L, Dick LR, Garnsey JJ, Koenig E, Langston SP, Manfredi M, Narayanan U, Rolfe M, Staudt LM, Soucy TA, Yu J, Zhang J, Bolen JB, Smith PG (2010) MLN4924, a NEDD8-activating enzyme inhibitor, is active in diffuse large B-cell lymphoma models: rationale for treatment of NF-{kappa}B-dependent lymphoma. Blood 116:1515–1523CrossRefPubMedGoogle Scholar
  15. 15.
    Nawrocki ST, Kelly KR, Smith PG, Espitia CM, Possemato A, Beausoleil SA, Milhollen M, Blakemore S, Thomas M, Berger A, Carew JS (2013) Disrupting protein NEDDylation with MLN4924 is a novel strategy to target cisplatin resistance in ovarian cancer. Clin Cancer Res 19:3577–3590CrossRefPubMedGoogle Scholar
  16. 16.
    Xie P, Zhang M, He S, Lu K, Chen Y, Xing G, Lu Y, Liu P, Li Y, Wang S, Chai N, Wu J, Deng H, Wang HR, Cao Y, Zhao F (2014) Cui Y3, Wang J3, He F3, Zhang L8. The covalent modifier Nedd8 is critical for the activation of Smurf1 ubiquitin ligase in tumorigenesis. Nat Commun 5:3733CrossRefPubMedGoogle Scholar
  17. 17.
    Zhao Y, Morgan MA, Sun Y (2014) Targeting Neddylation pathways to inactivate cullin-RING ligases for anticancer therapy. Antioxid Redox Signal 21:2383–2400CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bhatia S, Pavlick AC, Boasberg P, Thompson JA, Mulligan G, Pickard MD, Faessel H, Dezube BJ, Hamid O (2016) A phase I study of the investigational NEDD8-activating enzyme inhibitor pevonedistat (TAK-924/MLN4924) in patients with metastatic melanoma. Invest New Drugs 34:439–449CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Shah JJ, Jakubowiak AJ, O’Connor OA, Orlowski RZ, Harvey RD, Smith MR, Lebovic D, Diefenbach C, Kelly K, Hua Z, Berger AJ, Mulligan G, Faessel HM, Tirrell S, Dezube BJ, Lonial S (2016) Phase I study of the novel investigational NEDD8-activating enzyme inhibitor pevonedistat (MLN4924) in patients with relapsed/refractory multiple myeloma or lymphoma. Clin Cancer Res 22:34–43CrossRefPubMedGoogle Scholar
  20. 20.
    Sarantopoulos J, Shapiro GI, Cohen RB, Clark JW, Kauh JS, Weiss GJ, Cleary JM, Mahalingam D, Pickard MD, Faessel HM, Berger AJ, Burke K, Mulligan G, Dezube BJ, Harvey RD (2016) Phase I study of the investigational NEDD8-activating enzyme inhibitor pevonedistat (TAK-924/MLN4924) in patients with advanced solid tumors. Clin Cancer Res 22:847–857CrossRefPubMedGoogle Scholar
  21. 21.
    Swords RT, Erba HP, DeAngelo DJ, Bixby DL, Altman JK, Maris M, Hua Z, Blakemore SJ, Faessel H, Sedarati F, Dezube BJ, Giles FJ, Medeiros BC (2015) Pevonedistat (MLN4924), a first-in-class NEDD8-activating enzyme inhibitor, in patients with acute myeloid leukaemia and myelodysplastic syndromes: a phase 1 study. Br J Haematol 169:534–543CrossRefPubMedGoogle Scholar
  22. 22.
    Wei W, Guo H, Chang J, Yu Y, Liu G, Zhang N, Willard SH, Zheng S, Yu XF (2016) ICAM-5/telencephalin is a functional entry receptor for enterovirus D68. Cell Host Microbe 20:631–641CrossRefPubMedGoogle Scholar
  23. 23.
    Chow WH, Dong LM, Devesa SSD (2010) Epidemiology and risk factors for kidney cancer. Nat Rev Urol 7:245–257CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Siegel RL, Miller KD, Jemal A. Cancer Statistics (2017) CA Cancer J Clin 2017 67:7–30CrossRefPubMedGoogle Scholar
  25. 25.
    Linehan WM (2012) Genetic basis of kidney cancer: role of genomics for the development of disease-based therapeutics. Genome Res 22:2089–2100CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chen Z, Zhang J, Zhang Z, Feng Z, Wei J, Lu J, Fang Y, Liang Y, Cen J, Pan Y, Huang Y, Zhou F, Chen W, Luo J (2017) The putative tumor suppressor microRNA-30a-5p modulates clear cell renal cell carcinoma aggressiveness through repression of ZEB2. Cell Death Dis 8:e2859CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chen W, Hill H, Christie A, Kim MS, Holloman E, Pavia-Jimenez A, Homayoun F, Ma Y, Patel N, Yell P, Hao G, Yousuf Q, Joyce A, Pedrosa I, Geiger H, Zhang H, Chang J, Gardner KH, Bruick RK, Reeves C, Hwang TH, Courtney K, Frenkel E, Sun X, Zojwalla N, Wong T, Rizzi JP, Wallace EM, Josey JA, Xie Y, Xie XJ, Kapur P, McKay RM, Brugarolas J (2016) Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539:112–117CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Cancer Genome Atlas Research N (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499:43–49CrossRefGoogle Scholar
  29. 29.
    Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, Brownell JE, Burke KE, Cardin DP, Critchley S, Cullis CA, Doucette A, Garnsey JJ, Gaulin JL, Gershman RE, Lublinsky AR, McDonald A, Mizutani H, Narayanan U, Olhava EJ, Peluso S, Rezaei M, Sintchak MD, Talreja T, Thomas MP, Traore T, Vyskocil S, Weatherhead GS, Yu J, Zhang J, Dick LR, Claiborne CF, Rolfe M, Bolen JB, Langston SP (2009) An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458:732–736CrossRefPubMedGoogle Scholar
  30. 30.
    Blank JL, Liu XJ, Cosmopoulos K, Bouck DC, Garcia K, Bernard H, Tayber O, Hather G, Liu R, Narayanan U, Milhollen MA, Lightcap ES (2013) Novel DNA damage checkpoints mediating cell death induced by the NEDD8-activating enzyme inhibitor MLN4924. Cancer Res 73:225–234CrossRefPubMedGoogle Scholar
  31. 31.
    Milhollen MA, Narayanan U, Soucy TA, Veiby PO, Smith PG, Amidon B (2011) Inhibition of NEDD8-activating enzyme induces rereplication and apoptosis in human tumor cells consistent with deregulating CDT1 turnover. Cancer Res 71:3042–3051CrossRefPubMedGoogle Scholar
  32. 32.
    Lin JJ, Milhollen MA, Smith PG, Narayanan U, Dutta A (2010) NEDD8-targeting drug MLN4924 elicits DNA rereplication by stabilizing Cdt1 in S phase, triggering checkpoint activation, apoptosis, and senescence in cancer cells. Cancer Res 70:10310–10320CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Emanuele MJ, Elia AE, Xu Q, Thoma CR, Izhar L, Leng Y, Guo A, Chen YN, Rush J, Hsu PW, Yen HC, Elledge SJ (2011) Global identification of modular cullin-RING ligase substrates. Cell 147:459–474CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Yao WT, Wu JF, Yu GY, Wang R, Wang K, Li LH, Chen P, Jiang YN, Cheng H, Lee HW, Yu J, Qi H, Yu XJ, Wang P, Chu YW, Yang M, Hua ZC, Ying HQ, Hoffman RM, Jeong LS, Jia LJ (2014) Suppression of tumor angiogenesis by targeting the protein neddylation pathway. Cell Death Dis 5:e1059CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Chen Y, Yang Z, Meng M, Zhao Y, Dong N, Yan H, Liu L, Ding M, Peng HB, Shao F (2009) Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement. Mol Cell 35:841–855CrossRefPubMedGoogle Scholar
  36. 36.
    Yang D, Zhao Y, Liu J, Sun Y, Jia L (2012) Protective autophagy induced by RBX1/ROC1 knockdown or CRL inactivation via modulating the DEPTOR-MTOR axis. Autophagy 8:1856–1858CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Cukras S, Morffy N, Ohn T, Kee Y (2014) Inactivating UBE2M impacts the DNA damage response and genome integrity involving multiple cullin ligases. PLoS One 9:e101844CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Huang DT, Ayrault O, Hunt HW, Taherbhoy AM, Duda DM, Scott DC, Borg LA, Neale G, Murray PJ, Roussel MF, Schulman BA (2009) E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. Mol Cell 33:483–495CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Haagenson KK, Tait L, Wang J, Shekhar MP, Polin L, Chen W, Wu GS (2012) Cullin-3 protein expression levels correlate with breast cancer progression. Cancer Biol Ther 13:1042–1046CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hung MS, Chen IC, You L, Jablons DM, Li YC, Mao JH, Xu Z, Lung JH, Yang CT, Liu ST (2016) Knockdown of cullin 4A inhibits growth and increases chemosensitivity in lung cancer cells. J Cell Mol Med 20:1295–1306CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Orlowski RZ, Kuhn DJ (2008) Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin Cancer Res 14:1649–1657CrossRefPubMedGoogle Scholar
  42. 42.
    Durie BG, Hoering A, Abidi MH, Rajkumar SV, Epstein J, Kahanic SP, Thakuri M, Reu F, Reynolds CM, Sexton R, Orlowski RZ, Barlogie B, Dispenzieri A (2017) Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem-cell transplant (SWOG S0777): a randomised, open-label, phase 3 trial. Lancet 389:519–527CrossRefPubMedGoogle Scholar
  43. 43.
    Arastu-Kapur S, Anderl JL, Kraus M, Parlati F, Shenk KD, Lee SJ, Muchamuel T, Bennett MK, Driessen C, Ball AJ, Kirk CJ (2011) Nonproteasomal targets of the proteasome inhibitors bortezomib and carfilzomib: a link to clinical adverse events. Clin Cancer Res 17:2734–2743CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of UrologyThe First Hospital of Jilin UniversityChangchunChina
  2. 2.Institute of Virology and AIDS ResearchThe First Hospital of Jilin UniversityChangchunChina
  3. 3.Department of Obstetrics and GynecologyThe First Hospital of Jilin UniversityChangchunChina
  4. 4.Department of NephrologyFirst Hospital of Jilin UniversityChangchunChina

Personalised recommendations