Skip to main content

Advertisement

Log in

Influence of gemcitabine chemotherapy on the microbiota of pancreatic cancer xenografted mice

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Background and aims

Pancreatic ductal adenocarcinoma (PDAC) represents the fourth cause of cancer-related death. We aimed to evaluate whether gemcitabine treatment shapes the gut microbiota in a model of PDAC xenografted mice.

Materials and methods

Pancreatic cancer xenograft mice were subjected to gemcitabine injection once per week for 3 weeks to assess the tumor volume as compared to control mice injected with normal saline solution. The composition of fecal microbiota, the activation of NF-kB pathway in cancer tissues and the serum metabolomics were further analyzed.

Results

Gemcitabine considerably decreases the proportion of Gram- positive Firmicutes (from about 39 to 17%) and the Gram- negative Bacteroidetes (from 38 to 17%) which are the two dominant phyla in the gut of tumor-bearing control mice. This downshift was replaced by an increase of Proteobacteria (Escherichia coli and Aeromonas hydrophila) from 15 up to 32% and Verrucomicrobia (Akkermansia muciniphila) from 5 to 33% in the gut of drug-receiving mice. An overall increase in inflammation-associated bacteria was observed upon gemcitabine. Consistently, activation of the NF-kB canonical pathway was found in cancer tissues from gemcitabine-treated mice. Serum metabolomics revealed a significant decrease of the purine compounds inosine and xanthine, and a decreasing trend for their metabolically-related molecule hypoxanthine.

Discussion

Understanding chemotherapy side effects may explain the lack of activity or the chemoresistant processes and it may help to set up strategies to improve the effectiveness of therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cid-Arregui A, Juarez V (2015) Perspectives in the treatment of pancreatic adenocarcinoma. World J Gastroenterol 21(31):9297–9316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Conroy T, Bachet JB, Ayav A, Huguet F, Lambert A, Caramella C, Marechal R, Van Laethem JL, Ducreux M (2016) Current standards and new innovative approaches for treatment of pancreatic cancer. Eur J Cancer 57:10–22

    Article  PubMed  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A, Cancer statistics (2016) CA Cancer. J Clin 66(1):7–30

    Google Scholar 

  4. Cheema AR, O’Reilly EM (2016) Management of Metastatic Pancreatic Adenocarcinoma. Surg Clin North Am 96(6):1391–1414

    Article  PubMed  Google Scholar 

  5. D’Aronzo M, Vinciguerra M, Mazza T, Panebianco C, Saracino C, Pereira SP, Graziano P, Pazienza V (2015) Fasting cycles potentiate the efficacy of gemcitabine treatment in in vitro and in vivo pancreatic cancer models. Oncotarget 6(21):18545–18557

    PubMed  PubMed Central  Google Scholar 

  6. Gharibi A, Adamian Y, Kelber JA (2016) Cellular and molecular aspects of pancreatic cancer. Acta Histochem 118(3):305–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Korkeila EA (2015) Advanced pancreatic cancer—how to choose an adequate treatment option. World J Gastroenterol 21(38):10709–10713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stathis A, Moore MJ (2010) Advanced pancreatic carcinoma: current treatment and future challenges. Nat Rev Clin Oncol 7(3):163–172

    Article  CAS  PubMed  Google Scholar 

  9. Greer JB, Whitcomb DC (2009) Inflammation and pancreatic cancer: an evidence-based review. Curr Opin Pharmacol 9(4):411–418

    Article  CAS  PubMed  Google Scholar 

  10. Steele CW, Kaur Gill NA, Jamieson NB, Carter CR (2016) Targeting inflammation in pancreatic cancer: clinical translation. World J Gastrointest Oncol 8(4):380–388

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zambirinis CP, Pushalkar S, Saxena D, Miller G (2014) Pancreatic cancer, inflammation, and microbiome. Cancer J 20(3):195–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Momi N, Kaur S, Krishn SR, Batra SK (2012) Discovering the route from inflammation to pancreatic cancer. Minerva Gastroenterol Dietol 58(4):283–297

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Uomo I, Miraglia S, Pastorello M (2010) Inflammation and pancreatic ductal adenocarcinoma: a potential scenario for novel drug targets. JOP 11(3):199–202

    PubMed  Google Scholar 

  14. Leal-Lopes C, Velloso FJ, Campopiano JC, Sogayar MC, Correa RG (2015) Roles of Commensal Microbiota in Pancreas Homeostasis and Pancreatic Pathologies. J Diabetes Res. https://doi.org/10.1155/2015/284680

    PubMed  PubMed Central  Google Scholar 

  15. Schwabe RF, Jobin C (2013) The microbiome and cancer. Nat Rev Cancer 13(11):800–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blaser MJ (2014) The microbiome revolution. J Clin Invest 124(10):4162–4165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zitvogel L, Galluzzi L, Viaud S, Vetizou M, Daillere R, Merad M, Kroemer G (2015) Cancer and the gut microbiota: an unexpected link. Sci Transl Med 7(271):271ps271

    Article  Google Scholar 

  18. Panebianco C, Adamberg K, Adamberg S, Saracino C, Jaagura M, Kolk K, Di Chio AG, Graziano P, Vilu R, Pazienza V (2017) Engineered resistant-starch (ERS) diet shapes colon microbiota profile in parallel with the retardation of tumor growth in in vitro and in vivo pancreatic cancer models. Nutrients 9(4). https://doi.org/10.3390/nu9040331

  19. Farrell JJ, Zhang L, Zhou H, Chia D, Elashoff D, Akin D, Paster BJ, Joshipura K, Wong DT (2012) Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut 61(4):582–588

    Article  CAS  PubMed  Google Scholar 

  20. Michaud DS, Joshipura K, Giovannucci E, Fuchs CS (2007) A prospective study of periodontal disease and pancreatic cancer in US male health professionals. J Natl Cancer Inst 99(2):171–175

    Article  PubMed  Google Scholar 

  21. Touchefeu Y, Montassier E, Nieman K, Gastinne T, Potel G, Bruley des Varannes S, Le Vacon F, de La Cochetiere MF (2014) Systematic review: the role of the gut microbiota in chemotherapy- or radiation-induced gastrointestinal mucositis - current evidence and potential clinical applications. Aliment Pharmacol Ther 40(5):409–421

    CAS  PubMed  Google Scholar 

  22. Paglia G, Williams JP, Menikarachchi L, Thompson JW, Tyldesley-Worster R, Halldorsson S, Rolfsson O, Moseley A, Grant D, Langridge J, Palsson BO, Astarita G (2014) Ion mobility derived collision cross sections to support metabolomics applications. Anal Chem 86(8):3985–3993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102(31):11070–11075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hausmann S, Kong B, Michalski C, Erkan M, Friess H (2014) The role of inflammation in pancreatic cancer. Adv Exp Med Biol 816:129–151

    Article  CAS  PubMed  Google Scholar 

  26. Kawai T, Akira S (2007) Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med 13(11):460–469

    Article  CAS  PubMed  Google Scholar 

  27. Christian F, Smith EL, Carmody RJ (2016) The regulation of NF-kappaB subunits by phosphorylation. Cells 5(1):12

    Article  PubMed Central  Google Scholar 

  28. Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148(6):1258–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7(7):688–693

    Article  PubMed  PubMed Central  Google Scholar 

  30. Guinane CM, Cotter PD (2013) Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Ther Adv Gastroenterol 6(4):295–308

    Article  Google Scholar 

  31. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031

    Article  PubMed  Google Scholar 

  32. Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, Campbell BJ, Abujamel T, Dogan B, Rogers AB, Rhodes JM, Stintzi A, Simpson KW, Hansen JJ, Keku TO, Fodor AA et al (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338(6103):120–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shin NR, Whon TW, Bae JW (2015) Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 33(9):496–503

    Article  CAS  PubMed  Google Scholar 

  34. Lavelle A, Lennon G, O’Sullivan O, Docherty N, Balfe A, Maguire A, Mulcahy HE, Doherty G, O’Donoghue D, Hyland J, Ross RP, Coffey JC, Sheahan K, Cotter PD, Shanahan F, Winter DC et al (2015) Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers. Gut 64(10):1553–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Matsuoka K, Kanai T (2015) The gut microbiota and inflammatory bowel disease. Semin Immunopathol 37(1):47–55

    Article  CAS  PubMed  Google Scholar 

  36. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, LeLeiko N, Snapper SB, Bousvaros A, Korzenik J, Sands BE, Xavier RJ, Huttenhower C (2012) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13(9):R79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 104(34):13780–13785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ganesh BP, Klopfleisch R, Loh G, Blaut M (2013) Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice. PLoS One 8(9):e74963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Berry D, Schwab C, Milinovich G, Reichert J, Ben Mahfoudh K, Decker T, Engel M, Hai B, Hainzl E, Heider S, Kenner L, Muller M, Rauch I, Strobl B, Wagner M, Schleper C et al (2012) Phylotype-level 16S rRNA analysis reveals new bacterial indicators of health state in acute murine colitis. ISME J 6(11):2091–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vital M, Howe AC, Tiedje JM (2014) Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio 5(2):e00889

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27(2):104–119

    Article  CAS  PubMed  Google Scholar 

  42. Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A (2011) Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 17(12):1519–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chopin V, Toillon RA, Jouy N, Le Bourhis X (2002) Sodium butyrate induces P53-independent, Fas-mediated apoptosis in MCF-7 human breast cancer cells. Br J Pharmacol 135(1):79–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gaschott T, Maassen CU, Stein J (2001) Tributyrin, a butyrate precursor, impairs growth and induces apoptosis and differentiation in pancreatic cancer cells. Anticancer Res 21(4A):2815–2819

    CAS  PubMed  Google Scholar 

  45. Scheppach W, Weiler F (2004) The butyrate story: old wine in new bottles? Curr Opin Clin Nutr Metab Care 7(5):563–567

    Article  PubMed  Google Scholar 

  46. Natoni F, Diolordi L, Santoni C, Gilardini Montani MS (2005) Sodium butyrate sensitises human pancreatic cancer cells to both the intrinsic and the extrinsic apoptotic pathways. Biochim Biophys Acta 1745(3):318–329

    Article  CAS  PubMed  Google Scholar 

  47. Blank-Porat D, Gruss-Fischer T, Tarasenko N, Malik Z, Nudelman A, Rephaeli A (2007) The anticancer prodrugs of butyric acid AN-7 and AN-9, possess antiangiogenic properties. Cancer Lett 256(1):39–48

    Article  CAS  PubMed  Google Scholar 

  48. Ogawa H, Rafiee P, Fisher PJ, Johnson NA, Otterson MF, Binion DG (2003) Sodium butyrate inhibits angiogenesis of human intestinal microvascular endothelial cells through COX-2 inhibition. FEBS Lett 554(1–2):88–94

    Article  CAS  PubMed  Google Scholar 

  49. Zgouras D, Wachtershauser A, Frings D, Stein J (2003) Butyrate impairs intestinal tumor cell-induced angiogenesis by inhibiting HIF-1alpha nuclear translocation. Biochem Biophys Res Commun 300(4):832–838

    Article  CAS  PubMed  Google Scholar 

  50. Farrow B, Rychahou P, O’Connor KL, Evers BM (2003) Butyrate inhibits pancreatic cancer invasion. J Gastrointest Surg 7(7):864–870

    Article  PubMed  Google Scholar 

  51. van Vliet MJ, Harmsen HJ, de Bont ES, Tissing WJ (2010) The role of intestinal microbiota in the development and severity of chemotherapy-induced mucositis. PLoS Pathog 6(5):e1000879

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yutin N, Galperin MY (2013) A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. Environ Microbiol 15(10):2631–2641

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bien J, Palagani V, Bozko P (2013) The intestinal microbiota dysbiosis and Clostridium difficile infection: is there a relationship with inflammatory bowel disease? Therap Adv Gastroenterol 6(1):53–68

    Article  PubMed  PubMed Central  Google Scholar 

  54. Anand A, Glatt AE (1993) Clostridium difficile infection associated with antineoplastic chemotherapy: a review. Clin Infect Dis 17(1):109–113

    Article  CAS  PubMed  Google Scholar 

  55. Masciullo V, Mainenti S, Lorusso D, Margariti PA, Scambia G (2010) Lethal clostridium difficile colitis associated with paclitaxel and carboplatin chemotherapy in ovarian carcinoma: case report and review of the literature. Obstet Gynecol Int 2010:749789

    PubMed  PubMed Central  Google Scholar 

  56. Raza S, Baig MA, Russell H, Gourdet Y, Berger BJ (2010) Clostridium difficile infection following chemotherapy. Recent Pat Antiinfect Drug Discov 5(1):1–9

    Article  CAS  PubMed  Google Scholar 

  57. Lin XB, Dieleman LA, Ketabi A, Bibova I, Sawyer MB, Xue H, Field CJ, Baracos VE, Ganzle MG (2012) Irinotecan (CPT-11) chemotherapy alters intestinal microbiota in tumour bearing rats. PLoS One 7(7):e39764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stringer AM, Gibson RJ, Logan RM, Bowen JM, Yeoh AS, Hamilton J, Keefe DM (2009) Gastrointestinal microflora and mucins may play a critical role in the development of 5-fluorouracil-induced gastrointestinal mucositis. Exp Biol Med (Maywood) 234(4):430–441

    Article  CAS  Google Scholar 

  59. Montrose DC, Zhou XK, McNally EM, Sue E, Yantiss RK, Gross SS, Leve ND, Karoly ED, Suen CS, Ling L, Benezra R, Pamer EG, Dannenberg AJ (2016) Celecoxib alters the intestinal microbiota and metabolome in association with reducing polyp burden. Cancer Prev Res (Phila) 9(9):721–731

    Article  CAS  Google Scholar 

  60. Forsgard RA, Marrachelli VG, Korpela K, Frias R, Collado MC, Korpela R, Monleon D, Spillmann T, Osterlund P (2017) Chemotherapy-induced gastrointestinal toxicity is associated with changes in serum and urine metabolome and fecal microbiota in male Sprague–Dawley rats. Cancer Chemother Pharmacol 80(2):317–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Daliri EB, Wei S, Oh DH, Lee BH (2017) The human microbiome and metabolomics: current concepts and applications. Crit Rev Food Sci Nutr 57(16):3565–3576

    Article  CAS  PubMed  Google Scholar 

  62. He B, Hoang TK, Wang T, Ferris M, Taylor CM, Tian X, Luo M, Tran DQ, Zhou J, Tatevian N, Luo F, Molina JG, Blackburn MR, Gomez TH, Roos S, Rhoads JM et al (2016) Resetting microbiota by Lactobacillus reuteri inhibits T reg deficiency-induced autoimmunity via adenosine A2A receptors. J Exp Med 214(1):107–123

    Article  PubMed  Google Scholar 

  63. da Rocha Lapa F, da Silva MD, de Almeida Cabrini D, Santos AR (2012) Anti-inflammatory effects of purine nucleosides, adenosine and inosine, in a mouse model of pleurisy: evidence for the role of adenosine A2 receptors. Purinergic Signal 8(4):693–704

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hasko G, Kuhel DG, Nemeth ZH, Mabley JG, Stachlewitz RF, Virag L, Lohinai Z, Southan GJ, Salzman AL, Szabo C (2000) Inosine inhibits inflammatory cytokine production by a posttranscriptional mechanism and protects against endotoxin-induced shock. J Immunol 164(2):1013–1019

    Article  CAS  PubMed  Google Scholar 

  65. Gomez G, Sitkovsky MV (2003) Differential requirement for A2a and A3 adenosine receptors for the protective effect of inosine in vivo. Blood 102(13):4472–4478

    Article  CAS  PubMed  Google Scholar 

  66. Nguyen TL, Vieira-Silva S, Liston A, Raes J (2015) How informative is the mouse for human gut microbiota research? Dis Model Mech 8(1):1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Morten Danielsen and the MS-Omics for the excellent technical help. No competing interest is declared.

Funding

This research was supported by the ‘‘Ricerca Corrente RC1703GA31’’ funding granted by the Italian Ministry of Health and by the “5 × 1000” voluntary contributions to our Hospital and also by European Regional Development Fund to Competence Center of Food and Fermentation Technologies (EU48667) and Institutional Research Funding to Tallinn University of Technology (IUT 19-27) of the Estonian Ministry of Education and Research.

Author information

Authors and Affiliations

Authors

Contributions

Conceived the study: VP. Designed the experiments: CP, KA, RV and VP. Performed the experiments: CP, MJ, SA and KK. Biostatistics Analysis: MC and AF. Analyzed the data: CP, KA and VP. Contributed reagents/materials/analysis tools: KA, RV and VP. Wrote the paper: CP, KA, AA and VP.

Corresponding author

Correspondence to Valerio Pazienza.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

The animal study was performed in an AAALAC (Association for Assessment and Accreditation of Laboratory Animal Care International) accredited experimental facility. Principles of laboratory animal care were followed for the welfare of animals in experimental neoplasia and protocols were approved by the Institutional Animal Care and Use Committee, with the approval number ANM14-002.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panebianco, C., Adamberg, K., Jaagura, M. et al. Influence of gemcitabine chemotherapy on the microbiota of pancreatic cancer xenografted mice. Cancer Chemother Pharmacol 81, 773–782 (2018). https://doi.org/10.1007/s00280-018-3549-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-018-3549-0

Keywords

Navigation