Advertisement

Cancer Chemotherapy and Pharmacology

, Volume 81, Issue 4, pp 687–695 | Cite as

YSA-conjugated mesoporous silica nanoparticles effectively target EphA2-overexpressing breast cancer cells

  • Zhi Liu
  • Zijian Tao
  • Qing Zhang
  • Song Wan
  • Fenglin Zhang
  • Yan Zhang
  • Guanyu Wu
  • Jiandong Wang
Original Article

Abstract

Purpose

Neoadjuvant chemotherapy is commonly used to treat patients with locally advanced breast cancer and a common option for primary operable disease. However, systemic toxicity including cardiotoxicity and inefficient delivery are significant challenges form any chemotherapeutics. The development of targeted treatments that lower the risk of toxicity has, therefore, become an active area of research in the field of novel cancer therapeutics. Mesoporous silica nanoparticles (MSNs) have attracted significant attention as efficient drug delivery carriers, due to their high surface area and tailorable mesoporous structures. Eph receptors are the largest receptor tyrosine kinase family, which are divided into the A- and the B-type. Eph receptors play critical roles in embryonic development and human diseases including cancer. EphA2 is expressed in breast cancer cells and has roles in carcinogenesis, progression and prognosis of breast cancer.

Methods

A homing peptide with the sequence YSAYPDSVPMMSK (YSA) that binds specifically to EphA2 was used to functionalize MSN. We focus on a novel EphA2-targeted delivery MSN system for breast cancer cells.

Results

We show that the EphA2 receptor is differentially expressed in breast cancer cells and highly expressed in the HER2-negative breast cancer cell line MCF7. Our results suggest that EphA2-targeted MSN for doxorubicin delivery (MSN–YSA–DOX) are more effective than MSN–DOX in treating breast cancer cell lines in vitro.

Conclusions

Our preliminary observations suggest that the EphA2-targeted MSN delivery system may provide a strategy for enhancing delivery of therapeutic agents to breast cancer cells expressing EphA2, and potentially reduce toxicity while enhancing therapeutic efficacy.

Keywords

EphA2 Drug delivery MSN 

Notes

Funding

This work was supported by the Science and Technology Project of Anhui Province of China (1501041160); it was also supported by grants from the National Natural Science Foundation of China (81371611) and the National Basic Research Priorities Program 973 Project (2014CB744504) from the Ministry of Science and Technology of China.

Compliance with ethical standards

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The author(s) declare that they have no conflict of interest.

References

  1. 1.
    Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65(1):5–29.  https://doi.org/10.3322/caac.21254 CrossRefPubMedGoogle Scholar
  2. 2.
    Harbeck N, Gnant M (2017) Breast cancer. Lancet 389(10074):1134–1150.  https://doi.org/10.1016/S0140-6736(16)31891-8 CrossRefPubMedGoogle Scholar
  3. 3.
    Zhou Z, Kennell C, Jafari M, Lee JY, Ruiz-Torres SJ, Waltz SE, Lee JH (2017) Sequential delivery of erlotinib and doxorubicin for enhanced triple negative Breast cancer treatment using polymeric nanoparticle. Int J Pharm 530(1–2):300–307.  https://doi.org/10.1016/j.ijpharm.2017.07.085 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Watermann A, Brieger J (2017) Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomaterials.  https://doi.org/10.3390/nano7070189 PubMedPubMedCentralGoogle Scholar
  5. 5.
    Hanafi-Bojd MY, Moosavian Kalat SA, Taghdisi SM, Ansari L, Abnous K, Malaekeh-Nikouei B (2017) MUC1 Aptamer-conjugated mesoporous silica nanoparticles effectively target breast cancer cells. Drug Dev Ind Pharm.  https://doi.org/10.1080/03639045.2017.1371734 PubMedGoogle Scholar
  6. 6.
    Guo X, Guo N, Zhao J, Cai Y (2017) Active targeting co-delivery system based on hollow mesoporous silica nanoparticles for antitumor therapy in ovarian cancer stem-like cells. Oncol Rep 38(3):1442–1450.  https://doi.org/10.3892/or.2017.5829 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rocca A, Cecconetto L, Passardi A, Melegari E, Andreis D, Monti M, Maltoni R, Sarti S, Pietri E, Schirone A, Fabbri F, Donati C, Nanni O, Fedeli A, Faedi M, Amadori D (2017) Phase Ib dose-finding trial of lapatinib plus pegylated liposomal doxorubicin in advanced HER2-positive breast cancer. Cancer Chemother Pharmacol 79(5):863–871.  https://doi.org/10.1007/s00280-017-3279-8 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chang AE, Wu QV, Jenkins IC, Specht JM, Gadi VK, Gralow JR, Salazar LG, Kurland BF, Linden HM (2017) Phase I/II trial of combined pegylated liposomal doxorubicin and cyclophosphamide in metastatic breast cancer. Clin Breast Cancer.  https://doi.org/10.1016/j.clbc.2017.10.005 Google Scholar
  9. 9.
    Ansari L, Shiehzadeh F, Taherzadeh Z, Nikoofal-Sahlabadi S, Momtazi-Borojeni AA, Sahebkar A, Eslami S (2017) The most prevalent side effects of pegylated liposomal doxorubicin monotherapy in women with metastatic breast cancer: a systematic review of clinical trials. Cancer Gene Ther 24(5):189–193.  https://doi.org/10.1038/cgt.2017.9 CrossRefPubMedGoogle Scholar
  10. 10.
    Gao Y, Xie X, Li F, Lu Y, Li T, Lian S, Zhang Y, Zhang H, Mei H, Jia L (2017) A novel nanomissile targeting two biomarkers and accurately bombing CTCs with doxorubicin. Nanoscale 9(17):5624–5640.  https://doi.org/10.1039/c7nr00273d CrossRefPubMedGoogle Scholar
  11. 11.
    Gao Y, Gu S, Zhang Y, Xie X, Yu T, Lu Y, Zhu Y, Chen W, Zhang H, Dong H, Sinko PJ, Jia L (2016) The architecture and function of monoclonal antibody-functionalized mesoporous silica nanoparticles loaded with mifepristone: repurposing abortifacient for cancer metastatic chemoprevention. Small 12(19):2595–2608.  https://doi.org/10.1002/smll.201600550 CrossRefPubMedGoogle Scholar
  12. 12.
    Pan L, He Q, Liu J, Chen Y, Ma M, Zhang L, Shi J (2012) Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc 134(13):5722–5725.  https://doi.org/10.1021/ja211035w CrossRefPubMedGoogle Scholar
  13. 13.
    Lindberg RA, Hunter T (1990) cDNA cloning and characterization of eck, an epithelial cell receptor protein-tyrosine kinase in the eph/elk family of protein kinases. Mol Cell Biol 10(12):6316–6324CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kataoka H, Igarashi H, Kanamori M, Ihara M, Wang JD, Wang YJ, Li ZY, Shimamura T, Kobayashi T, Maruyama K, Nakamura T, Arai H, Kajimura M, Hanai H, Tanaka M, Sugimura H (2004) Correlation of EPHA2 overexpression with high microvessel count in human primary colorectal cancer. Cancer Sci 95(2):136–141CrossRefPubMedGoogle Scholar
  15. 15.
    Dunne PD, Dasgupta S, Blayney JK, McArt DG, Redmond KL, Weir JA, Bradley CA, Sasazuki T, Shirasawa S, Wang T, Srivastava S, Ong CW, Arthur K, Salto-Tellez M, Wilson RH, Johnston PG, Van Schaeybroeck S (2016) EphA2 expression is a key driver of migration and invasion and a poor prognostic marker in colorectal cancer. Clin Cancer Res 22(1):230–242.  https://doi.org/10.1158/1078-0432.CCR-15-0603 CrossRefPubMedGoogle Scholar
  16. 16.
    Guo Z, He B, Yuan L, Dai W, Zhang H, Wang X, Wang J, Zhang X, Zhang Q (2015) Dual targeting for metastatic breast cancer and tumor neovasculature by EphA2-mediated nanocarriers. Int J Pharm 493(1–2):380–389.  https://doi.org/10.1016/j.ijpharm.2015.05.051 CrossRefPubMedGoogle Scholar
  17. 17.
    Gokmen-Polar Y, Toroni RA, Hocevar BA, Badve S, Zhao Q, Shen C, Bruckheimer E, Kinch MS, Miller KD (2011) Dual targeting of EphA2 and ER restores tamoxifen sensitivity in ER/EphA2-positive breast cancer. Breast Cancer Res Treat 127(2):375–384.  https://doi.org/10.1007/s10549-010-1004-y CrossRefPubMedGoogle Scholar
  18. 18.
    Fox BP, Kandpal RP (2011) A paradigm shift in EPH receptor interaction: biological relevance of EPHB6 interaction with EPHA2 and EPHB2 in breast carcinoma cell lines. Cancer Genom Proteom 8(4):185–193Google Scholar
  19. 19.
    Noblitt LW, Bangari DS, Shukla S, Knapp DW, Mohammed S, Kinch MS, Mittal SK (2004) Decreased tumorigenic potential of EphA2-overexpressing breast cancer cells following treatment with adenoviral vectors that express EphrinA1. Cancer Gene Ther 11(11):757–766.  https://doi.org/10.1038/sj.cgt.7700761 CrossRefPubMedGoogle Scholar
  20. 20.
    Song W, Hwang Y, Youngblood VM, Cook RS, Balko JM, Chen J, Brantley-Sieders DM (2017) Targeting EphA2 impairs cell cycle progression and growth of basal-like/triple-negative breast cancers. Oncogene.  https://doi.org/10.1038/onc.2017.170 Google Scholar
  21. 21.
    Koolpe M, Dail M, Pasquale EB (2002) An ephrin mimetic peptide that selectively targets the EphA2 receptor. J Biol Chem 277(49):46974–46979.  https://doi.org/10.1074/jbc.M208495200 CrossRefPubMedGoogle Scholar
  22. 22.
    Wang J, Teng Z, Tian Y, Fang T, Ma J, Sun J, Zhu F, Wu J, Wang X, Yang N, Zhou X, Yun S, Lu G (2013) Increasing cellular uptake of mesoporous silica nanoparticles in human embryonic kidney cell line 293T cells by using Lipofectamine 2000. J Biomed Nanotechnol 9(11):1882–1890CrossRefPubMedGoogle Scholar
  23. 23.
    Wang X, Teng Z, Wang H, Wang C, Liu Y, Tang Y, Wu J, Sun J, Wang H, Wang J, Lu G (2014) Increasing the cytotoxicity of doxorubicin in breast cancer MCF-7 cells with multidrug resistance using a mesoporous silica nanoparticle drug delivery system. Int J Clin Exp Pathol 7(4):1337–1347PubMedPubMedCentralGoogle Scholar
  24. 24.
    Geng H, Chen W, Xu ZP, Qian G, An J, Zhang H (2017) Shape-controlled hollow mesoporous silica nanoparticles with multifunctional capping for in vitro cancer treatment. Chemistry 23(45):10878–10885.  https://doi.org/10.1002/chem.201701806 CrossRefPubMedGoogle Scholar
  25. 25.
    Cheng W, Nie J, Xu L, Liang C, Peng Y, Liu G, Wang T, Mei L, Huang L, Zeng X (2017) pH-Sensitive delivery vehicle based on folic acid-conjugated polydopamine-modified mesoporous silica nanoparticles for targeted cancer therapy. ACS Appl Mater Interf 9(22):18462–18473.  https://doi.org/10.1021/acsami.7b02457 CrossRefGoogle Scholar
  26. 26.
    Xie X, Li F, Zhang H, Lu Y, Lian S, Lin H, Gao Y, Jia L (2016) EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. Eur J Pharm Sci 83:28–35.  https://doi.org/10.1016/j.ejps.2015.12.014 CrossRefPubMedGoogle Scholar
  27. 27.
    Wang J, Wang Y, Liu Q, Yang L, Zhu R, Yu C, Wang S (2016) Rational design of multifunctional dendritic mesoporous silica nanoparticles to load curcumin and enhance efficacy for breast cancer therapy. ACS Appl Mater Interf 8(40):26511–26523.  https://doi.org/10.1021/acsami.6b08400 CrossRefGoogle Scholar
  28. 28.
    Ultimo A, Gimenez C, Bartovsky P, Aznar E, Sancenon F, Marcos MD, Amoros P, Bernardo AR, Martinez-Manez R, Jimenez-Lara AM, Murguia JR (2016) Targeting innate immunity with dsRNA-conjugated mesoporous silica nanoparticles promotes antitumor effects on breast cancer cells. Chemistry 22(5):1582–1586.  https://doi.org/10.1002/chem.201504629 CrossRefPubMedGoogle Scholar
  29. 29.
    Wang T, Liu Y, Wu C (2017) Effect of paclitaxel-mesoporous silica nanoparticles with a core-shell structure on the human lung cancer cell line A549. Nanoscale Res Lett 12(1):66.  https://doi.org/10.1186/s11671-017-1826-1 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Li T, Chen X, Liu Y, Fan L, Lin L, Xu Y, Chen S, Shao J (2017) pH-Sensitive mesoporous silica nanoparticles anticancer prodrugs for sustained release of ursolic acid and the enhanced anti-cancer efficacy for hepatocellular carcinoma cancer. Eur J Pharm Sci 96:456–463.  https://doi.org/10.1016/j.ejps.2016.10.019 CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang Q, Xu H, Zheng S, Su M, Wang J (2015) Genotoxicity of mesoporous silica nanoparticles in human embryonic kidney 293 cells. Drug Test Anal 7(9):787–796.  https://doi.org/10.1002/dta.1773 CrossRefPubMedGoogle Scholar
  32. 32.
    Yao H, He G, Yan S, Chen C, Song L, Rosol TJ, Deng X (2017) Triple-negative breast cancer: is there a treatment on the horizon? Oncotarget 8(1):1913–1924.  https://doi.org/10.18632/oncotarget.12284 PubMedGoogle Scholar
  33. 33.
    Sun H, Zhang D, Yao Z, Lin X, Liu J, Gu Q, Dong X, Liu F, Wang Y, Yao N, Cheng S, Li L, Sun S (2017) Anti-angiogenic treatment promotes triple-negative breast cancer invasion via vasculogenic mimicry. Cancer Biol Therapy 18(4):205–213.  https://doi.org/10.1080/15384047.2017.1294288 CrossRefGoogle Scholar
  34. 34.
    Oualla K, El-Zawahry HM, Arun B, Reuben JM, Woodward WA, Gamal El-Din H, Lim B, Mellas N, Ueno NT, Fouad TM (2017) Novel therapeutic strategies in the treatment of triple-negative breast cancer. Ther Adv Med Oncol 9(7):493–511.  https://doi.org/10.1177/1758834017711380 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Khosravi-Shahi P, Cabezon-Gutierrez L, Custodio-Cabello S (2017) Metastatic triple negative breast cancer: optimizing treatment options, new and emerging targeted therapies. Asia Pacific J Clin Oncol.  https://doi.org/10.1111/ajco.12748 Google Scholar
  36. 36.
    Kaplan HG, Malmgren JA, Atwood MK (2017) Triple-negative breast cancer in the elderly: prognosis and treatment. Breast J.  https://doi.org/10.1111/tbj.12813 PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PathologyMunicipal People’s HospitalMaanshanChina
  2. 2.Department of OncologyMunicipal People’s HospitalMaanshanChina
  3. 3.Department of HematologyMunicipal People’s HospitalMaanshanChina
  4. 4.Department of Pathology, Jinling HospitalNanjing University School of MedicineNanjingChina

Personalised recommendations