Advertisement

Cancer Chemotherapy and Pharmacology

, Volume 79, Issue 2, pp 295–301 | Cite as

Use of retinoic acid/aldehyde dehydrogenase pathway as potential targeted therapy against cancer stem cells

  • Jan S. Moreb
  • Deniz A. Ucar-Bilyeu
  • Abdullah Khan
Review Article

Abstract

A large number of studies have investigated possible drug resistance mechanisms of cancer cells and suggested strategies to overcome it. In this review, we outline the role and function of aldehyde dehydrogenase (ALDH) activity in multiple cellular functions and in cancer stem cells (CSCs) and focus on the role of retinoic acid (RA), one of the products of ALDH isozymes. We discuss our observation that ATRA and other RAs can suppress ALDH activity and decrease different ALDH isozyme proteins and result in detrimental effects on cell proliferation, invasion and chemotherapy sensitivity. We review the known uses of different RAs in the treatment of cancers. We review the use of RAs in combination with chemo-/radiotherapy and the major signaling pathways affected in different tumor types. We provide follow-up on studies that may have used our prior observation with the aim of targeting the CSCs. We conclude with summary of the findings and potential impact of published studies on future use of RAs in the targeting of CSCs and drug resistance.

Keywords

Retinoic acid Aldehyde dehydrogenase Cancer stem cells Chemotherapy 

Notes

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest to declare.

References

  1. 1.
    Jackson B, Brocker C, Thompson DC et al (2011) Update on the aldehyde dehydrogenase gene (ALDH) superfamily. Hum Genom 5:283–303CrossRefGoogle Scholar
  2. 2.
    Vasiliou V, Nebert DW (2005) Analysis and update of the human aldehyde dehydrogenase (ALDH) gene family. Hum Genom 2:138–143Google Scholar
  3. 3.
    Sladek NE (2003) Human aldehyde dehydrogenases: potential pathological, pharmacological, and toxicological impact. J Biochem Mol Toxicol 17:7–23CrossRefPubMedGoogle Scholar
  4. 4.
    Marchitti SA, Brocker C, Stagos D, Vasiliou V (2008) Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol 4:697–720CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ma I, Allan AL (2011) The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Rev 7:292–306CrossRefPubMedGoogle Scholar
  6. 6.
    Moreb JS, Gabr A, Vartikar GR et al (2005) Retinoic acid down-regulates aldehyde dehydrogenase and increases cytotoxicity of 4-hydroperoxycyclophosphamide and acetaldehyde. J Pharmacol Exp Ther 312:339–345CrossRefPubMedGoogle Scholar
  7. 7.
    Moreb JS, Mohuczy D, Ostmark B, Zucali JR (2007) RNAi-mediated knockdown of aldehyde dehydrogenase class-1A1 and class-3A1 is specific and reveals that each contributes equally to the resistance against 4-hydroperoxycyclophosphamide. Cancer Chemother Pharmacol 59:127–136CrossRefPubMedGoogle Scholar
  8. 8.
    Napoli JL (1996) Retinoic acid biosynthesis and metabolism. FASEB J 10:993–1001PubMedGoogle Scholar
  9. 9.
    Ross AC (1993) Cellular metabolism and activation of retinoids: roles of cellular retinoid-binding proteins. FASEB J 7:317–327PubMedGoogle Scholar
  10. 10.
    Kedishvili NY (2013) Enzymology of retinoic acid biosynthesis and degradation. J Lipid Res 54:1744–1760CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Tyagi S, Gupta P, Saini AS et al (2011) The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Technol Res 2:236–240CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Germain P, Chambon P, Eichele G et al (2006) International union of pharmacology. LXIII. Retinoid X receptors. Pharmacol Rev 58:712–725CrossRefPubMedGoogle Scholar
  13. 13.
    Mongan NP, Gudas LJ (2007) Diverse actions of retinoid receptors in cancer prevention and treatment. Differentiation 75:853–870CrossRefPubMedGoogle Scholar
  14. 14.
    Tang XH, Gudas LJ (2011) Retinoids, retinoic acid receptors, and cancer. Annu Rev Pathol 6:345–364CrossRefPubMedGoogle Scholar
  15. 15.
    Doldo E, Costanza G, Agostinelli S et al (2015) Vitamin A, cancer treatment and prevention: the new role of cellular retinol binding proteins. Biomed Res Int 2015:624627CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bushue N, Wan YJ (2010) Retinoid pathway and cancer therapeutics. Adv Drug Deliv Rev 62:1285–1298CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Shinagawa K, Yanada M, Sakura T et al (2014) Tamibarotene as maintenance therapy for acute promyelocytic leukemia: results from a randomized controlled trial. J Clin Oncol 32:3729–3735CrossRefPubMedGoogle Scholar
  18. 18.
    Sanford D, Lo-Coco F, Sanz MA et al (2015) Tamibarotene in patients with acute promyelocytic leukaemia relapsing after treatment with all-trans retinoic acid and arsenic trioxide. Br J Haematol 171:471–477CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ghiaur G, Gerber J, Jones RJ (2012) Concise review: cancer stem cells and minimal residual disease. Stem Cells 30:89–93CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhao J (2016) Cancer stem cells and chemoresistance: the smartest survives the raid. Pharmacol Ther 160:145–158CrossRefPubMedGoogle Scholar
  21. 21.
    Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111CrossRefPubMedGoogle Scholar
  22. 22.
    Moreb JS, Zucali JR, Ostmark B, Benson NA (2007) Heterogeneity of aldehyde dehydrogenase expression in lung cancer cell lines is revealed by Aldefluor flow cytometry-based assay. Cytometry B Clin Cytom 72:281–289CrossRefPubMedGoogle Scholar
  23. 23.
    Moreb JS (2008) Aldehyde dehydrogenase as a marker for stem cells. Curr Stem Cell Res Ther 3:237–246CrossRefPubMedGoogle Scholar
  24. 24.
    Lobo NA, Shimono Y, Qian D, Clarke MF (2007) The biology of cancer stem cells. Annu Rev Cell Dev Biol 23:675–699CrossRefPubMedGoogle Scholar
  25. 25.
    Cheung AM, Wan TS, Leung JC et al (2007) Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia 21:1423–1430CrossRefPubMedGoogle Scholar
  26. 26.
    Ginestier C, Hur MH, Charafe-Jauffret E et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Silva IA, Bai S, McLean K et al (2011) Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res 71:3991–4001CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Cojoc M, Peitzsch C, Kurth I et al (2015) Aldehyde dehydrogenase Is regulated by beta-catenin/TCF and promotes radioresistance in prostate cancer progenitor cells. Cancer Res 75:1482–1494CrossRefPubMedGoogle Scholar
  29. 29.
    Warrier S, Bhuvanalakshmi G, Arfuso F et al (2014) Cancer stem-like cells from head and neck cancers are chemosensitized by the Wnt antagonist, sFRP4, by inducing apoptosis, decreasing stemness, drug resistance and epithelial to mesenchymal transition. Cancer Gene Ther 21:381–388CrossRefPubMedGoogle Scholar
  30. 30.
    Kim SK, Kim H, Lee DH et al (2013) Reversing the intractable nature of pancreatic cancer by selectively targeting ALDH-high, therapy-resistant cancer cells. PLoS ONE 8:e78130CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Suresh R, Ali S, Ahmad A et al (2016) The role of cancer stem cells in recurrent and drug-resistant lung cancer. Adv Exp Med Biol 890:57–74CrossRefPubMedGoogle Scholar
  32. 32.
    Ucar D, Cogle CR, Zucali JR et al (2009) Aldehyde dehydrogenase activity as a functional marker for lung cancer. Chem Biol Interact 178:48–55CrossRefPubMedGoogle Scholar
  33. 33.
    Cherciu I, Bărbălan A, Pirici D et al (2014) Stem cells, colorectal cancer and cancer stem cell markers correlations. Curr Health Sci J 40:153–161PubMedPubMedCentralGoogle Scholar
  34. 34.
    Matsui W, Wang Q, Barber JP et al (2008) Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 68:190–197CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Greco N, Schott T, Mu X et al (2014) ALDH activity correlates with metastatic potential in primary sarcomas of bone. J Cancer Ther 5:331–338CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Januchowski R, Wojtowicz K, Zabel M (2013) The role of aldehyde dehydrogenase (ALDH) in cancer drug resistance. Biomed Pharmacother 67:669–680CrossRefPubMedGoogle Scholar
  37. 37.
    Xu X, Chai S, Wang P et al (2015) Aldehyde dehydrogenases and cancer stem cells. Cancer Lett 369:50–57CrossRefPubMedGoogle Scholar
  38. 38.
    Moreb JS, Ucar D, Han S et al (2012) The enzymatic activity of human aldehyde dehydrogenases 1A2 and 2 (ALDH1A2 and ALDH2) is detected by Aldefluor, inhibited by diethylaminobenzaldehyde and has significant effects on cell proliferation and drug resistance. Chem Biol Interact 195:52–60CrossRefPubMedGoogle Scholar
  39. 39.
    Bertrand G, Maalouf M, Boivin A et al (2014) Targeting head and neck cancer stem cells to overcome resistance to photon and carbon ion radiation. Stem Cell Rev 10:114–126CrossRefPubMedGoogle Scholar
  40. 40.
    Mizuno T, Suzuki N, Makino H et al (2015) Cancer stem-like cells of ovarian clear cell carcinoma are enriched in the ALDH-high population associated with an accelerated scavenging system in reactive oxygen species. Gynecol Oncol 137:299–305CrossRefPubMedGoogle Scholar
  41. 41.
    Pors K, Moreb JS (2014) Aldehyde dehydrogenases in cancer: an opportunity for biomarker and drug development? Drug Discov Today 19:1953–1963CrossRefPubMedGoogle Scholar
  42. 42.
    Koppaka V, Thompson DC, Chen Y et al (2012) Aldehyde dehydrogenase inhibitors: a comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacol Rev 64:520–539CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Chapman MS (2012) Vitamin a: history, current uses, and controversies. Semin Cutan Med Surg 31:11–16CrossRefPubMedGoogle Scholar
  44. 44.
    Huang ME, Ye YC, Chen SR et al (1988) Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72:567–572PubMedGoogle Scholar
  45. 45.
    Cicconi L, Lo-Coco F (2016) Current management of newly diagnosed acute promyelocytic leukemia. Ann Oncol 27:1474–1481CrossRefPubMedGoogle Scholar
  46. 46.
    Matthay KK, Villablanca JG, Seeger RC et al (1999) Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s Cancer Group. N Engl J Med 341:1165–1173CrossRefPubMedGoogle Scholar
  47. 47.
    Masetti R, Biagi C, Zama D et al (2012) Retinoids in pediatric onco-hematology: the model of acute promyelocytic leukemia and neuroblastoma. Adv Ther 29:747–762CrossRefPubMedGoogle Scholar
  48. 48.
    Yu AL, Gilman AL, Ozkaynak MF et al (2010) Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 363:1324–1334CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Walmsley S, Northfelt DW, Melosky B et al (1999) Treatment of AIDS-related cutaneous Kaposi’s sarcoma with topical alitretinoin (9-cis-retinoic acid) gel. Panretin Gel North American Study Group. J Acquir Immune Defic Syndr 22:235–246CrossRefPubMedGoogle Scholar
  50. 50.
    Duvic M, Hymes K, Heald P, Bexarotene Worldwide Study Group et al (2001) Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma: multinational phase II–III trial results. J Clin Oncol 19:2456–2471PubMedGoogle Scholar
  51. 51.
    Heald P, Mehlmauer M, Martin AG, Worldwide Bexarotene Study Group et al (2003) Topical bexarotene therapy for patients with refractory or persistent early-stage cutaneous T-cell lymphoma: results of the phase III clinical trial. J Am Acad Dermatol 49:801–815CrossRefPubMedGoogle Scholar
  52. 52.
    Young MJ, Wu YH, Chiu WT et al (2015) All-trans retinoic acid downregulates ALDH1-mediated stemness and inhibits tumour formation in ovarian cancer cells. Carcinogenesis 36:498–507CrossRefPubMedGoogle Scholar
  53. 53.
    Whitworth JM, Londoño-Joshi AI, Sellers JC et al (2012) The impact of novel retinoids in combination with platinum chemotherapy on ovarian cancer stem cells. Gynecol Oncol 125:226–230CrossRefPubMedGoogle Scholar
  54. 54.
    Nguyen PH, Giraud J, Staedel C et al (2016) All-trans retinoic acid targets gastric cancer stem cells and inhibits patient-derived gastric carcinoma tumor growth. Oncogene 35:5619–5628CrossRefPubMedGoogle Scholar
  55. 55.
    Kawano Y, Kikukawa Y, Fujiwara S et al (2013) Hypoxia reduces CD138 expression and induces an immature and stem cell-like transcriptional program in myeloma cells. Int J Oncol 43:1809–1816PubMedPubMedCentralGoogle Scholar
  56. 56.
    Croker AK, Allan AL (2012) Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDHhiCD44+ human breast cancer cells. Breast Cancer Res Treat 133:75–87CrossRefPubMedGoogle Scholar
  57. 57.
    Yan Y, Li Z, Xu X et al (2016) All-trans retinoic acids induce differentiation and sensitize a radioresistant breast cancer cells to chemotherapy. BMC Complement Altern Med 16:113CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Ma HS, Greenblatt SM, Shirley CM et al (2016) All-trans retinoic acid synergizes with FLT3 inhibition to eliminate FLT3/ITD+ leukemia stem cells in vitro and in vivo. Blood 127:2867–2878CrossRefPubMedGoogle Scholar
  59. 59.
    Moro M, Bertolini G, Pastorino U et al (2015) Combination treatment with all-trans retinoic acid prevents cisplatin-induced enrichment of CD133+ tumor-initiating cells and reveals heterogeneity of cancer stem cell compartment in lung cancer. J Thorac Oncol 10:1027–1036CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Akie K, Dosaka-Akita H, Murakami A, Kawakami Y (2000) A combination treatment of c-myc antisense DNA with all-trans-retinoic acid inhibits cell proliferation by downregulating c-myc expression in small cell lung cancer. Antisense Nucleic Acid Drug Dev 10:243–249CrossRefPubMedGoogle Scholar
  61. 61.
    Ruotsalainen T, Halme M, Isokangas OP et al (2000) Interferon-alpha and 13-cis-retinoic acid as maintenance therapy after high-dose combination chemotherapy with growth factor support for small cell lung cancer–a feasibility study. Anticancer Drugs 11:101–108CrossRefPubMedGoogle Scholar
  62. 62.
    De los Santos M, Zambrano A, Aranda A (2007) Combined effects of retinoic acid and histone deacetylase inhibitors on human neuroblastoma SH-SY5Y cells. Mol Cancer Ther 6:1425–1432CrossRefPubMedGoogle Scholar
  63. 63.
    Schmoch T, Gal Z, Mock A et al (2016) Combined treatment of ATRA with epigenetic drugs increases aggressiveness of glioma xenografts. Anticancer Res 36:1489–1496PubMedGoogle Scholar
  64. 64.
    Tosi P, Pellacani A, Visani G et al (1999) In vitro treatment with retinoids decreases bcl-2 protein expression and enhances dexamethasone-induced cytotoxicity and apoptosis in multiple myeloma cells. Eur J Haematol 62:143–148CrossRefPubMedGoogle Scholar
  65. 65.
    Ramsingh G, Westervelt P, McBride A et al (2014) Phase I study of cladribine, cytarabine, granulocyte colony stimulating factor (CLAG regimen) and midostaurin and all-trans retinoic acid in relapsed/refractory AML. Int J Hematol 99:272–278CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Reynolds CP, Matthay KK, Villablanca JG, Maurer BJ (2003) Retinoid therapy of high-risk neuroblastoma. Cancer Lett 197:185–192CrossRefPubMedGoogle Scholar
  67. 67.
    Dhandapani L, Yue P, Ramalingam SS, Khuri FR, Sun SY (2011) Retinoic acid enhances TRAIL-induced apoptosis in cancer cells by upregulating TRAIL receptor 1 expression. Cancer Res 71:5245–5254CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Raffoux E, Cras A, Recher C et al (2010) Phase 2 clinical trial of 5-azacitidine, valproic acid, and all-trans retinoic acid in patients with high-risk acute myeloid leukemia or myelodysplastic syndrome. Oncotarget 1:34–42CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Bryan M, Pulte ED, Toomey KC et al (2011) A pilot phase II trial of all-trans retinoic acid (Vesanoid) and paclitaxel (Taxol) in patients with recurrent or metastatic breast cancer. Invest New Drugs 29:1482–1487CrossRefPubMedGoogle Scholar
  70. 70.
    Arrieta O, González-De la Rosa CH, Aréchaga-Ocampo E et al (2010) Randomized phase II trial of All-trans-retinoic acid with chemotherapy based on paclitaxel and cisplatin as first-line treatment in patients with advanced non-small-cell lung cancer. J Clin Oncol 28:3463–3471CrossRefPubMedGoogle Scholar
  71. 71.
    Burnett AK, Hills RK, Green C et al (2010) The impact on outcome of the addition of all-trans retinoic acid to intensive chemotherapy in younger patients with nonacute promyelocytic acute myeloid leukemia: overall results and results in genotypic subgroups defined by mutations in NPM1, FLT3, and CEBPA. Blood 115:948–956CrossRefPubMedGoogle Scholar
  72. 72.
    Mu X, Patel S, Mektepbayeva D et al (2015) Retinal targets ALDH positive cancer stem cell and alters the phenotype of highly metastatic osteosarcoma cells. Sarcoma 2015:784954CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Hematology/Oncology Division, Department of MedicineUniversity of FloridaGainesvilleUSA
  2. 2.Genetics DepartmentLSU College of MedicineNew OrleansUSA

Personalised recommendations