Cancer Chemotherapy and Pharmacology

, Volume 78, Issue 6, pp 1199–1207 | Cite as

Linc-ROR confers gemcitabine resistance to pancreatic cancer cells via inducing autophagy and modulating the miR-124/PTBP1/PKM2 axis

  • Chenggang LiEmail author
  • Zhiming Zhao
  • Zhipeng Zhou
  • Rong Liu
Original Article



In this study, we investigated the regulation of linc-ROR on autophagy and gemcitabine resistance of pancreatic cancer cells and further studied the underlying involvement of the miR-124/PTBP1/PKM2 axis in this regulation.


Pancreatic cancer cell lines PANC-1 and MIAPaCa-2 cells were used as in vitro model. Autophagy was assessed by western blot of LC3 I/II and observation GFP-LC3 puncta. Cell viability was examined using CCK-8 assay. Cell apoptosis was examined by flow cytometric analysis of Annexin V/PI staining. QRT-PCR, RNA fluorescence in situ hybridization and dual luciferase assay were used to study the expression and the binding between linc-ROR and miR-124.


Linc-ROR siRNA significantly sensitized PANC-1 and MIAPaCa-2 cells to gemcitabine, while linc-ROR overexpression significantly reduced the sensitivity. Linc-ROR knockdown reduced basal autophagy, while linc-ROR overexpression markedly increased basal autophagy in the cells. Linc-ROR siRNA showed similar effect as 3-MA on enhancing gemcitabine-induced cell apoptosis and also reduced PKM2 expression. MiR-124 overexpression restored PKM1 and reduced PKM2 levels in the cells. In addition, miR-124 mimics also alleviated autophagy in pancreatic cancer cells. Both miR-124 mimics and PKM2 siRNA enhanced gemcitabine-induced cell apoptosis. In both pancreatic cell lines and PADC tissues, linc-ROR is negatively correlated with miR-124 expression. In addition, dual luciferase assay verified two 8mer binding sites between miR-124 and linc-ROR.


Linc-ROR confers gemcitabine resistance to pancreatic cancer cells at least partly via inducing autophagy. There is a linc-ROR/miR-124/PTBP1/PKM2 axis involved in regulation of gemcitabine resistance in pancreatic cancer cells.


Linc-ROR MiR-124 PKM2 Autophagy Gemcitabine Pancreatic cancer 


  1. 1.
    Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64(1):9–29. doi: 10.3322/caac.21208 CrossRefPubMedGoogle Scholar
  2. 2.
    Kleger A, Perkhofer L, Seufferlein T (2014) Smarter drugs emerging in pancreatic cancer therapy. Ann Oncol 25(7):1260–1270. doi: 10.1093/annonc/mdu013 CrossRefPubMedGoogle Scholar
  3. 3.
    Singh S, Chitkara D, Kumar V, Behrman SW, Mahato RI (2013) miRNA profiling in pancreatic cancer and restoration of chemosensitivity. Cancer Lett 334(2):211–220. doi: 10.1016/j.canlet.2012.10.008 CrossRefPubMedGoogle Scholar
  4. 4.
    Papademetrio DL, Cavaliere V, Simunovich T, Costantino S, Campos MD, Lombardo T, Kaiser CM, Alvarez E (2014) Interplay between autophagy and apoptosis in pancreatic tumors in response to gemcitabine. Target Oncol 9(2):123–134. doi: 10.1007/s11523-013-0278-5 CrossRefPubMedGoogle Scholar
  5. 5.
    Song B, Bian Q, Zhang YJ, Shao CH, Li G, Liu AA, Jing W, Liu R, Zhou YQ, Jin G, Hu XG (2015) Downregulation of ASPP2 in pancreatic cancer cells contributes to increased resistance to gemcitabine through autophagy activation. Mol Cancer 14:177. doi: 10.1186/s12943-015-0447-5 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yang MC, Wang HC, Hou YC, Tung HL, Chiu TJ, Shan YS (2015) Blockade of autophagy reduces pancreatic cancer stem cell activity and potentiates the tumoricidal effect of gemcitabine. Mol Cancer 14:179. doi: 10.1186/s12943-015-0449-3 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ying L, Huang Y, Chen H, Wang Y, Xia L, Chen Y, Liu Y, Qiu F (2013) Downregulated MEG3 activates autophagy and increases cell proliferation in bladder cancer. Mol BioSyst 9(3):407–411. doi: 10.1039/c2mb25386k CrossRefPubMedGoogle Scholar
  8. 8.
    Liu Z, Wei X, Zhang A, Li C, Bai J, Dong J (2016) Long non-coding RNA HNF1A-AS1 functioned as an oncogene and autophagy promoter in hepatocellular carcinoma through sponging hsa-miR-30b-5p. Biochem Biophys Res Commun 473(4):1268–1275. doi: 10.1016/j.bbrc.2016.04.054 CrossRefPubMedGoogle Scholar
  9. 9.
    Li L, Chen H, Gao Y, Wang YW, Zhang GQ, Pan SH, Ji L, Kong R, Wang G, Jia YH, Bai XW, Sun B (2016) Long noncoding RNA MALAT1 promotes aggressive pancreatic cancer proliferation and metastasis via the stimulation of autophagy. Mol Cancer Ther. doi: 10.1158/1535-7163.MCT-16-0008 Google Scholar
  10. 10.
    Loewer S, Cabili MN, Guttman M, Loh YH, Thomas K, Park IH, Garber M, Curran M, Onder T, Agarwal S, Manos PD, Datta S, Lander ES, Schlaeger TM, Daley GQ, Rinn JL (2010) Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 42(12):1113–1117. doi: 10.1038/ng.710 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhan HX, Wang Y, Li C, Xu JW, Zhou B, Zhu JK, Han HF, Wang L, Wang YS, Hu SY (2016) LincRNA-ROR promotes invasion, metastasis and tumor growth in pancreatic cancer through activating ZEB1 pathway. Cancer Lett 374(2):261–271. doi: 10.1016/j.canlet.2016.02.018 CrossRefPubMedGoogle Scholar
  12. 12.
    Gao S, Wang P, Hua Y, Xi H, Meng Z, Liu T, Chen Z, Liu L (2016) ROR functions as a ceRNA to regulate Nanog expression by sponging miR-145 and predicts poor prognosis in pancreatic cancer. Oncotarget 7(2):1608–1618. doi: 10.18632/oncotarget.6450 PubMedGoogle Scholar
  13. 13.
    Wang P, Chen L, Zhang J, Chen H, Fan J, Wang K, Luo J, Chen Z, Meng Z, Liu L (2014) Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1. Oncogene 33(4):514–524. doi: 10.1038/onc.2012.598 CrossRefPubMedGoogle Scholar
  14. 14.
    Wang H, Ye Y, Zhu Z, Mo L, Lin C, Wang Q, Wang H, Gong X, He X, Lu G, Lu F, Zhang S (2016) MiR-124 regulates apoptosis and autophagy process in MPTP model of Parkinson’s disease by targeting to bim. Brain Pathol 26(2):167–176. doi: 10.1111/bpa.12267 CrossRefPubMedGoogle Scholar
  15. 15.
    Gu H, Liu M, Ding C, Wang X, Wang R, Wu X, Fan R (2016) Hypoxia-responsive miR-124 and miR-144 reduce hypoxia-induced autophagy and enhance radiosensitivity of prostate cancer cells via suppressing PIM1. Cancer Med 5(6):1174–1182. doi: 10.1002/cam4.664 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Taniguchi K, Sugito N, Kumazaki M, Shinohara H, Yamada N, Nakagawa Y, Ito Y, Otsuki Y, Uno B, Uchiyama K, Akao Y (2015) MicroRNA-124 inhibits cancer cell growth through PTB1/PKM1/PKM2 feedback cascade in colorectal cancer. Cancer Lett 363(1):17–27. doi: 10.1016/j.canlet.2015.03.026 CrossRefPubMedGoogle Scholar
  17. 17.
    Li C, Zhao Z, Zhou Z, Liu R (2016) PKM2 promotes cell survival and invasion under metabolic stress by enhancing warburg effect in pancreatic ductal adenocarcinoma. Dig Dis Sci 61(3):767–773. doi: 10.1007/s10620-015-3931-2 CrossRefPubMedGoogle Scholar
  18. 18.
    Wang RC, Wei Y, An Z, Zou Z, Xiao G, Bhagat G, White M, Reichelt J, Levine B (2012) Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338(6109):956–959. doi: 10.1126/science.1225967 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gupta A, Mo YY (2011) Detection of microRNAs in cultured cells and paraffin-embedded tissue specimens by in situ hybridization. Methods Mol Biol 676:73–83. doi: 10.1007/978-1-60761-863-8_6 CrossRefPubMedGoogle Scholar
  20. 20.
    Calabretta S, Bielli P, Passacantilli I, Pilozzi E, Fendrich V, Capurso G, Fave GD, Sette C (2016) Modulation of PKM alternative splicing by PTBP1 promotes gemcitabine resistance in pancreatic cancer cells. Oncogene 35(16):2031–2039. doi: 10.1038/onc.2015.270 CrossRefPubMedGoogle Scholar
  21. 21.
    Hou P, Zhao Y, Li Z, Yao R, Ma M, Gao Y, Zhao L, Zhang Y, Huang B, Lu J (2014) LincRNA-ROR induces epithelial-to-mesenchymal transition and contributes to breast cancer tumorigenesis and metastasis. Cell Death Dis 5:e1287. doi: 10.1038/cddis.2014.249 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhou X, Gao Q, Wang J, Zhang X, Liu K, Duan Z (2014) Linc-RNA-RoR acts as a “sponge” against mediation of the differentiation of endometrial cancer stem cells by microRNA-145. Gynecol Oncol 133(2):333–339. doi: 10.1016/j.ygyno.2014.02.033 CrossRefPubMedGoogle Scholar
  23. 23.
    Li L, Gu M, Bo Y, Shi S, Shan Y, Bao L, Yiwen Y (2016) Long non-coding RNA ROR promotes proliferation, migration and chemoresistance of nasopharyngeal carcinoma. Cancer Sci. doi: 10.1111/cas.12989 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Chenggang Li
    • 1
    Email author
  • Zhiming Zhao
    • 1
  • Zhipeng Zhou
    • 1
  • Rong Liu
    • 1
  1. 1.Department of Surgical OncologyChinese PLA General HospitalBeijingChina

Personalised recommendations