Advertisement

Cancer Chemotherapy and Pharmacology

, Volume 78, Issue 4, pp 735–744 | Cite as

Discovery of LW6 as a new potent inhibitor of breast cancer resistance protein

  • Jae Guen Song
  • Yeo Song Lee
  • Jin-Ah Park
  • Eun-Hye Lee
  • Soo-Jeong Lim
  • Seung Jun Yang
  • Mengjia Zhao
  • Kyeong Lee
  • Hyo-Kyung Han
Original Article

Abstract

Purpose

The present study aimed to discover a new potent BCRP inhibitor overcoming multidrug resistance.

Methods

Effects of LW6 on the functional activity and gene expression of two major efflux transporters, BCRP and P-gp, were evaluated by using MDCKII cells overexpressing each transporter (MDCKII-BCRP and MDCKII-MDR1). Its effects on the cytotoxicity and pharmacokinetics of co-administered anticancer drugs were also evaluated in transfected cells and rats, respectively.

Results

In MDCKII-BCRP cells overexpressing BCRP, LW6 enhanced significantly (p < 0.05) the cellular accumulation of mitoxantrone, a BCRP substrate, and was more potent than Ko143, a well-known BCRP inhibitor. LW6 also down-regulated BCRP expression at concentrations of 0.1–10 µM. Furthermore, cells became more susceptible to the cytotoxicity of anticancer drugs in the presence of LW6. The CC50 values of mitoxantrone and doxorubicin were reduced by three- and tenfold, respectively, in MDCKII-BCRP cells, while LW6 did not affect the cytotoxicity of anticancer drugs in MDCKII-mock cells lacking BCRP transporter. Furthermore, LW6 improved the oral exposure of methotrexate by twofold in rats. In contrast to BCRP, LW6 had no inhibition effect on the functional activity and gene expression of P-gp.

Conclusion

LW6 was newly identified as a potent BCRP inhibitor and could be useful to reduce the multidrug resistance of cancer cells via the inhibition of BCRP-mediated drug efflux as well as the down-regulation of BCRP expression.

Keywords

LW6 BCRP Cancer Multidrug resistance Inhibitor 

Notes

Acknowledgments

This research was supported by a Grant (16173MFDS542) from Ministry of Food and Drug Safety in 2016, by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2016R1A2B2010097), and by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MEST) (Number 2012053532).

Compliance with ethical standards

Conflict of interest

The authors report no conflicts of interest in this work.

References

  1. 1.
    Sarkadi B, Homolya L, Szakacs G, Varadi A (2006) Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev 86:1179–1236CrossRefPubMedGoogle Scholar
  2. 2.
    Dano K (1973) Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells. Biochim Biophys Acta 323:466–483CrossRefPubMedGoogle Scholar
  3. 3.
    Girardin F (2006) Membrane transporter proteins: a challenge for CNS drug development. Dialogues Clin Neurosci 8:311–321PubMedPubMedCentralGoogle Scholar
  4. 4.
    Shukla S, Ohnuma S, Ambudkar SV (2011) Improving cancer chemotherapy with modulators of ABC drug transporters. Curr Drug Targets 12:621–630CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wu CP, Calcagno AM, Ambudkar SV (2008) Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells: evaluation of current strategies. Curr Mol Pharmacol 1:93–105CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Jonker JW, Buitelaar M, Wagenaar E, Van Der Valk MA, Scheffer GL, Scheper RJ, Plosch T, Kuipers F, Elferink RP, Rosing H, Beijnen JH, Schinkel AH (2002) The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci USA 99:15649–15654CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Maliepaard M, Scheffer GL, Faneyte IF, van Gastelen MA, Pijnenborg AC, Schinkel AH, van De Vijver MJ, Scheper RJ, Schellens JH (2001) Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res 61:3458–3464PubMedGoogle Scholar
  8. 8.
    Allen JD, van Loevezijn A, Lakhai JM, van der Valk M, van Tellingen O, Reid G, Schellens JH, Koomen GJ, Schinkel AH (2002) Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther 1:417–425CrossRefPubMedGoogle Scholar
  9. 9.
    Ozvegy C, Litman T, Szakács G, Nagy Z, Bates S, Váradi A, Sarkadi B (2001) Functional characterization of the human multidrug transporter, ABCG2, expressed in insect cells. Biochem Biophys Res Commun 285:111–117CrossRefPubMedGoogle Scholar
  10. 10.
    Doyle L, Ross DD (2003) Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 22:7340–7358CrossRefPubMedGoogle Scholar
  11. 11.
    Benderra Z, Faussat AM, Sayada L, Perrot JY, Chaoui D, Marie JP, Legrand O (2004) Breast cancer resistance protein and P-glycoprotein in 149 adult acute myeloid leukemias. Clin Cancer Res 10:7896–7902CrossRefPubMedGoogle Scholar
  12. 12.
    Steinbach D, Sell W, Voigt A, Hermann J, Zintl F, Sauerbrey A (2002) BCRP gene expression is associated with a poor response to remission induction therapy in childhood acute myeloid leukemia. Leukemia 16:1443–1447CrossRefPubMedGoogle Scholar
  13. 13.
    Suvannasankha A, Minderman H, O’Loughlin KL, Nakanishi T, Ford LA, Greco WR, Wetzler M, Ross DD, Baer MR (2004) Breast cancer resistance protein (BCRP/MXR/ABCG2) in adult acute lymphoblastic leukaemia: frequent expression and possible correlation with shorter disease-free survival. Br J Haematol 127:392–398CrossRefPubMedGoogle Scholar
  14. 14.
    Uggla B, Ståhl E, Wågsäter D, Paul C, Karlsson MG, Sirsjö A, Tidefelt U (2005) BCRP mRNA expression v. clinical outcome in 40 adult AML patients. Leuk Res 29:141–146CrossRefPubMedGoogle Scholar
  15. 15.
    Saito H, Hirano H, Nakagawa H, Fukami T, Oosumi K, Murakami K, Kimura H, Kouchi T, Konomi M, Tao E, Tsujikawa N, Tarui S, Nagakura M, Osumi M, Ishikawa T (2006) A new strategy of high-speed screening and quantitative structure-activity relationship analysis to evaluate human ATP-binding cassette transporter ABCG2-drug interactions. J Pharmacol Exp Ther 317:1114–1124CrossRefPubMedGoogle Scholar
  16. 16.
    Mao Q, Unadkat JD (2015) Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS J 17:65–82CrossRefPubMedGoogle Scholar
  17. 17.
    Raderer M, Scheithauer W (1993) Clinical trials of agents that reverse multidrug resistance. A literature review. Cancer 72:3553–3563CrossRefPubMedGoogle Scholar
  18. 18.
    Pick A, Müller H, Wiese M (2008) Structure-activity relationships of new inhibitors of breast cancer resistance protein (ABCG2). Bioorg Med Chem 16:8224–8236CrossRefPubMedGoogle Scholar
  19. 19.
    Weidner LD, Zoghbi SS, Lu S, Shukla S, Ambudkar SV, Pike VW, Mulder J, Gottesman MM, Innis RB, Hall MD (2015) The inhibitor Ko143 is not specific for ABCG2. J Pharmacol Exp Ther 354:384–393CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kim BS, Lee K, Jung HJ, Bhattarai D, Kwon HJ (2015) HIF-1alpha suppressing small molecule, LW6, inhibits cancer cell growth by binding to calcineurin b homologous protein 1. Biochem Biophys Res Commun 458:14–20CrossRefPubMedGoogle Scholar
  21. 21.
    Lee K, Kang JE, Park SK, Jin Y, Chung KS, Kim HM, Lee K, Kang MR, Lee MK, Song KB, Yang EG, Lee JJ, Won M (2010) LW6, a novel HIF-1 inhibitor, promotes proteasomal degradation of HIF-1alpha via upregulation of VHL in a colon cancer cell line. Biochem Pharmacol 80:982–989CrossRefPubMedGoogle Scholar
  22. 22.
    Sato M, Hirose K, Kashiwakura I, Aoki M, Kawaguchi H, Hatayama Y, Akimoto H, Narita Y, Takai Y (2015) LW6, a hypoxiainducible factor 1 inhibitor, selectively induces apoptosis in hypoxic cells through depolarization of mitochondria in A549 human lung cancer cells. Mol Med Rep 12:3462–3468PubMedPubMedCentralGoogle Scholar
  23. 23.
    Wei Y, Ma Y, Zhao Q, Ren Z, Li Y, Hou T, Peng H (2012) New use for an old drug: inhibiting ABCG2 with sorafenib. Mol Cancer Ther 11:1693–1702CrossRefPubMedGoogle Scholar
  24. 24.
    Krishnamurthy P, Ross DD, Nakanishi T, Bailey-Dell K, Zhou S, Mercer KE, Sarkadi B, Sorrentino BP, Schuetz JD (2004) The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem 279:24218–24225CrossRefPubMedGoogle Scholar
  25. 25.
    Shi YH, Fang WG (2004) Hypoxia-inducible factor-1 in tumour angiogenesis. World J Gastroenterol 10:1082–1087PubMedPubMedCentralGoogle Scholar
  26. 26.
    Denko NC, Fontana LA, Hudson KM, Sutphin PD, Raychaudhuri S, Altman R, Giaccia AJ (2003) Investigating hypoxic tumor physiology through gene expression patterns. Oncogene 22:5907–5914CrossRefPubMedGoogle Scholar
  27. 27.
    Wenger RH (2002) Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J 16:1151–1162CrossRefPubMedGoogle Scholar
  28. 28.
    Chen HC, Sytwu HK, Chang JL, Wang HW, Chen HK, Kang BH, Liu DW, Chen CH, Chao TT, Wang CH (2011) Hypoxia enhances the stemness markers of cochlear stem/progenitor cells and expands sphere formation through activation of hypoxia-inducible factor-1 alpha. Hear Res 275:43–52CrossRefPubMedGoogle Scholar
  29. 29.
    Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, Nakada K, Honma Y, Hayashi J (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320:661–664CrossRefPubMedGoogle Scholar
  30. 30.
    Kazi AA, Gilani RA, Schech AJ, Chumsri S, Sabnis G, Shah P, Goloubeva O, Kronsberg S, Brodie AH (2014) Nonhypoxic regulation and role of hypoxia-inducible factor 1 in aromatase inhibitor resistant breast cancer. Breast Cancer Res 16:R15CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nakanishi T, Ross DD (2012) Breast cancer resistance protein (BCRP/ABCG2):its role in multidrug resistance and regulation of its gene expression. Chin J Cancer 31:73–99CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Tomiyasu H, Watanabe M, Sugita K, Goto-Koshino Y, Fujino Y, Ohno K, Sugano S, Tsujimoto H (2013) Regulations of ABCB1 and ABCG2 expression through MAPK pathways in acute lymphoblastic leukemia cell lines. Anticancer Res 33:5317–5323PubMedGoogle Scholar
  33. 33.
    Porcelli L, Giovannetti E, Assaraf YG, Jansen G, Scheffer GL, Kathman I, Azzariti A, Paradiso A, Peters GJ (2014) The EGFR pathway regulates BCRP expression in NSCLC cells: role of erlotinib. Curr Drug Targets 15:1322–1330CrossRefPubMedGoogle Scholar
  34. 34.
    Hori S, Ohtsuki S, Tachikawa M, Kimura N, Kondo T, Watanabe M, Nakashima E, Terasaki T (2004) Functional expression of rat ABCG2 on the luminal side of brain capillaries and its enhancement by astrocyte-derived soluble factor(s). J Neurochem 90:526–536CrossRefPubMedGoogle Scholar
  35. 35.
    Vlaming ML, van Esch A, van de Steeg E, Pala Z, Wagenaar E, van Tellingen O, Schinkel AH (2011) Impact of abcc2 [multidrug resistance-associated protein (MRP) 2], abcc3 (MRP3), and abcg2 (breast cancer resistance protein) on the oral pharmacokinetics of methotrexate and its main metabolite 7-hydroxymethotrexate. Drug Metab Dispos 39:1338–1344CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jae Guen Song
    • 1
  • Yeo Song Lee
    • 1
  • Jin-Ah Park
    • 1
  • Eun-Hye Lee
    • 2
  • Soo-Jeong Lim
    • 2
  • Seung Jun Yang
    • 1
  • Mengjia Zhao
    • 1
  • Kyeong Lee
    • 1
  • Hyo-Kyung Han
    • 1
  1. 1.College of PharmacyDongguk University-SeoulGoyangKorea
  2. 2.Department of Bioscience and Bioengineering, Institute of BioscienceSejong UniversitySeoulKorea

Personalised recommendations