Advertisement

Cancer Chemotherapy and Pharmacology

, Volume 78, Issue 3, pp 541–545 | Cite as

A phase II study of the HSP90 inhibitor AUY922 in chemotherapy refractory advanced pancreatic cancer

  • D. J. RenoufEmail author
  • D. Hedley
  • M. K. Krzyzanowska
  • M. Schmuck
  • L. Wang
  • M. J. Moore
Original Article

Abstract

Objectives

AUY922 is a novel heat shock protein inhibitor with preclinical activity in pancreatic cancer. This phase II study evaluated the efficacy of AUY922 in patients with advanced pancreatic cancer previously treated with chemotherapy.

Methods

In this single-arm, Simon two-stage phase II trial, patients with metastatic or locally advanced pancreatic ductal adenocarcinoma who had progressed on at least one line of chemotherapy and were of good performances status (ECOG 0 or 1) were treated with AUY922 at a dose of 70 mg/m2 IV weekly. The primary endpoint was disease control rate (objective response and stable disease ≥16 weeks).

Results

Twelve patients were accrued, all of whom received treatment. At least possibly related ≥grade 3 adverse events included fatigue (8 %) and AST elevation (8 %). Ten patients were evaluable for response with 1 (10 %) having stable disease and 9 (90 %) progressive disease. The median progression-free survival was 1.6 months, and the median overall survival was 2.9 months.

Conclusions

AUY922 was not associated with significant efficacy in previously treated patients with advanced pancreatic cancer.

Keywords

Pancreatic cancer AUY922 Phase II 

Notes

Acknowledgments

This study was funded by a grant from Novartis. Novartis did not contribute to the data analysis, interpretation, or manuscript writing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no relevant conflicts of interest.

References

  1. 1.
    Rahib L et al (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74:2913–2921CrossRefPubMedGoogle Scholar
  2. 2.
    Conroy T, Desseigne F, Ychou M et al (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364:1817–1825CrossRefPubMedGoogle Scholar
  3. 3.
    Von Hoff DD et al (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369:1691–1703CrossRefGoogle Scholar
  4. 4.
    Kulke MH, Blaszkowsky LS, Ryan DP et al (2007) Capecitabine plus erlotinib in gemcitabine-refractory advanced pancreatic cancer. J Clin Oncol 25:4787–4792CrossRefPubMedGoogle Scholar
  5. 5.
    Cantore M, Rabbi C, Fiorentini G et al (2004) Combined irinotecan and oxaliplatin in patients with advanced pre-treated pancreatic cancer. Oncology 67:93–97CrossRefPubMedGoogle Scholar
  6. 6.
    Demols A, Peeters M, Polus M et al (2006) Gemcitabine and oxaliplatin (GEMOX) in gemcitabine refractory advanced pancreatic adenocarcinoma: a phase II study. Br J Cancer 94:481–485CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Xiong HQ, Varadhachary GR, Blais JC et al (2008) Phase 2 trial of oxaliplatin plus capecitabine (XELOX) as second-line therapy for patients with advanced pancreatic cancer. Cancer 113:2046–2052CrossRefPubMedGoogle Scholar
  8. 8.
    Sudo K, Yamaguchi T, Nakamura K et al (2011) Phase II study of S-1 in patients with gemcitabine-resistant advanced pancreatic cancer. Cancer Chemother Pharmacol 67:249–254CrossRefPubMedGoogle Scholar
  9. 9.
    Wolpin BM, Hezel AF, Abrams T et al (2009) Oral mTOR inhibitor everolimus in patients with gemcitabine-refractory metastatic pancreatic cancer. J Clin Oncol 27:193–198CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hosein PJ, de Lima Lopes G Jr, Pastorini VH et al (2013) A phase II trial of nab-Paclitaxel as second-line therapy in patients with advanced pancreatic cancer. Am J Clin Oncol 36(2):141–156CrossRefGoogle Scholar
  11. 11.
    Pelzer U, Kubica K, Stieler J et al (2008) A randomized trial in patients with gemcitabine refractory pancreatic cancer. Final results of the CONKO 003 study. J Clin Oncol 26:4508Google Scholar
  12. 12.
    Gill S, Ko YJ, Cripps C et al (2014) PANCREOX: a randomized phase 3 study of 5FU/LV with or without oxaliplatin for second-line advanced pancreatic cancer (APC) in patients (pts) who have received gemcitabine (GEM)-based chemotherapy (CT). J Clin Oncol 32(5s):4022Google Scholar
  13. 13.
    Renouf DJ et al (2014) A phase II study of erlotinib in gemcitabine refractory advanced pancreatic cancer. Eur J Cancer (Oxf Engl 1990) 50:1909–1915CrossRefGoogle Scholar
  14. 14.
    Pearl LH, Prodromou C (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 71:271–294CrossRefGoogle Scholar
  15. 15.
    Pratt W, Toft D (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med 228:111–133Google Scholar
  16. 16.
    Kamal A, Thao L, Sensintaffar J et al (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425:407–410CrossRefPubMedGoogle Scholar
  17. 17.
    Novartis AUY922 Investigator’s Brochure, July 2010Google Scholar
  18. 18.
    Erlichmann C (2009) Tanespimycin: the opportunities and challenges of targeting heat shock protein 90. Expert Opin Investig Drugs 18(6):861–868CrossRefGoogle Scholar
  19. 19.
    Jensen M, Schoepfer J, Radimerski T et al (2008) NVP-AUY922: a small molecule HSP90 inhibitor with potent antitumor activity in preclinical breast cancer models. Breast Cancer Res 10(2):R33CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Moser C, Lang SA, Hackl C et al (2012) Targeting HSP90 by the novel inhibitor NVP-AUY922 reduces growth and angiogenesis of pancreatic cancer. Anticancer Res 32(7):2551–2561PubMedGoogle Scholar
  21. 21.
    Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European organization for research and treatment of cancer, national cancer institute of the united states, national cancer institute of canada. J Natl Cancer Inst 92:205–216CrossRefPubMedGoogle Scholar
  22. 22.
    Simon R (1989) Optimal two-stage designs for phase II clinical trials. Control Clin Trials 10:1–10CrossRefPubMedGoogle Scholar
  23. 23.
    Infante JR, Somer BG, Park JO et al (2014) A randomised, double-blind, placebo-controlled trial of trametinib, an oral MEK inhibitor, in combination with gemcitabine for patients with untreated metastatic adenocarcinoma of the pancreas. Eur J Cancer 50(12):2072–2081CrossRefPubMedGoogle Scholar
  24. 24.
    Ko AH, Bekaii-Saab T, Van Ziffle J et al (2016) A multicenter, open-label phase II clinical trial of combined MEK plus EGFR inhibition for chemotherapy-refractory advanced pancreatic adenocarcinoma. Clin Cancer Res 22(1):61–68CrossRefPubMedGoogle Scholar
  25. 25.
    Kaufman B, Shapira-Frommer R, Schmutzler RK et al (2015) Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol 33(3):244–250CrossRefPubMedGoogle Scholar
  26. 26.
    Holter S, Borgida A, Dodd A et al (2015) Germline BRCA mutations in a large clinic-based cohort of patients with pancreatic adenocarcinoma. J Clin Oncol 33(28):3124–3129CrossRefPubMedGoogle Scholar
  27. 27.
    Le DT, Wang-Gillam A, Picozzi V et al (2015) Safety and survival with GVAX pancreas prime and listeria monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J Clin Oncol 33(12):1325–1333CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Phase II study of MEDI4736 monotherapy or in combinations with tremelimumab in metastatic pancreatic ductal carcinoma. NCT02558894Google Scholar
  29. 29.
    Le DT, Uram JN, Wang H et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Riazy M, Kalloger S, Sheffeld B et al. (2015) Mismatch repair status may predict response to adjuvant chemotherapy in resectable pancreatic ductal adenocarcinoma. Modern Pathol 28(10): 1383–1389CrossRefGoogle Scholar
  31. 31.
    Waddell N et al (2015) Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518:495–501CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Sausen M, Phallen J, Adleff V et al (2015) Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nat Commun 7(6):7686CrossRefGoogle Scholar
  33. 33.
    Moffitt RA, Marayati R, Flate EL et al (2015) Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet 47(10):1168–1178CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Bailey P, Chang DK, Nones K et al. (2016) Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531(7592):47–52CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • D. J. Renouf
    • 1
    Email author
  • D. Hedley
    • 2
  • M. K. Krzyzanowska
    • 2
  • M. Schmuck
    • 2
  • L. Wang
    • 2
  • M. J. Moore
    • 1
  1. 1.British Columbia Cancer Agency, University of British ColumbiaVancouverCanada
  2. 2.University Health Network-Princess Margaret Cancer CentreTorontoCanada

Personalised recommendations