Advertisement

Cancer Chemotherapy and Pharmacology

, Volume 77, Issue 3, pp 659–662 | Cite as

Protective effects of mito-TEMPO against doxorubicin cardiotoxicity in mice

  • Viviane Costa Junqueira Rocha
  • Luciana Souza de Aragão França
  • Cintia Figueiredo de Araújo
  • Ayling Martins Ng
  • Candace Machado de Andrade
  • André Cronemberger Andrade
  • Emanuelle de Souza Santos
  • Mariana da Cruz Borges-Silva
  • Simone Garcia Macambira
  • Alberto Augusto Noronha-Dutra
  • Lain Carlos Pontes-de-Carvalho
Short Communication

Abstract

Purpose

Doxorubicin (DOX) is a chemotherapeutic that is widely used for the treatment of many human tumors. However, the development of cardiotoxicity has limited its use. The aim of the present study was to evaluate the possible efficacy of mito-TEMPO (mito-T) as a protective agent against DOX-induced cardiotoxicity in mice.

Methods

C57BL/6 mice were treated twice with mito-T at low (5 mg/kg body weight) or high (20 mg/kg body weight) dose and once with DOX (24 mg/kg body weight) or saline (0.1 mL/20 g body weight) by means of intraperitoneal injections. The levels of malondialdehyde (MLDA), a marker of lipid peroxidation, and serum levels of creatine kinase were evaluated 48 h after the injection of DOX.

Results

DOX induced lipid peroxidation in heart mitochondria (p < 0.001), and DOX-treated mice receiving mito-T at low dose had levels of MLDA significantly lower than the mice that received only DOX (p < 0.01). Furthermore, administration of mito-T alone did not cause any significant changes from control values. Additionally, DOX-treated mice treated with mito-T at high dose showed decrease in serum levels of total CK compared to mice treated with DOX alone (p < 0.05).

Conclusion

Our results indicate that mito-T protects mice against DOX-induced cardiotoxicity.

Keywords

Doxorubicin Cardiotoxicity Mitochondria Mito-TEMPO 

Notes

Acknowledgments

This work was financially supported by Fundação de Amparo a Pesquisa do Estado da Bahia—FAPESB (www.fapesb.ba.gov.br), State Government of Bahia, Brazil. VCJR received a scholarship from Fundação Oswaldo Cruz, Brazil. LCPC have productivity scholarship from Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (www.cnpq.br), Ministry of Science and Technology, Brazil.

Compliance with ethical standards

Conflict of interest

The authors have declared that no competing interests exist.

References

  1. 1.
    Arcamone F, Franceschi G, Penco S, Selva A (1969) Adriamycin (14-hydroxydaunomycin), a novel antitumor antibiotic. Tetrahedron Lett 10:1007–1010. doi: 10.1016/S0040-4039(01)97723-8 CrossRefGoogle Scholar
  2. 2.
    Lefrak EA, Piťha J, Rosenheim S, Gottlieb JA (1973) A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer 32:302–314. doi: 10.1002/1097-0142(197308)32:2<302:AID-CNCR2820320205>3.0.CO;2-2 CrossRefPubMedGoogle Scholar
  3. 3.
    Li B, Kim D, Yadav R et al (2015) Sulforaphane prevents doxorubicin-induced oxidative stress and cell death in rat H9c2 cells. Int J Mol Med 36:53–64. doi: 10.3892/ijmm.2015.2199 PubMedCentralPubMedGoogle Scholar
  4. 4.
    Costa VM, Carvalho F, Duarte JA et al (2013) The heart as a target for xenobiotic toxicity: the cardiac susceptibility to oxidative stress. Chem Res Toxicol 26:1285–1311. doi: 10.1021/tx400130v CrossRefPubMedGoogle Scholar
  5. 5.
    Granados-Principal S, Quiles JL, Ramirez-Tortosa CL et al (2010) New advances in molecular mechanisms and the prevention of adriamycin toxicity by antioxidant nutrients. Food Chem Toxicol 48:1425–1438. doi: 10.1016/j.fct.2010.04.007 CrossRefPubMedGoogle Scholar
  6. 6.
    Dikalova AE, Bikineyeva AT, Budzyn K et al (2010) Therapeutic targeting of mitochondrial superoxide in hypertension. Circ Res 107:106–116. doi: 10.1161/CIRCRESAHA.109.214601 PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Patil NK, Parajuli N, MacMillan-Crow LA, Mayeux PR (2014) Inactivation of renal mitochondrial respiratory complexes and manganese superoxide dismutase during sepsis: mitochondria-targeted antioxidant mitigates injury. Am J Physiol Ren Physiol 306:F734–F743. doi: 10.1152/ajprenal.00643.2013 CrossRefGoogle Scholar
  8. 8.
    Pan S, Wang N, Bisetto S et al (2015) Downregulation of adenine nucleotide translocator 1 exacerbates tumor necrosis factor-α-mediated cardiac inflammatory responses. Am J Physiol Heart Circ Physiol 308:H39–H48. doi: 10.1152/ajpheart.00330.2014 PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Wang Z, Wang J, Xie R et al (2015) Mitochondria-derived reactive oxygen species play an important role in doxorubicin-induced platelet apoptosis. Int J Mol Sci 16:11087–11100. doi: 10.3390/ijms160511087 PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Fernández-Vizarra E, Ferrín G, Pérez-Martos A et al (2010) Isolation of mitochondria for biogenetical studies: an update. Mitochondrion 10:253–262. doi: 10.1016/j.mito.2009.12.148 CrossRefPubMedGoogle Scholar
  11. 11.
    Abdella BR, Fisher J (1985) A chemical perspective on the anthracycline antitumor antibiotics. Environ Health Perspect 64:4–18. doi: 10.1289/ehp.85644 PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Octavia Y, Tocchetti CG, Gabrielson KL et al (2012) Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol 52:1213–1225. doi: 10.1016/j.yjmcc.2012.03.006 CrossRefPubMedGoogle Scholar
  13. 13.
    Hassan MH, El-Beshbishy HA, Aly H et al (2014) Modulatory effects of meloxicam on cardiotoxicity and antitumor activity of doxorubicin in mice. Cancer Chemother Pharmacol 74:559–569. doi: 10.1007/s00280-014-2544-3 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Viviane Costa Junqueira Rocha
    • 1
  • Luciana Souza de Aragão França
    • 1
  • Cintia Figueiredo de Araújo
    • 1
  • Ayling Martins Ng
    • 1
  • Candace Machado de Andrade
    • 1
  • André Cronemberger Andrade
    • 2
  • Emanuelle de Souza Santos
    • 1
  • Mariana da Cruz Borges-Silva
    • 1
  • Simone Garcia Macambira
    • 1
  • Alberto Augusto Noronha-Dutra
    • 1
    • 3
  • Lain Carlos Pontes-de-Carvalho
    • 1
  1. 1.Gonçallo Moniz Research CenterFundação Oswaldo CruzSalvadorBrazil
  2. 2.Laboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosUniversidade Federal de São PauloSão PauloBrazil
  3. 3.University College LondonLondonUK

Personalised recommendations