Cancer Chemotherapy and Pharmacology

, Volume 75, Issue 2, pp 343–352 | Cite as

A Phase I/biomarker study of bevacizumab in combination with CNTO 95 in patients with advanced solid tumors

  • Hope E. Uronis
  • Jingquan Jia
  • Johanna C. Bendell
  • Leigh Howard
  • Neal A. Ready
  • Paula H. Lee
  • Mark D. Starr
  • Andrew Dellinger
  • Herbert Pang
  • Andrew B. Nixon
  • Herbert I. HurwitzEmail author
Original Article



Inhibition of tumor angiogenesis is an effective mechanism to limit tumor growth; dual inhibition may result in additional benefit. Bevacizumab is a monoclonal antibody directed against vascular endothelial growth factor (VEGF), and intetumumab is a fully humanized monoclonal antibody that blocks αv integrins when complexed with β integrins. We evaluated the safety, tolerability, and efficacy of the combination of bevacizumab plus intetumumab in patients with refractory solid tumors. We also explored the effects of these agents on plasma-based biomarkers and wound angiogenesis.


Patients with refractory solid tumors, Karnofsky performance status ≥70 %, and adequate organ function were eligible. Plasma samples and wound biopsies were obtained at baseline and on-treatment.


Twelve patients were enrolled and received study drug. No tumor responses were noted. Observed toxicities included three cases of transient uveitis likely related to intetumumab and one case of reversible posterior leukoencephalopathy syndrome likely related to bevacizumab. Biomarker analysis revealed changes in soluble endoglin, soluble E-cadherin, and soluble E-selectin as well as PlGF and VEGF-D while on treatment. There was no observed impact of bevacizumab plus intetumumab on the phosphorylated or total levels of paxillin in wound tissue; however, an increase in the ratio of phospho/total paxillin levels was noted.


Bevacizumab and intetumumab can be administered safely in combination. Bevacizumab plus intetumumab treatment resulted in changes in the plasma levels of several extracellular matrix interacting proteins and angiogenic factors.


Intetumumab Bevacizumab Angiogenesis Phase I 



We would like to thank the study sponsors, Genentech and Johnson & Johnson (Centocor), for providing support. We would also like to thank the patients and families who participated in this research as well as the members of our research team.

Conflict of interest

Dr. Uronis and Dr. Hurwitz receive research funding from Genentech Roche. Dr. Hurwitz and Dr. Ready serve as advisors and receive honoraria from Genentech Roche. Dr. Nixon receives research funding from Genentech Roche and Johnson & Johnson (Centocor). All other authors have no financial conflicts of interest to disclose. The authors have full control of all primary data and agree to allow the journal to review the data if requested.


  1. 1.
    Chen Q, Manning CD, Millar H, McCabe FL, Ferrante C, Sharp C, Shahied-Arruda L, Doshi P, Nakada MT, Anderson GM (2008) CNTO 95, a fully human anti alphav integrin antibody, inhibits cell signaling, migration, invasion, and spontaneous metastasis of human breast cancer cells. Clin Exp Metastasis 25(2):139–148. doi: 10.1007/s10585-007-9132-4 PubMedCrossRefGoogle Scholar
  2. 2.
    Rolli M, Fransvea E, Pilch J, Saven A, Felding-Habermann B (2003) Activated integrin alphavbeta3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc Natl Acad Sci USA 100(16):9482–9487. doi: 10.1073/pnas.1633689100 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Natali PG, Hamby CV, Felding-Habermann B, Liang B, Nicotra MR, Di Filippo F, Giannarelli D, Temponi M, Ferrone S (1997) Clinical significance of alpha(v)beta3 integrin and intercellular adhesion molecule-1 expression in cutaneous malignant melanoma lesions. Cancer Res 57(8):1554–1560PubMedGoogle Scholar
  4. 4.
    Felding-Habermann B, Cheresh DA (1993) Vitronectin and its receptors. Curr Opin Cell Biol 5(5):864–868PubMedCrossRefGoogle Scholar
  5. 5.
    Malyankar UM, Scatena M, Suchland KL, Yun TJ, Clark EA, Giachelli CM (2000) Osteoprotegerin is an alpha vbeta 3-induced, NF-kappa B-dependent survival factor for endothelial cells. J Biol Chem 275(28):20959–20962. doi: 10.1074/jbc.C000290200 PubMedCrossRefGoogle Scholar
  6. 6.
    Uner A, Akcali Z, Unsal D (2004) Serum levels of soluble E-selectin in colorectal cancer. Neoplasma 51(4):269–274PubMedGoogle Scholar
  7. 7.
    Liu ZJ, Snyder R, Soma A, Shirakawa T, Ziober BL, Fairman RM, Herlyn M, Velazquez OC (2003) VEGF-A and alphaVbeta3 integrin synergistically rescue angiogenesis via N-Ras and PI3-K signaling in human microvascular endothelial cells. FASEB J 17(13):1931–1933. doi: 10.1096/fj.02-1171fje PubMedGoogle Scholar
  8. 8.
    Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2(10):795–803. doi: 10.1038/nrc909 PubMedCrossRefGoogle Scholar
  9. 9.
    Trikha M, Zhou Z, Nemeth JA, Chen Q, Sharp C, Emmell E, Giles-Komar J, Nakada MT (2004) CNTO 95, a fully human monoclonal antibody that inhibits alphav integrins, has antitumor and antiangiogenic activity in vivo. Int J Cancer 110(3):326–335. doi: 10.1002/ijc.20116 PubMedCrossRefGoogle Scholar
  10. 10.
    National Cancer Institute, Cancer Therapy Evaulation Program (2006) Common Terminology Criteria for Adverse Events (CTCAE). version 3.
  11. 11.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92(3):205–216PubMedCrossRefGoogle Scholar
  12. 12.
    Lockhart AC, Braun RD, Yu D, Ross JR, Dewhirst MW, Klitzman B, Yuan F, Grichnik JM, Proia AD, Conway DA, Mann G, Hurwitz HI (2003) A clinical model of dermal wound angiogenesis. Wound Repair Regen 11(4):306–313PubMedCrossRefGoogle Scholar
  13. 13.
    Mullamitha SA, Ton NC, Parker GJ, Jackson A, Julyan PJ, Roberts C, Buonaccorsi GA, Watson Y, Davies K, Cheung S, Hope L, Valle JW, Radford JA, Lawrance J, Saunders MP, Munteanu MC, Nakada MT, Nemeth JA, Davis HM, Jiao Q, Prabhakar U, Lang Z, Corringham RE, Beckman RA, Jayson GC (2007) Phase I evaluation of a fully human anti-alphav integrin monoclonal antibody (CNTO 95) in patients with advanced solid tumors. Clin Cancer Res 13(7):2128–2135. doi: 10.1158/1078-0432.ccr-06-2779 PubMedCrossRefGoogle Scholar
  14. 14.
    Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264(5158):569–571PubMedCrossRefGoogle Scholar
  15. 15.
    Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA (1995) Definition of two angiogenic pathways by distinct alpha v integrins. Science 270(5241):1500–1502PubMedCrossRefGoogle Scholar
  16. 16.
    Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454. doi: 10.1038/nrc822 PubMedCrossRefGoogle Scholar
  17. 17.
    De Wever O, Derycke L, Hendrix A, De Meerleer G, Godeau F, Depypere H, Bracke M (2007) Soluble cadherins as cancer biomarkers. Clin Exp Metastasis 24(8):685–697. doi: 10.1007/s10585-007-9104-8 PubMedCrossRefGoogle Scholar
  18. 18.
    Barthel SR, Gavino JD, Descheny L, Dimitroff CJ (2007) Targeting selectins and selectin ligands in inflammation and cancer. Expert Opin Ther Targets 11(11):1473–1491. doi: 10.1517/14728222.11.11.1473 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Ferroni P, Roselli M, Spila A, D’Alessandro R, Portarena I, Mariotti S, Palmirotta R, Buonomo O, Petrella G, Guadagni F (2010) Serum sE-selectin levels and carcinoembryonic antigen mRNA-expressing cells in peripheral blood as prognostic factors in colorectal cancer patients. Cancer 116(12):2913–2921. doi: 10.1002/cncr.25094 PubMedCrossRefGoogle Scholar
  20. 20.
    Hebbar M, Revillion F, Louchez MM, Vilain MO, Fournier C, Bonneterre J, Peyrat JP (1998) The relationship between concentrations of circulating soluble E-selectin and clinical, pathological, and biological features in patients with breast cancer. Clin Cancer Res 4(2):373–380PubMedGoogle Scholar
  21. 21.
    Shimada Y, Maeda M, Watanabe G, Imamura M (2003) High serum soluble E-selectin levels are associated with postoperative haematogenic recurrence in esophageal squamous cell carcinoma patients. Oncol Rep 10(4):991–995PubMedGoogle Scholar
  22. 22.
    Liu Y, Starr MD, Bulusu A, Pang H, Wong NS, Honeycutt W, Amara A, Hurwitz H, Nixon AB (2013) Correlation of angiogenic biomarker signatures with clinical outcomes in metastatic colorectal cancer patients receiving capecitabine, oxaliplatin, and bevacizumab. Cancer Med 2(2):234–242PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Fonsatti E, Altomonte M, Nicotra MR, Natali PG, Maio M (2003) Endoglin (CD105): a powerful therapeutic target on tumor-associated angiogenetic blood vessels. Oncogene 22(42):6557–6563. doi: 10.1038/sj.onc.1206813 PubMedCrossRefGoogle Scholar
  24. 24.
    Bernabeu C, Lopez-Novoa JM, Quintanilla M (2009) The emerging role of TGF-beta superfamily coreceptors in cancer. Biochim Biophys Acta 1792(10):954–973. doi: 10.1016/j.bbadis.2009.07.003 PubMedCrossRefGoogle Scholar
  25. 25.
    Takahashi N, Kawanishi-Tabata R, Haba A, Tabata M, Haruta Y, Tsai H, Seon BK (2001) Association of serum endoglin with metastasis in patients with colorectal, breast, and other solid tumors, and suppressive effect of chemotherapy on the serum endoglin. Clin Cancer Res 7(3):524–532PubMedGoogle Scholar
  26. 26.
    Gougos A, Letarte M (1990) Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells. J Biol Chem 265(15):8361–8364PubMedGoogle Scholar
  27. 27.
    Batchelor TT, Duda DG, di Tomaso E, Ancukiewicz M, Plotkin SR, Gerstner E, Eichler AF, Drappatz J, Hochberg FH, Benner T, Louis DN, Cohen KS, Chea H, Exarhopoulos A, Loeffler JS, Moses MA, Ivy P, Sorensen AG, Wen PY, Jain RK (2010) Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J Clin Oncol 28(17):2817–2823. doi: 10.1200/jco.2009.26.3988 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Mahabeleshwar GH, Feng W, Reddy K, Plow EF, Byzova TV (2007) Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis. Circ Res 101(6):570–580. doi: 10.1161/circresaha.107.155655 PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Somanath PR, Malinin NL, Byzova TV (2009) Cooperation between integrin alphavbeta3 and VEGFR2 in angiogenesis. Angiogenesis 12(2):177–185. doi: 10.1007/s10456-009-9141-9 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Willett CG, Duda DG, di Tomaso E, Boucher Y, Ancukiewicz M, Sahani DV, Lahdenranta J, Chung DC, Fischman AJ, Lauwers GY, Shellito P, Czito BG, Wong TZ, Paulson E, Poleski M, Vujaskovic Z, Bentley R, Chen HX, Clark JW, Jain RK (2009) Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary phase II study. J Clin Oncol 27(18):3020–3026. doi: 10.1200/JCO.2008.21.1771 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hope E. Uronis
    • 1
  • Jingquan Jia
    • 1
    • 4
  • Johanna C. Bendell
    • 2
  • Leigh Howard
    • 1
  • Neal A. Ready
    • 1
  • Paula H. Lee
    • 1
  • Mark D. Starr
    • 1
  • Andrew Dellinger
    • 3
    • 5
  • Herbert Pang
    • 3
    • 6
  • Andrew B. Nixon
    • 1
  • Herbert I. Hurwitz
    • 1
    Email author
  1. 1.Duke Cancer InstituteDuke University Medical CenterDurhamUSA
  2. 2.Sarah Cannon Research InstituteNashvilleUSA
  3. 3.Department of Biostatistics and BioinformaticsDuke University Medical CenterDurhamUSA
  4. 4.Brody School of MedicineEast Carolina UniversityGreenvilleUSA
  5. 5.Department of Mathematics and StatisticsElon UniversityElonUSA
  6. 6.School of Public HealthLi Ka Shing Faculty of MedicinePok Fu LamChina

Personalised recommendations