Cancer Chemotherapy and Pharmacology

, Volume 75, Issue 6, pp 1099–1114 | Cite as

Expert consensus for the management of advanced or metastatic pancreatic neuroendocrine and carcinoid tumors

  • Daniel CastellanoEmail author
  • Enrique Grande
  • Juan Valle
  • Jaume Capdevila
  • Diane Reidy-Lagunes
  • Juan Manuel O’Connor
  • Eric Raymond
Review Article


Neuroendocrine tumors (NETs) are rare tumors that have been increasing in incidence over the last 30 years with no significant changes in survival. As survival of patients with these tumors depends greatly on stage and histology, early diagnosis, classification and staging of tumors in patients in whom NETs are suspected are of great importance. Surgery, either with curative or palliative intent, is the mainstay of treatment for localized NETs. Therapeutic options for this disease almost invariably include somatostatin analogs to alleviate the symptoms of excessive hormone secretion. Other approaches for advanced disease may include hepatic artery embolization or ablation, peptide receptor radionuclide therapy and systemic chemotherapy. Recent advances regarding the signaling pathways involved in tumor development have allowed the development of novel targeted therapies. However, due to the lack of prognostic molecular markers to identify high-risk patients and the absence of a common pathogenesis in all patients, treatment selection is often empirical. There is therefore a need to establish a consensus for the treatment of this disease and to provide evidence-based clinical recommendations and algorithms to optimize and individualize the treatment and follow-up for these patients.


Carcinoid tumor Pancreatic neuroendocrine tumor Radionuclides Somatostatin analogs Targeted therapy 



The authors acknowledge the financial support of Pfizer to maintain the necessary meetings to elaborate the contents of this manuscript and the medical writing services of Fernando Sánchez Barbero from HealthCo SL (Madrid, Spain).

Conflict of interest

The authors declare that they do not have any conflicts of interest that could inappropriately influence their work.


  1. 1.
    Modlin IM, Oberg K, Chung DC, Jensen RT, de Herder WW, Thakker RV, Caplin M, Fave GD, Kaltsas GA, Krenning EP, Moss SF, Nilsson O, Rindi G, Salazar R, Ruszniewski P, Sundin A (2008) Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol 9:61–72. doi: 10.1016/S1470-2045(07)70410-2 CrossRefPubMedGoogle Scholar
  2. 2.
    Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, Abdalla EK, Fleming JB, Vauthey JN, Rashid A, Evans DB (2008) One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol 26:3063–3072. doi: 10.1200/JCO.2007.15.4377 CrossRefPubMedGoogle Scholar
  3. 3.
    Modlin IM, Lye KD, Kidd M (2003) A 5-decade analysis of 13,715 carcinoid tumors. Cancer 97:934–959. doi: 10.1002/cncr.11105 CrossRefPubMedGoogle Scholar
  4. 4.
    Oberg K (2005) Somatostatin-receptor mediated diagnosis and treatment in gastrointestinal neuroendocrine tumours (GEP-NET’s). Rocz Akad Med Bialymst 50:62–68PubMedGoogle Scholar
  5. 5.
    Oberg K (1999) Neuroendocrine gastrointestinal tumors—a condensed overview of diagnosis and treatment. Ann Oncol 10(Suppl 2):S3–S8CrossRefPubMedGoogle Scholar
  6. 6.
    Reubi JC, Waser B (2003) Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting. Eur J Nucl Med Mol Imaging 30:781–793. doi: 10.1007/s00259-003-1184-3 CrossRefPubMedGoogle Scholar
  7. 7.
    Mansour JC, Chen H (2004) Pancreatic endocrine tumors. J Surg Res 120:139–161. doi: 10.1016/j.jss.2003.12.007 CrossRefPubMedGoogle Scholar
  8. 8.
    Kloppel G, Perren A, Heitz PU (2004) The gastroenteropancreatic neuroendocrine cell system and its tumors: the WHO classification. Ann N Y Acad Sci 1014:13–27CrossRefPubMedGoogle Scholar
  9. 9.
    Rindi G, Kloppel G, Alhman H, Caplin M, Couvelard A, de Herder WW, Erikssson B, Falchetti A, Falconi M, Komminoth P, Korner M, Lopes JM, McNicol AM, Nilsson O, Perren A, Scarpa A, Scoazec JY, Wiedenmann B (2006) TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch 449:395–401. doi: 10.1007/s00428-006-0250-1 CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Rindi G, Kloppel G, Couvelard A, Komminoth P, Korner M, Lopes JM, McNicol AM, Nilsson O, Perren A, Scarpa A, Scoazec JY, Wiedenmann B (2007) TNM staging of midgut and hindgut (neuro) endocrine tumors: a consensus proposal including a grading system. Virchows Arch 451:757–762. doi: 10.1007/s00428-007-0452-1 CrossRefPubMedGoogle Scholar
  11. 11.
    Strosberg JR, Weber JM, Feldman M, Coppola D, Meredith K, Kvols LK (2013) Prognostic validity of the American Joint Committee on Cancer staging classification for midgut neuroendocrine tumors. J Clin Oncol 31:420–425. doi: 10.1200/JCO.2012.44.5924 CrossRefPubMedGoogle Scholar
  12. 12.
    Oxford centre for evidence-based medicine. Levels of evidence. Accessed 8th October 2012
  13. 13.
    Oberg KE, Reubi JC, Kwekkeboom DJ, Krenning EP (2010) Role of somatostatins in gastroenteropancreatic neuroendocrine tumor development and therapy. Gastroenterology 139:742–753, 753 e741. doi: 10.1053/j.gastro.2010.07.002
  14. 14.
    Karashima T, Cai RZ, Schally AV (1987) Effects of highly potent octapeptide analogs of somatostatin on growth hormone, insulin and glucagon release. Life Sci 41:1011–1019CrossRefPubMedGoogle Scholar
  15. 15.
    Hoyer D, Lubbert H, Bruns C (1994) Molecular pharmacology of somatostatin receptors. Naunyn Schmiedebergs Arch Pharmacol 350:441–453CrossRefPubMedGoogle Scholar
  16. 16.
    Bruns C, Raulf F, Hoyer D, Schloos J, Lubbert H, Weckbecker G (1996) Binding properties of somatostatin receptor subtypes. Metabolism 45:17–20CrossRefPubMedGoogle Scholar
  17. 17.
    Bauer W, Briner U, Doepfner W, Haller R, Huguenin R, Marbach P, Petcher TJ, Pless J (1982) SMS 201-995: a very potent and selective octapeptide analog of somatostatin with prolonged action. Life Sci 31:1133–1140CrossRefPubMedGoogle Scholar
  18. 18.
    Murphy WA, Lance VA, Moreau S, Moreau JP, Coy DH (1987) Inhibition of rat prostate tumor growth by an octapeptide analog of somatostatin. Life Sci 40:2515–2522CrossRefPubMedGoogle Scholar
  19. 19.
    Reubi JC, Schonbrunn A (2013) Illuminating somatostatin analog action at neuroendocrine tumor receptors. Trends Pharmacol Sci 34:676–688. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  20. 20.
    Arnold R, Trautmann ME, Creutzfeldt W, Benning R, Benning M, Neuhaus C, Jurgensen R, Stein K, Schafer H, Bruns C, Dennler HJ (1996) Somatostatin analog octreotide and inhibition of tumour growth in metastatic endocrine gastroenteropancreatic tumours. Gut 38:430–438CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Saltz L, Trochanowski B, Buckley M, Heffernan B, Niedzwiecki D, Tao Y, Kelsen D (1993) Octreotide as an antineoplastic agent in the treatment of functional and nonfunctional neuroendocrine tumors. Cancer 72:244–248CrossRefPubMedGoogle Scholar
  22. 22.
    Rinke A, Muller HH, Schade-Brittinger C, Klose KJ, Barth P, Wied M, Mayer C, Aminossadati B, Pape UF, Blaker M, Harder J, Arnold C, Gress T, Arnold R (2009) Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol 27:4656–4663. doi: 10.1200/JCO.2009.22.8510 CrossRefPubMedGoogle Scholar
  23. 23.
    Ducreux M, Ruszniewski P, Chayvialle JA, Blumberg J, Cloarec D, Michel H, Raymond JM, Dupas JL, Gouerou H, Jian R, Genestin E, Hammel P, Rougier P (2000) The antitumoral effect of the long-acting somatostatin analog lanreotide in neuroendocrine tumors. Am J Gastroenterol 95:3276–3281. doi: 10.1111/j.1572-0241.2000.03210.x CrossRefPubMedGoogle Scholar
  24. 24.
    Wymenga AN, Eriksson B, Salmela PI, Jacobsen MB, Van Cutsem EJ, Fiasse RH, Valimaki MJ, Renstrup J, de Vries EG, Oberg KE (1999) Efficacy and safety of prolonged-release lanreotide in patients with gastrointestinal neuroendocrine tumors and hormone-related symptoms. J Clin Oncol 17:1111PubMedGoogle Scholar
  25. 25.
    Caplin ME, Pavel M, Cwikla JB, Phan AT, Raderer M, Sedlackova E, Cadiot G, Wolin EM, Capdevila J, Wall L, Rindi G, Langley A, Martinez S, Blumberg J, Ruszniewski P (2014) Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med 371:224–233. doi: 10.1056/NEJMoa1316158 CrossRefPubMedGoogle Scholar
  26. 26.
    Bruns C, Lewis I, Briner U, Meno-Tetang G, Weckbecker G (2002) SOM230: a novel somatostatin peptidomimetic with broad somatotropin release inhibiting factor (SRIF) receptor binding and a unique antisecretory profile. Eur J Endocrinol 146:707–716CrossRefPubMedGoogle Scholar
  27. 27.
    Schmid HA (2008) Pasireotide (SOM230): development, mechanism of action and potential applications. Mol Cell Endocrinol 286:69–74. doi: 10.1016/j.mce.2007.09.006 CrossRefPubMedGoogle Scholar
  28. 28.
    Kvols L, Oberg KE, O’Dorisio T, Mohideen P, de Herder WW, Arnold R, Hu K, Zhang Y, Hughes G, Anthony L, Wiedenmann B (2012) Pasireotide (SOM230) shows efficacy and tolerability in the treatment of patients with advanced neuroendocrine tumors refractory or resistant to octreotide LAR: results from a Phase II study. Endocr Relat Cancer. doi: 10.1530/ERC-11-0367
  29. 29.
    Arnold R, Rinke A, Klose KJ, Muller HH, Wied M, Zamzow K, Schmidt C, Schade-Brittinger C, Barth P, Moll R, Koller M, Unterhalt M, Hiddemann W, Schmidt-Lauber M, Pavel M, Arnold CN (2005) Octreotide versus octreotide plus interferon-alpha in endocrine gastroenteropancreatic tumors: a randomized trial. Clin Gastroenterol Hepatol 3:761–771CrossRefPubMedGoogle Scholar
  30. 30.
    Ramage JK, Ahmed A, Ardill J, Bax N, Breen DJ, Caplin ME, Corrie P, Davar J, Davies AH, Lewington V, Meyer T, Newell-Price J, Poston G, Reed N, Rockall A, Steward W, Thakker RV, Toubanakis C, Valle J, Verbeke C, Grossman AB (2012) Guidelines for the management of gastroenteropancreatic neuroendocrine (including carcinoid) tumours (NETs). Gut 61:6–32. doi: 10.1136/gutjnl-2011-300831 CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Murray-Lyon IM, Eddleston AL, Williams R, Brown M, Hogbin BM, Bennett A, Edwards JC, Taylor KW (1968) Treatment of multiple-hormone-producing malignant islet-cell tumour with streptozotocin. Lancet 2:895–898CrossRefPubMedGoogle Scholar
  32. 32.
    Moertel CG, Hanley JA, Johnson LA (1980) Streptozocin alone compared with streptozocin plus fluorouracil in the treatment of advanced islet-cell carcinoma. N Engl J Med 303:1189–1194. doi: 10.1056/NEJM198011203032101 CrossRefPubMedGoogle Scholar
  33. 33.
    Moertel CG, Lefkopoulo M, Lipsitz S, Hahn RG, Klaassen D (1992) Streptozocin-doxorubicin, streptozocin-fluorouracil or chlorozotocin in the treatment of advanced islet-cell carcinoma. N Engl J Med 326:519–523. doi: 10.1056/NEJM199202203260804 CrossRefPubMedGoogle Scholar
  34. 34.
    Kouvaraki MA, Ajani JA, Hoff P, Wolff R, Evans DB, Lozano R, Yao JC (2004) Fluorouracil, doxorubicin, and streptozocin in the treatment of patients with locally advanced and metastatic pancreatic endocrine carcinomas. J Clin Oncol 22:4762–4771. doi: 10.1200/JCO.2004.04.024 CrossRefPubMedGoogle Scholar
  35. 35.
    Eriksson B, Skogseid B, Lundqvist G, Wide L, Wilander E, Oberg K (1990) Medical treatment and long-term survival in a prospective study of 84 patients with endocrine pancreatic tumors. Cancer 65:1883–1890CrossRefPubMedGoogle Scholar
  36. 36.
    Cheng PN, Saltz LB (1999) Failure to confirm major objective antitumor activity for streptozocin and doxorubicin in the treatment of patients with advanced islet cell carcinoma. Cancer 86:944–948. doi: 10.1002/(SICI)1097-0142(19990915)86:6<944:AID-CNCR8>3.0.CO;2-P CrossRefPubMedGoogle Scholar
  37. 37.
    Engstrom PF, Lavin PT, Moertel CG, Folsch E, Douglass HO (1984) Streptozocin plus fluorouracil versus doxorubicin therapy for metastatic carcinoid tumor. J Clin Oncol 2:1255–1259PubMedGoogle Scholar
  38. 38.
    Bukowski RM, Johnson KG, Peterson RF, Stephens RL, Rivkin SE, Neilan B, Costanzi JH (1987) A phase II trial of combination chemotherapy in patients with metastatic carcinoid tumors. A Southwest Oncology Group Study. Cancer 60:2891–2895CrossRefPubMedGoogle Scholar
  39. 39.
    Sun W, Lipsitz S, Catalano P, Mailliard JA, Haller DG (2005) Phase II/III study of doxorubicin with fluorouracil compared with streptozocin with fluorouracil or dacarbazine in the treatment of advanced carcinoid tumors: Eastern Cooperative Oncology Group Study E1281. J Clin Oncol 23:4897–4904. doi: 10.1200/JCO.2005.03.616 CrossRefPubMedGoogle Scholar
  40. 40.
    Kulke MH, Stuart K, Enzinger PC, Ryan DP, Clark JW, Muzikansky A, Vincitore M, Michelini A, Fuchs CS (2006) Phase II study of temozolomide and thalidomide in patients with metastatic neuroendocrine tumors. J Clin Oncol 24:401–406. doi: 10.1200/JCO.2005.03.6046 CrossRefPubMedGoogle Scholar
  41. 41.
    Kulke MH, Stuart K, Earle CC, Bhargava P, Clark JW, Enzinger PC, Meyerhardt J, Attawia M, Lawrence C, Fuchs CS (2006) A phase II study of temozolomide and bevacizumab in patients with advanced neuroendocrine tumors. ASCO Meeting Abstracts 24:4044Google Scholar
  42. 42.
    Varker KA, Campbell J, Shah MH (2008) Phase II study of thalidomide in patients with metastatic carcinoid and islet cell tumors. Cancer Chemother Pharmacol 61:661–668CrossRefPubMedGoogle Scholar
  43. 43.
    Ekeblad S, Sundin A, Janson E et al (2007) Temozolomide as monotherapy is effective in treatment of advanced malignant neuroendocrine tumors. Clin Cancer Res 13:2986–2991CrossRefPubMedGoogle Scholar
  44. 44.
    Strosberg JR, Fine RL, Choi J, Nasir A, Coppola D, Chen DT, Helm J, Kvols L (2011) First-line chemotherapy with capecitabine and temozolomide in patients with metastatic pancreatic endocrine carcinomas. Cancer 117:268–275. doi: 10.1002/cncr.25425 CrossRefPubMedGoogle Scholar
  45. 45.
    Moertel CG, Kvols LK, O’Connell MJ, Rubin J (1991) Treatment of neuroendocrine carcinomas with combined etoposide and cisplatin. Evidence of major therapeutic activity in the anaplastic variants of these neoplasms. Cancer 68:227–232CrossRefPubMedGoogle Scholar
  46. 46.
    Turner NC, Strauss SJ, Sarker D, Gillmore R, Kirkwood A, Hackshaw A, Papadopoulou A, Bell J, Kayani I, Toumpanakis C, Grillo F, Mayer A, Hochhauser D, Begent RH, Caplin ME, Meyer T (2010) Chemotherapy with 5-fluorouracil, cisplatin and streptozocin for neuroendocrine tumours. Br J Cancer 102:1106–1112. doi: 10.1038/sj.bjc.6605618 CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Sorbye H, Welin S, Langer SW, Vestermark LW, Holt N, Osterlund PJ, Dueland S, Hofsli E, Guren MG, Ohrling K, Birkemeyer E, Thiis-Evensen E, Biagini M, Gronbaek H, Soveri L-M, Olsen IH, Federspiel B, Assmus J, Janson ET, Knigge U (2012) Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal poorly differentiated neuroendocrine carcinoma: the NORDIC NEC study. ASCO Meeting Abstracts 30:4015Google Scholar
  48. 48.
    Proye C (2001) Natural history of liver metastasis of gastroenteropancreatic neuroendocrine tumors: place for chemoembolization. World J Surg 25:685–688CrossRefPubMedGoogle Scholar
  49. 49.
    Maithel SK, Fong Y (2009) Hepatic ablation for neuroendocrine tumor metastases. J Surg Oncol 100:635–638. doi: 10.1002/jso.21196 CrossRefPubMedGoogle Scholar
  50. 50.
    Stippel DL, Brochhagen HG, Arenja M, Hunkemoller J, Holscher AH, Beckurts KT (2004) Variability of size and shape of necrosis induced by radiofrequency ablation in human livers: a volumetric evaluation. Ann Surg Oncol 11:420–425. doi: 10.1245/ASO.2004.09.012 CrossRefPubMedGoogle Scholar
  51. 51.
    Livraghi T, Goldberg SN, Lazzaroni S, Meloni F, Ierace T, Solbiati L, Gazelle GS (2000) Hepatocellular carcinoma: radio-frequency ablation of medium and large lesions. Radiology 214:761–768CrossRefPubMedGoogle Scholar
  52. 52.
    Livraghi T, Goldberg SN, Lazzaroni S, Meloni F, Solbiati L, Gazelle GS (1999) Small hepatocellular carcinoma: treatment with radio-frequency ablation versus ethanol injection. Radiology 210:655–661CrossRefPubMedGoogle Scholar
  53. 53.
    Livraghi T, Goldberg SN, Monti F, Bizzini A, Lazzaroni S, Meloni F, Pellicano S, Solbiati L, Gazelle GS (1997) Saline-enhanced radio-frequency tissue ablation in the treatment of liver metastases. Radiology 202:205–210CrossRefPubMedGoogle Scholar
  54. 54.
    Siperstein AE, Rogers SJ, Hansen PD, Gitomirsky A (1997) Laparoscopic thermal ablation of hepatic neuroendocrine tumor metastases. Surgery 122:1147–1154; discussion 1154–1145Google Scholar
  55. 55.
    Gupta S, Johnson MM, Murthy R, Ahrar K, Wallace MJ, Madoff DC, McRae SE, Hicks ME, Rao S, Vauthey JN, Ajani JA, Yao JC (2005) Hepatic arterial embolization and chemoembolization for the treatment of patients with metastatic neuroendocrine tumors: variables affecting response rates and survival. Cancer 104:1590–1602. doi: 10.1002/cncr.21389 CrossRefPubMedGoogle Scholar
  56. 56.
    Norton JA, Kerlan RK (2003) Hepatic artery embolization for treatment of patients with metastatic carcinoid tumors: a commentary. Cancer J 9:241–243CrossRefPubMedGoogle Scholar
  57. 57.
    Liu DM, Kennedy A, Turner D, Rose SC, Kee ST, Whiting S, Murthy R, Nutting C, Heran M, Lewandowski R, Knight J, Gulec S, Salem R (2009) Minimally invasive techniques in management of hepatic neuroendocrine metastatic disease. Am J Clin Oncol 32:200–215. doi: 10.1097/COC.0b013e318172b3b6 CrossRefPubMedGoogle Scholar
  58. 58.
    Gupta S, Yao JC, Ahrar K, Wallace MJ, Morello FA, Madoff DC, Murthy R, Hicks ME, Ajani JA (2003) Hepatic artery embolization and chemoembolization for treatment of patients with metastatic carcinoid tumors: the M.D. Anderson experience. Cancer J 9:261–267CrossRefPubMedGoogle Scholar
  59. 59.
    Strosberg JR, Choi J, Cantor AB, Kvols LK (2006) Selective hepatic artery embolization for treatment of patients with metastatic carcinoid and pancreatic endocrine tumors. Cancer Control 13:72–78PubMedGoogle Scholar
  60. 60.
    Loewe C, Schindl M, Cejna M, Niederle B, Lammer J, Thurnher S (2003) Permanent transarterial embolization of neuroendocrine metastases of the liver using cyanoacrylate and lipiodol: assessment of mid- and long-term results. Am J Roentgenol 180:1379–1384CrossRefGoogle Scholar
  61. 61.
    Bloomston M, Al-Saif O, Klemanski D, Pinzone JJ, Martin EW, Palmer B, Guy G, Khabiri H, Ellison EC, Shah MH (2007) Hepatic artery chemoembolization in 122 patients with metastatic carcinoid tumor: lessons learned. J Gastrointest Surg 11:264–271. doi: 10.1007/s11605-007-0089-z CrossRefPubMedGoogle Scholar
  62. 62.
    Raymond E, Dahan L, Raoul JL, Bang YJ, Borbath I, Lombard-Bohas C, Valle J, Metrakos P, Smith D, Vinik A, Chen JS, Horsch D, Hammel P, Wiedenmann B, Van Cutsem E, Patyna S, Lu DR, Blanckmeister C, Chao R, Ruszniewski P (2011) Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med 364:501–513. doi: 10.1056/NEJMoa1003825 CrossRefPubMedGoogle Scholar
  63. 63.
    Strosberg JR, Weber JM, Choi J, Campos TL, Valone TL, Han G, Schell MJ, Kvols LK (2012) A phase II clinical trial of sunitinib following hepatic transarterial embolization for metastatic neuroendocrine tumors. Ann Oncol. doi: 10.1093/annonc/mdr614
  64. 64.
    Perry LJ, Stuart K, Stokes KR, Clouse ME (1994) Hepatic arterial chemoembolization for metastatic neuroendocrine tumors. Surgery 116:1111–1116; discussion 1116–1117Google Scholar
  65. 65.
    Krenning EP, Bakker WH, Breeman WA, Koper JW, Kooij PP, Ausema L, Lameris JS, Reubi JC, Lamberts SW (1989) Localisation of endocrine-related tumours with radioiodinated analog of somatostatin. Lancet 1:242–244CrossRefPubMedGoogle Scholar
  66. 66.
    Waldherr C, Pless M, Maecke HR, Schumacher T, Crazzolara A, Nitzsche EU, Haldemann A, Mueller-Brand J (2002) Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq (90)Y-DOTATOC. J Nucl Med 43:610–616PubMedGoogle Scholar
  67. 67.
    Reubi JC (2003) Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 24:389–427CrossRefPubMedGoogle Scholar
  68. 68.
    Kwekkeboom DJ, de Herder WW, Kam BL, van Eijck CH, van Essen M, Kooij PP, Feelders RA, van Aken MO, Krenning EP (2008) Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0, Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol 26:2124–2130. doi: 10.1200/JCO.2007.15.2553 CrossRefPubMedGoogle Scholar
  69. 69.
    Teunissen JJ, Kwekkeboom DJ, Krenning EP (2004) Quality of life in patients with gastroenteropancreatic tumors treated with [177Lu-DOTA0, Tyr3]octreotate. J Clin Oncol 22:2724–2729. doi: 10.1200/JCO.2004.10.016 CrossRefPubMedGoogle Scholar
  70. 70.
    Kong G, Lau E, Ramdave S, Hicks RJ (2005) High-dose In-111 octreotide therapy in combination with radiosensitizing 5-FU chemotherapy for treatment of SSR-expressing neuroendocrine tumors. J Nucl Med 46(Suppl 2):151PGoogle Scholar
  71. 71.
    Valkema R, De Jong M, Bakker WH, Breeman WA, Kooij PP, Lugtenburg PJ, De Jong FH, Christiansen A, Kam BL, De Herder WW, Stridsberg M, Lindemans J, Ensing G, Krenning EP (2002) Phase I study of peptide receptor radionuclide therapy with [In-DTPA]octreotide: the Rotterdam experience. Semin Nucl Med 32:110–122CrossRefPubMedGoogle Scholar
  72. 72.
    van Essen M, Krenning EP, Kam BL, de Herder WW, van Aken MO, Kwekkeboom DJ (2008) Report on short-term side effects of treatments with 177Lu-octreotate in combination with capecitabine in seven patients with gastroenteropancreatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging 35:743–748. doi: 10.1007/s00259-007-0688-7 CrossRefPubMedCentralPubMedGoogle Scholar
  73. 73.
    Capdevila J, Salazar R (2009) Molecular targeted therapies in the treatment of gastroenteropancreatic neuroendocrine tumors. Target Oncol 4:287–296. doi: 10.1007/s11523-009-0128-7 CrossRefPubMedGoogle Scholar
  74. 74.
    Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG, Li G, Schreck RE, Abrams TJ, Ngai TJ, Lee LB, Murray LJ, Carver J, Chan E, Moss KG, Haznedar JO, Sukbuntherng J, Blake RA, Sun L, Tang C, Miller T, Shirazian S, McMahon G, Cherrington JM (2003) In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 9:327–337PubMedGoogle Scholar
  75. 75.
    O’Farrell AM, Abrams TJ, Yuen HA, Ngai TJ, Louie SG, Yee KW, Wong LM, Hong W, Lee LB, Town A, Smolich BD, Manning WC, Murray LJ, Heinrich MC, Cherrington JM (2003) SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 101:3597–3605. doi: 10.1182/blood-2002-07-2307 CrossRefPubMedGoogle Scholar
  76. 76.
    Faivre S, Demetri G, Sargent W, Raymond E (2007) Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov 6:734–745. doi: 10.1038/nrd2380 CrossRefPubMedGoogle Scholar
  77. 77.
    Sablin MP, Dreyer C, Colichi C, Bouattour M, Delbaldo C, Faivre S, Raymond E (2010) Benefits from pharmacological and pharmacokinetic properties of sunitinib for clinical development. Expert Opin Drug Metab Toxicol 6:1005–1015. doi: 10.1517/17425255.2010.506872 CrossRefPubMedGoogle Scholar
  78. 78.
    Kulke MH, Lenz HJ, Meropol NJ, Posey J, Ryan DP, Picus J, Bergsland E, Stuart K, Tye L, Huang X, Li JZ, Baum CM, Fuchs CS (2008) Activity of sunitinib in patients with advanced neuroendocrine tumors. J Clin Oncol 26:3403–3410. doi: 10.1200/JCO.2007.15.9020 CrossRefPubMedGoogle Scholar
  79. 79.
    Vinik A, Van Cutsem E, Niccoli P, Raoul J-L, Bang Y-J, Borbath I, Valle JW, Metrakos P, Smith D, Chen J-S, Hoersch D, Castellano DE, Kennecke HF, Picus J, Van Hazel G, Patyna S, Lu D, Chao RC, Raymond E (2012) Updated results from a phase III trial of sunitinib versus placebo in patients with progressive, unresectable, well-differentiated pancreatic neuroendocrine tumor (NET). ASCO Meeting Abstracts 30:4118Google Scholar
  80. 80.
    Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shujath J, Gawlak S, Eveleigh D, Rowley B, Liu L, Adnane L, Lynch M, Auclair D, Taylor I, Gedrich R, Voznesensky A, Riedl B, Post LE, Bollag G, Trail PA (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64:7099–7109. doi: 10.1158/0008-5472.CAN-04-1443 CrossRefPubMedGoogle Scholar
  81. 81.
    Hobday TJ, Rubin J, Holen K, Picus J, Donehower R, Marschke R, Maples W, Lloyd R, Mahoney M, Erlichman C (2007) MC044 h, a phase II trial of sorafenib in patients (pts) with metastatic neuroendocrine tumors (NET): a Phase II Consortium (P2C) study. J Clin Oncol (Meeting Abstracts) 25:4504CrossRefGoogle Scholar
  82. 82.
    Castellano D, Capdevilla J, Salazar R, Sastre J, Alonso V, Llanos M, Garcia-Carbonero R, Abad A, Sevilla I, Duran I (2010) Sorafenib and bevacizumab combination targeted therapy in advanced neuroendocrine tumor: a phase II study of Spanish Neuroendocrine Tumor Group (GETNE-0801). 35th European Society of Medical Oncology 21:850PGoogle Scholar
  83. 83.
    Ranieri G, Patruno R, Ruggieri E, Montemurro S, Valerio P, Ribatti D (2006) Vascular endothelial growth factor (VEGF) as a target of bevacizumab in cancer: from the biology to the clinic. Curr Med Chem 13:1845–1857CrossRefPubMedGoogle Scholar
  84. 84.
    Yao JC, Phan A, Hoff PM, Chen HX, Charnsangavej C, Yeung SC, Hess K, Ng C, Abbruzzese JL, Ajani JA (2008) Targeting vascular endothelial growth factor in advanced carcinoid tumor: a random assignment phase II study of depot octreotide with bevacizumab and pegylated interferon alpha-2b. J Clin Oncol 26:1316–1323. doi: 10.1200/JCO.2007.13.6374 CrossRefPubMedGoogle Scholar
  85. 85.
    Yao JC, Phan AT, Fogleman D, Ng CS, Jacobs CB, Dagohoy CD, Leary C, Hess KR (2010) Randomized run-in study of bevacizumab (B) and everolimus (E) in low- to intermediate-grade neuroendocrine tumors (LGNETs) using perfusion CT as functional biomarker. J Clin Oncol (Meeting Abstracts) 28:4002Google Scholar
  86. 86.
    Kunz PL, Kuo T, Zahn JM, Kaiser HL, Norton JA, Visser BC, Longacre TA, Ford JM, Balise RR, Fisher GA (2010) A phase II study of capecitabine, oxaliplatin, and bevacizumab for metastatic or unresectable neuroendocrine tumors. J Clin Oncol (Meeting Abstracts) 28:4104Google Scholar
  87. 87.
    O’Donnell A, Faivre S, Burris HA III, Rea D, Papadimitrakopoulou V, Shand N, Lane HA, Hazell K, Zoellner U, Kovarik JM, Brock C, Jones S, Raymond E, Judson I (2008) Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol 26:1588–1595. doi: 10.1200/JCO.2007.14.0988 CrossRefPubMedGoogle Scholar
  88. 88.
    Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, Hobday TJ, Okusaka T, Capdevila J, de Vries EG, Tomassetti P, Pavel ME, Hoosen S, Haas T, Lincy J, Lebwohl D, Oberg K, Rad001 in Advanced Neuroendocrine Tumors TTSG (2011) Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med 364:514–523. doi: 10.1056/NEJMoa1009290 CrossRefPubMedCentralPubMedGoogle Scholar
  89. 89.
    Pavel ME, Hainsworth JD, Baudin E, Peeters M, Horsch D, Winkler RE, Klimovsky J, Lebwohl D, Jehl V, Wolin EM, Oberg K, Van Cutsem E, Yao JC (2011) Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet 378:2005–2012. doi: 10.1016/S0140-6736(11)61742-X CrossRefPubMedGoogle Scholar
  90. 90.
    Blumberg J, Gomez-Panzani E, Latapie-Martínez S, Liyanage S Somatuline® Autogel® 120 mg (lanreotide) Evaluation of Tumor Progression-Free Survival in patients with non-functioning entero-pancreatic endocrine tumors: an ongoing, double-blind, randomized, placebo-controlled, multicenter study (the CLARINET Study). In: 2010 Neuroendocrine Tumor Symposium, 2010. NANETSGoogle Scholar
  91. 91.
    Pavel ME, Baum U, Hahn EG, Hensen J (2005) Doxorubicin and streptozotocin after failed biotherapy of neuroendocrine tumors. Int J Gastrointest Cancer 35:179–185. doi: 10.1385/IJGC:35:3:179 CrossRefPubMedGoogle Scholar
  92. 92.
    Kolby L, Persson G, Franzen S, Ahren B (2003) Randomized clinical trial of the effect of interferon alpha on survival in patients with disseminated midgut carcinoid tumours. Br J Surg 90:687–693. doi: 10.1002/bjs.4149 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Daniel Castellano
    • 1
    Email author
  • Enrique Grande
    • 2
  • Juan Valle
    • 3
  • Jaume Capdevila
    • 4
  • Diane Reidy-Lagunes
    • 5
  • Juan Manuel O’Connor
    • 6
  • Eric Raymond
    • 7
  1. 1.Departamento de Oncología MédicaHospital Universitario 12 de OctubreMadridSpain
  2. 2.Medical Oncology DepartmentRamón y Cajal University HospitalMadridSpain
  3. 3.Medical Oncology DepartmentThe Christie NHS Foundation TrustManchesterUK
  4. 4.Medical Oncology Department, Vall d’Hebron University HospitalUniversitat Autònoma de BarcelonaBarcelonaSpain
  5. 5.Gastrointestinal OncologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  6. 6.Medical Oncology Department, Fleming InstituteUniversity of Buenos AiresBuenos AiresArgentina
  7. 7.Medical Oncology Department, Beaujon University Hospital, INSERM U728Paris 7 University and APHPClichyFrance

Personalised recommendations