Cancer Chemotherapy and Pharmacology

, Volume 75, Issue 5, pp 879–886 | Cite as

Autophagy in cancer stem/progenitor cells

  • Yi-Hui Lin
  • Yu-Chun Huang
  • Li-Hsin Chen
  • Pei-Ming Chu
Review Article


Macroautophagy is widely accepted as a cytoprotective mechanism against various environmental stresses. While inhibition of autophagy is generally considered to increase the susceptibility of cancer cells to therapeutic agents, whether it also plays a similar role in tumor stem cells is unclear and still controversial. With increased attention and efforts focused on the cytoprotective feature of autophagy in cancer, it is also essential to understand its role in the biology of cancer stem cells, including self-renewal, differentiation, and tumorigenicity. Although there are very few studies that evaluate autophagy in cancer stem/progenitor cells, understanding the mechanisms governing autophagic responses in various cancer stem cells could provide support for the future development of clinical therapeutics. The present review summarizes current studies that assess the role of autophagy in various types of cancer stem cells and those that evaluate the application of inhibitors of key components within the autophagy pathway in cancer stem/progenitor cells.


Cancer stem cells Autophagy Apoptosis Cancer therapy 





Acute lymphoblastic leukemia


Bafilomycin A1


Cancer stem cell


Chronic myeloid leukemia


C-X-C chemokine receptor 4


DNA-dependent protein kinase catalytic subunit


DNA methyltransferase 1


Focal adhesion kinase family interacting protein of 200 kD


Glioblastoma multiform


Hematopoietic stem cell


Imatinib mesylate


Janus activated kinase 2


Mammalian target of rapamycin


Pancreatic ductal adenocarcinoma


Philadelphia chromosome-positive


Tyrosine-kinase inhibitor



This work was supported by Grant NSC99-2314-B-010-041-MY3 and NSC100-2314-B-075-065-MY3 from the National Science Council, grant V100C-117, V101C-101, and V102C-138 from Taipei Veterans General Hospital, and Grant CMU101-N2-02 from China Medical University.

Conflict of interest



  1. 1.
    Pan H, Cai N, Li M, Liu GH, Izpisua Belmonte JC (2013) Autophagic control of cell ‘stemness’. EMBO Mol Med 5(3):327–331. doi: 10.1002/emmm.201201999 CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Galavotti S, Bartesaghi S, Faccenda D, Shaked-Rabi M, Sanzone S, McEvoy A, Dinsdale D, Condorelli F, Brandner S, Campanella M, Grose R, Jones C, Salomoni P (2013) The autophagy-associated factors DRAM1 and p62 regulate cell migration and invasion in glioblastoma stem cells. Oncogene 32(6):699–712. doi: 10.1038/onc.2012.111 CrossRefPubMedGoogle Scholar
  3. 3.
    Huang X, Bai HM, Chen L, Li B, Lu YC (2010) Reduced expression of LC3B-II and Beclin 1 in glioblastoma multiforme indicates a down-regulated autophagic capacity that relates to the progression of astrocytic tumors. J Clin Neurosci 17(12):1515–1519. doi: 10.1016/j.jocn.2010.03.051 CrossRefPubMedGoogle Scholar
  4. 4.
    Zhao Y, Huang Q, Yang J, Lou M, Wang A, Dong J, Qin Z, Zhang T (2010) Autophagy impairment inhibits differentiation of glioma stem/progenitor cells. Brain Res 1313:250–258. doi: 10.1016/j.brainres.2009.12.004 CrossRefPubMedGoogle Scholar
  5. 5.
    Filippi-Chiela EC, Villodre ES, Zamin LL, Lenz G (2011) Autophagy interplay with apoptosis and cell cycle regulation in the growth inhibiting effect of resveratrol in glioma cells. PLoS ONE 6(6):e20849. doi: 10.1371/journal.pone.0020849 CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Liu WM, Huang P, Kar N, Burgett M, Muller-Greven G, Nowacki AS, Distelhorst CW, Lathia JD, Rich JN, Kappes JC, Gladson CL (2013) Lyn facilitates glioblastoma cell survival under conditions of nutrient deprivation by promoting autophagy. PLoS ONE 8(8):e70804. doi: 10.1371/journal.pone.0070804 CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Lomonaco SL, Finniss S, Xiang C, Decarvalho A, Umansky F, Kalkanis SN, Mikkelsen T, Brodie C (2009) The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer 125(3):717–722. doi: 10.1002/ijc.24402 CrossRefPubMedGoogle Scholar
  8. 8.
    Zhuang W, Li B, Long L, Chen L, Huang Q, Liang Z (2011) Induction of autophagy promotes differentiation of glioma-initiating cells and their radiosensitivity. Int J Cancer 129(11):2720–2731. doi: 10.1002/ijc.25975 CrossRefPubMedGoogle Scholar
  9. 9.
    Zhuang WZ, Long LM, Ji WJ, Liang ZQ (2011) Rapamycin induces differentiation of glioma stem/progenitor cells by activating autophagy. Chin J Cancer 30(10):712–720. doi: 10.5732/cjc.011.10234 CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Zhuang W, Li B, Long L, Chen L, Huang Q, Liang ZQ (2011) Knockdown of the DNA-dependent protein kinase catalytic subunit radiosensitizes glioma-initiating cells by inducing autophagy. Brain Res 1371:7–15. doi: 10.1016/j.brainres.2010.11.044 CrossRefPubMedGoogle Scholar
  11. 11.
    Zeng M, Zhou JN (2008) Roles of autophagy and mTOR signaling in neuronal differentiation of mouse neuroblastoma cells. Cell Signal 20(4):659–665. doi: 10.1016/j.cellsig.2007.11.015 CrossRefPubMedGoogle Scholar
  12. 12.
    Lomonaco SL, Finniss S, Xiang C, Lee HK, Jiang W, Lemke N, Rempel SA, Mikkelsen T, Brodie C (2011) Cilengitide induces autophagy-mediated cell death in glioma cells. Neuro-oncology 13(8):857–865. doi: 10.1093/neuonc/nor073 CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Jiang H, Gomez-Manzano C, Aoki H, Alonso MM, Kondo S, McCormick F, Xu J, Kondo Y, Bekele BN, Colman H, Lang FF, Fueyo J (2007) Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death. J Natl Cancer Inst 99(18):1410–1414. doi: 10.1093/jnci/djm102 CrossRefPubMedGoogle Scholar
  14. 14.
    Ueda Y, Wei FY, Hide T, Michiue H, Takayama K, Kaitsuka T, Nakamura H, Makino K, Kuratsu J, Futaki S, Tomizawa K (2012) Induction of autophagic cell death of glioma-initiating cells by cell-penetrating D-isomer peptides consisting of Pas and the p53 C-terminus. Biomaterials 33(35):9061–9069. doi: 10.1016/j.biomaterials.2012.09.003 CrossRefPubMedGoogle Scholar
  15. 15.
    Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, Martin-Castillo B, Vellon L, Menendez JA (2011) Autophagy positively regulates the CD44(+) CD24(−/low) breast cancer stem-like phenotype. Cell cycle 10(22):3871–3885. doi: 10.4161/cc.10.22.17976 CrossRefPubMedGoogle Scholar
  16. 16.
    Wolf J, Dewi DL, Fredebohm J, Muller-Decker K, Flechtenmacher C, Hoheisel JD, Boettcher M (2013) A mammosphere formation RNAi screen reveals that ATG4A promotes a breast cancer stem-like phenotype. Breast Cancer Res 15(6):R109. doi: 10.1186/bcr3576 CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100(25):15077–15082. doi: 10.1073/pnas.2436255100 CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Investig 112(12):1809–1820. doi: 10.1172/jci200320039 CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Saito H, Inazawa J, Saito S, Kasumi F, Koi S, Sagae S, Kudo R, Saito J, Noda K, Nakamura Y (1993) Detailed deletion mapping of chromosome 17q in ovarian and breast cancers: 2-cM region on 17q21.3 often and commonly deleted in tumors. Cancer Res 53(14):3382–3385PubMedGoogle Scholar
  20. 20.
    Futreal PA, Soderkvist P, Marks JR, Iglehart JD, Cochran C, Barrett JC, Wiseman RW (1992) Detection of frequent allelic loss on proximal chromosome 17q in sporadic breast carcinoma using microsatellite length polymorphisms. Cancer Res 52(9):2624–2627PubMedGoogle Scholar
  21. 21.
    Li Z, Chen B, Wu Y, Jin F, Xia Y, Liu X (2010) Genetic and epigenetic silencing of the beclin 1 gene in sporadic breast tumors. BMC Cancer 10:98. doi: 10.1186/1471-2407-10-98 CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Gong C, Bauvy C, Tonelli G, Yue W, Delomenie C, Nicolas V, Zhu Y, Domergue V, Marin-Esteban V, Tharinger H, Delbos L, Gary-Gouy H, Morel AP, Ghavami S, Song E, Codogno P, Mehrpour M (2013) Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene 32(18):2261–2272. doi: 10.1038/onc.2012.252 2272e 2261–2211CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Mai TT, Moon J, Song Y, Viet PQ, Phuc PV, Lee JM, Yi TH, Cho M, Cho SK (2012) Ginsenoside F2 induces apoptosis accompanied by protective autophagy in breast cancer stem cells. Cancer Lett 321(2):144–153. doi: 10.1016/j.canlet.2012.01.045 CrossRefPubMedGoogle Scholar
  24. 24.
    Chaterjee M, van Golen KL (2011) Breast cancer stem cells survive periods of farnesyl-transferase inhibitor-induced dormancy by undergoing autophagy. Bone Marrow Res 2011:362938. doi: 10.1155/2011/362938 CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Espina V, Mariani BD, Gallagher RI, Tran K, Banks S, Wiedemann J, Huryk H, Mueller C, Adamo L, Deng J, Petricoin EF, Pastore L, Zaman S, Menezes G, Mize J, Johal J, Edmiston K, Liotta LA (2010) Malignant precursor cells pre-exist in human breast DCIS and require autophagy for survival. PLoS ONE 5(4):e10240. doi: 10.1371/journal.pone.0010240 CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Akalay I, Janji B, Hasmim M, Noman MZ, Andre F, De Cremoux P, Bertheau P, Badoual C, Vielh P, Larsen AK, Sabbah M, Tan TZ, Keira JH, Hung NT, Thiery JP, Mami-Chouaib F, Chouaib S (2013) Epithelial-to-mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell-mediated lysis. Cancer Res 73(8):2418–2427. doi: 10.1158/0008-5472.can-12-2432 CrossRefPubMedGoogle Scholar
  27. 27.
    Sanchez CG, Penfornis P, Oskowitz AZ, Boonjindasup AG, Cai DZ, Dhule SS, Rowan BG, Kelekar A, Krause DS, Pochampally RR (2011) Activation of autophagy in mesenchymal stem cells provides tumor stromal support. Carcinogenesis 32(7):964–972. doi: 10.1093/carcin/bgr029 CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138(4):645–659. doi: 10.1016/j.cell.2009.06.034 CrossRefPubMedGoogle Scholar
  29. 29.
    Yue W, Hamai A, Tonelli G, Bauvy C, Nicolas V, Tharinger H, Codogno P, Mehrpour M (2013) Inhibition of the autophagic flux by salinomycin in breast cancer stem-like/progenitor cells interferes with their maintenance. Autophagy 9(5):714–729. doi: 10.4161/auto.23997 CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Liu F, Guan JL (2011) FIP200, an essential component of mammalian autophagy is indispensible for fetal hematopoiesis. Autophagy 7(2):229–230CrossRefPubMedGoogle Scholar
  31. 31.
    Liu F, Lee JY, Wei H, Tanabe O, Engel JD, Morrison SJ, Guan JL (2010) FIP200 is required for the cell-autonomous maintenance of fetal hematopoietic stem cells. Blood 116(23):4806–4814. doi: 10.1182/blood-2010-06-288589 CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Mortensen M, Soilleux EJ, Djordjevic G, Tripp R, Lutteropp M, Sadighi-Akha E, Stranks AJ, Glanville J, Knight S, Jacobsen SE, Kranc KR, Simon AK (2011) The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med 208(3):455–467. doi: 10.1084/jem.20101145 CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Gurumurthy S, Xie SZ, Alagesan B, Kim J, Yusuf RZ, Saez B, Tzatsos A, Ozsolak F, Milos P, Ferrari F, Park PJ, Shirihai OS, Scadden DT, Bardeesy N (2010) The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 468(7324):659–663. doi: 10.1038/nature09572 CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Rothe K, Lin H, Lin KB, Leung A, Wang HM, Malekesmaeili M, Brinkman RR, Forrest DL, Gorski SM, Jiang X (2014) Identification of the core autophagy protein ATG4B as a potential biomarker and therapeutic target in CML stem/progenitor cells. Blood. doi: 10.1182/blood-2013-07-516807 Google Scholar
  35. 35.
    Bellodi C, Lidonnici MR, Hamilton A, Helgason GV, Soliera AR, Ronchetti M, Galavotti S, Young KW, Selmi T, Yacobi R, Van Etten RA, Donato N, Hunter A, Dinsdale D, Tirro E, Vigneri P, Nicotera P, Dyer MJ, Holyoake T, Salomoni P, Calabretta B (2009) Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Investig 119(5):1109–1123. doi: 10.1172/jci35660 CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Yang X, He G, Gong Y, Zheng B, Shi F, Shi R, Yang X (2014) Mammalian target of rapamycin inhibitor rapamycin enhances anti-leukemia effect of imatinib on Ph+ acute lymphoblastic leukemia cells. Eur J Haematol 92(2):111–120. doi: 10.1111/ejh.12202 CrossRefPubMedGoogle Scholar
  37. 37.
    Wiesner J, Ortmann R, Jomaa H, Schlitzer M (2003) New antimalarial drugs. Angewandte Chemie (International ed in English) 42(43):5274–5293. doi: 10.1002/anie.200200569 CrossRefGoogle Scholar
  38. 38.
    Firat E, Weyerbrock A, Gaedicke S, Grosu AL, Niedermann G (2012) Chloroquine or chloroquine-PI3K/Akt pathway inhibitor combinations strongly promote gamma-irradiation-induced cell death in primary stem-like glioma cells. PLoS ONE 7(10):e47357. doi: 10.1371/journal.pone.0047357 CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Song YJ, Zhang SS, Guo XL, Sun K, Han ZP, Li R, Zhao QD, Deng WJ, Xie XQ, Zhang JW, Wu MC, Wei LX (2013) Autophagy contributes to the survival of CD133+ liver cancer stem cells in the hypoxic and nutrient-deprived tumor microenvironment. Cancer Lett 339(1):70–81. doi: 10.1016/j.canlet.2013.07.021 CrossRefPubMedGoogle Scholar
  40. 40.
    Choi DS, Blanco E, Kim YS, Rodriguez AA, Zhao H, Huang TH, Chen CL, Jin G, Landis MD, Burey LA, Qian W, Granados SM, Dave B, Wong HH, Ferrari M, Wong ST, Chang JC (2014) Chloroquine eliminates cancer stem cells through deregulation of Jak2 and DNMT1. Stem cells. doi: 10.1002/stem.1746 Google Scholar
  41. 41.
    Maycotte P, Aryal S, Cummings CT, Thorburn J, Morgan MJ, Thorburn A (2012) Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy. Autophagy 8(2):200–212. doi: 10.4161/auto.8.2.18554 CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Balic A, Draeby Sorensen M, Trabulo SM, Sainz B Jr, Cioffi M, Vieira CR, Miranda-Lorenzo I, Hidalgo M, Kleeff J, Erkan M, Heeschen C (2014) Chloroquine targets pancreatic cancer stem cells via inhibition of CXCR4 and hedgehog signaling. Mol Cancer Ther. doi: 10.1158/1535-7163.mct-13-0948 PubMedGoogle Scholar
  43. 43.
    Gan B, Sahin E, Jiang S, Sanchez-Aguilera A, Scott KL, Chin L, Williams DA, Kwiatkowski DJ, DePinho RA (2008) mTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization. Proc Natl Acad Sci USA 105(49):19384–19389. doi: 10.1073/pnas.0810584105 CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Chen C, Liu Y, Liu R, Ikenoue T, Guan KL, Liu Y, Zheng P (2008) TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 205(10):2397–2408. doi: 10.1084/jem.20081297 CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Lee JY, Nakada D, Yilmaz OH, Tothova Z, Joseph NM, Lim MS, Gilliland DG, Morrison SJ (2010) mTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion. Cell Stem Cell 7(5):593–605. doi: 10.1016/j.stem.2010.09.015 CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Francipane MG, Lagasse E (2013) Selective targeting of human colon cancer stem-like cells by the mTOR inhibitor torin-1. Oncotarget 4(11):1948–1962PubMedCentralPubMedGoogle Scholar
  47. 47.
    Zhang H, Gao C, Fang L, Zhao HC, Yao SK (2013) Metformin and reduced risk of hepatocellular carcinoma in diabetic patients: a meta-analysis. Scand J Gastroenterol 48(1):78–87. doi: 10.3109/00365521.2012.719926 CrossRefPubMedGoogle Scholar
  48. 48.
    Soranna D, Scotti L, Zambon A, Bosetti C, Grassi G, Catapano A, La Vecchia C, Mancia G, Corrao G (2012) Cancer risk associated with use of metformin and sulfonylurea in type 2 diabetes: a meta-analysis. Oncologist 17(6):813–822. doi: 10.1634/theoncologist.2011-0462 CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Wang Z, Lai ST, Xie L, Zhao JD, Ma NY, Zhu J, Ren ZG, Jiang GL (2014) Metformin is associated with reduced risk of pancreatic cancer in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Res Clin Pract. doi: 10.1016/j.diabres.2014.04.007 Google Scholar
  50. 50.
    Harhaji-Trajkovic L, Vilimanovich U, Kravic-Stevovic T, Bumbasirevic V, Trajkovic V (2009) AMPK-mediated autophagy inhibits apoptosis in cisplatin-treated tumour cells. J Cell Mol Med 13(9B):3644–3654. doi: 10.1111/j.1582-4934.2009.00663.x CrossRefPubMedGoogle Scholar
  51. 51.
    Jiang T, Yu JT, Zhu XC, Wang HF, Tan MS, Cao L, Zhang QQ, Gao L, Shi JQ, Zhang YD, Tan L (2014) Acute metformin preconditioning confers neuroprotection against focal cerebral ischaemia by pre-activation of AMPK-dependent autophagy. Br J Pharmacol 171(13):3146–3157. doi: 10.1111/bph.12655 CrossRefPubMedGoogle Scholar
  52. 52.
    Mohammed A, Janakiram NB, Brewer M, Ritchie RL, Marya A, Lightfoot S, Steele VE, Rao CV (2013) Antidiabetic drug metformin prevents progression of pancreatic cancer by targeting in part cancer stem cells and mtor signaling. Transl oncol 6(6):649–659CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Sunayama J, Matsuda K, Sato A, Tachibana K, Suzuki K, Narita Y, Shibui S, Sakurada K, Kayama T, Tomiyama A, Kitanaka C (2010) Crosstalk between the PI3K/mTOR and MEK/ERK pathways involved in the maintenance of self-renewal and tumorigenicity of glioblastoma stem-like cells. Stem cells 28(11):1930–1939. doi: 10.1002/stem.521 CrossRefPubMedGoogle Scholar
  54. 54.
    Wang WJ, Long LM, Yang N, Zhang QQ, Ji WJ, Zhao JH, Qin ZH, Wang Z, Chen G, Liang ZQ (2013) NVP-BEZ235, a novel dual PI3K/mTOR inhibitor, enhances the radiosensitivity of human glioma stem cells in vitro. Acta Pharmacol Sin 34(5):681–690. doi: 10.1038/aps.2013.22 CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Oliveras-Ferraros C, Vazquez-Martin A, Cuyas E, Corominas-Faja B, Rodriguez-Gallego E, Fernandez-Arroyo S, Martin-Castillo B, Joven J, Menendez JA (2014) Acquired resistance to metformin in breast cancer cells triggers transcriptome reprogramming toward a degradome-related metastatic stem-like profile. Cell Cycle 13(7):1132–1144. doi: 10.4161/cc.27982 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of PharmacyChina Medical UniversityTaichungTaiwan, ROC
  2. 2.Department of Public HealthKaohsiung Medical UniversityKaohsiungTaiwan, ROC
  3. 3.Department of Medical Research and EducationTaipei Veterans General HospitalTaipeiTaiwan, ROC
  4. 4.Department of Anatomy, School of MedicineChina Medical UniversityTaichungTaiwan, ROC

Personalised recommendations