Cancer Chemotherapy and Pharmacology

, Volume 75, Issue 1, pp 111–121 | Cite as

Population pharmacokinetic model of ibrutinib, a Bruton tyrosine kinase inhibitor, in patients with B cell malignancies

  • Eleonora Marostica
  • Juthamas Sukbuntherng
  • David Loury
  • Jan de Jong
  • Xavier Woot de Trixhe
  • An Vermeulen
  • Giuseppe De Nicolao
  • Susan O’Brien
  • John C. Byrd
  • Ranjana Advani
  • Jesse McGreivy
  • Italo Poggesi
Original Article



Ibrutinib is an oral Bruton’s tyrosine kinase inhibitor, recently approved for the treatment of mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL) patients with at least one prior therapy. We developed a population pharmacokinetic (PK) model for ibrutinib in patients.


Ibrutinib PK data (3,477 observations/245 patients) were available from the following clinical studies: (1) A phase I dose-escalation study in recurrent B cell malignancies (dose levels of 1.25–12.5 mg/kg/day and fixed dose of 560 mg/day); (2) a phase II study in MCL (fixed dose level of 560 mg/day); (3) a phase Ib/II dose-finding study in CLL (fixed dose levels of 420 and 840 mg/day). Different compartmental PK models were explored using nonlinear mixed effects modeling.


A two-compartment PK model with sequential zero–first-order absorption and first-order elimination was able to characterize the PK of ibrutinib. The compound was rapidly absorbed, had a high oral plasma clearance (approximately 1,000 L/h) and a high apparent volume of distribution at steady state (approximately 10,000 L). PK parameters were not dependent on dose, study, or clinical indication. The fasting state was characterized by a 67 % relative bioavailability compared with the meal conditions used in the trials and administration after a high-fat meal. Body weight and coadministration of antacids marginally increased volume of distribution and duration of absorption, respectively.


The proposed population PK model was able to describe the plasma concentration–time profiles of ibrutinib across various trials. The linear model indicated that the compound’s PK was dose independent and time independent.


Phase I–II ADME Nonlinear mixed effects model Covariate analysis 



The authors thank Purvi Jejurkar (Pharmacyclics) for bioanalytical support and Rishabh Pandey (SIRO Clinpharm Pvt. Ltd.) for additional editorial assistance. The authors also thank the study participants, without whom this study would not have been accomplished. The authors received financial support from Janssen Research and Development and Pharmacyclics.

Conflict of interest

Juthamas Sukbuntherng, David Loury, and Jesse McGreivy are employees of Pharmacyclics; Jan de Jong, Xavier Woot de Trixhe, An Vermeulen, and Italo Poggesi are employees of Janssen R&D.


  1. 1.
    Byrd JC, Fuman RR, Coutre SE, Flinn IW, Burger JA, Blum KA et al (2013) Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 369:32–42PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Wang ML, Rule S, Martin P, Goy A, Auer R, Kahl BS et al (2013) Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med 369:507–516PubMedCrossRefGoogle Scholar
  3. 3.
    Woyach JA, Johnson AJ, Byrd JC (2012) The B-cell receptor signaling pathway as a therapeutic target in CLL. Blood 120:1175–1184PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Wiestner A (2013) Targeting B-cell receptor signaling for anticancer therapy: the Bruton’s tyrosine kinase inhibitor ibrutinib induces impressive responses in B-cell malignancies. J Clin Oncol 31:128–130PubMedCrossRefGoogle Scholar
  5. 5.
    Herman SEM, Gordon AL, Hertlein E, Ramanunni A, Zhang X, Jaglowski S et al (2011) Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-3276. Blood 117:6287–6296PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Advani RH, Buggy JJ, Sharman JP, Smith SM, Boyd TE, Grant B et al (2013) Bruton tyrosine kinase inhibitor Ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol 31:88–94PubMedCrossRefGoogle Scholar
  7. 7.
    Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B et al (2010) The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci USA 107:13075–13080PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Poggesi I, Sardu ML, Marostica E, Sukbuntherng J, Chang BY, de Jong J, Woot de Trixhe X, Vermeulen A, De Nicolao G, O’Brien SM, Byrd JC, Advani RH, James DF, Deraedt W, Beaupre D, Wang M (2014). Population pharmacokinetic-pharmacodynamic (PKPD) modeling of ibrutinib in patients with B-Cell malignancies. Accepted for AACR meeting “Hematological malignancies: Translating discoveries in novel therapies” September 20–23, 2014 Sheraton Philadelphia Downtown Philadelphia, PA, USAGoogle Scholar
  9. 9.
    Beal S, Sheiner LB, Boeckmann A, Bauer RJ, NONMEM (2009) User’s guides. Icon Development Solutions, Ellicott CityGoogle Scholar
  10. 10.
    Ette Ene I, Williams Paul J (2007) Pharmacometrics: the science of quantitative pharmacology. Wiley-Interscience, New YorkCrossRefGoogle Scholar
  11. 11.
    Oberg A, Davidian M (2000) Estimating data transformations in nonlinear mixed effects models. Biometrics 56:65–72PubMedCrossRefGoogle Scholar
  12. 12.
    Bonate PL (2011) Pharmacokinetic-pharmacodynamic modeling and simulation, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  13. 13.
    Bonate PL (1999) The effect of collinearity on parameter estimates in nonlinear mixed effect modeling. Pharm Res 16:709–717PubMedCrossRefGoogle Scholar
  14. 14.
    Wahlby U, Jonsson EN, Karlsson MO (2002) Comparison of stepwise covariate model building strategies in population pharmacokinetic-pharmacodynamic analysis. AAPS PharmSci 4(4):27CrossRefGoogle Scholar
  15. 15.
    R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, (URL
  16. 16.
    DIDB: drug interaction DataBase: University of Washington (, Accessed 20 March 2013
  17. 17.
    Xu SX, Dunne A, Kimko H, Nandy P, Vermeulen A (2011) Impact of low percentage of data below the quantification limit on parameter estimates of pharmacokinetic models. J Pharmacokinet Pharmacodyn 38:423–432PubMedCrossRefGoogle Scholar
  18. 18.
    Anderson BJ, Holford NHG (2008) Mechanism-based concepts of size and maturity. Annu Rev Pharmacol Toxicol 48:303–332PubMedCrossRefGoogle Scholar
  19. 19.
    Jong de J, Sukbuntherng J, Skee D, Murphy J, O’Brien S, Byrd JC, et al (2014) Evaluation of the pharmacokinetics and food effect of oral ibrutinib in healthy subjects and chronic lymphocytic leukemia patients. AACR annual meeting. Abstract #4637: April 5–9Google Scholar
  20. 20.
    Imbruvica prescribing information (2013) Accessed 24 February 2013
  21. 21.
    Sukbuntherng J, Jong de J, Skee D, Pak Y, Fardis M, O’Brien S et al (2014) Pharmacokinetics and safety of ibrutinib with concomitant use of CYP3A inhibitors in patients with B-cell malignancies. ACCP annual meetingGoogle Scholar
  22. 22.
    Hsu A, Granneman GR, Witt G, Locke C, Denissen J, Molla A et al (1997) Multiple-dose pharmacokinetics of ritonavir in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 41:898–905PubMedCentralPubMedGoogle Scholar
  23. 23.
    Montgomery DC, Peck EA (1982) Introduction to linear regression analysis. Wiley, London, p 277Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Eleonora Marostica
    • 1
  • Juthamas Sukbuntherng
    • 2
  • David Loury
    • 2
  • Jan de Jong
    • 3
  • Xavier Woot de Trixhe
    • 4
  • An Vermeulen
    • 4
  • Giuseppe De Nicolao
    • 1
  • Susan O’Brien
    • 5
  • John C. Byrd
    • 6
  • Ranjana Advani
    • 7
  • Jesse McGreivy
    • 2
  • Italo Poggesi
    • 4
    • 8
  1. 1.Department of Electrical, Computer and Biomedical EngineeringUniversity of PaviaPaviaItaly
  2. 2.PharmacyclicsSunnyvaleUSA
  3. 3.Janssen Research and DevelopmentLa JollaUSA
  4. 4.Janssen Research and DevelopmentBeerseBelgium
  5. 5.University of Texas M.D. Anderson Cancer CenterHoustonUSA
  6. 6.Ohio State UniversityColumbusUSA
  7. 7.Stanford Cancer InstituteStanfordUSA
  8. 8.Model Based Drug DevelopmentJanssen Research and Development, c/o Janssen Cilag S.p.A.Cologno M.seItaly

Personalised recommendations