Advertisement

Cancer Chemotherapy and Pharmacology

, Volume 74, Issue 4, pp 777–786 | Cite as

Predictive value of APE1, BRCA1, ERCC1 and TUBB3 expression in patients with advanced non-small cell lung cancer (NSCLC) receiving first-line platinum–paclitaxel chemotherapy

  • Zheng Li
  • Yi Qing
  • Wei Guan
  • Mengxia Li
  • Yu Peng
  • Shiheng Zhang
  • Yanli Xiong
  • Dong WangEmail author
Original Article

Abstract

Purpose

Drug resistance is not only one of the major obstacles to treatment but also a poor prognosis in advanced non-small cell lung cancer (NSCLC) patients. The aim of this study was to evaluate the predictive value of APE1, BRCA1, ERCC1 and TUBB3 in advanced NSCLC patients who received platinum–paclitaxel treatment.

Methods

One hundred and thirty-six advanced NSCLC patients, who were treated with first-line platinum–paclitaxel chemotherapy, were enrolled in this study. The protein expression levels of APE1, BRCA1, ERCC1 and TUBB3 were assessed by immunohistochemistry and analyzed for the association with response to chemotherapy and progression-free survival (PFS) and overall survival (OS).

Results

Patients with negative expression of APE1, ERCC1 or TUBB3 benefited from platinum plus paclitaxel regimen chemotherapy. ERCC1-negative patients had better PFS (P = 0.016) and OS (P = 0.030) compared with positive patients. Similarly, the APE1-negative patients showed better PFS (P = 0.004) and longer OS though statistically insignificant. Multivariate analysis showed that APE1 and ERCC1 were independent predictor for PFS (HR 2.07; P = 0.004 and HR 1.66; P = 0.016) and OS (HR 1.99; P = 0.008 and HR 1.64; P = 0.040). Moreover, patients with both APE1- and ERCC1-negative or both APE1- and TUBB3-negative tumors had significantly higher response rate, longer median PFS and OS following treatment with platinum and paclitaxel (P < 0.05).

Conclusion

The data indicate that APE1, ERCC1 and TUBB3 could be a useful biomarker to predict clinical outcome in patients with advanced NSCLC receiving first-line platinum–paclitaxel chemotherapy.

Keywords

Advanced non-small cell lung cancer APE1 ERCC1 Individualized chemotherapy TUBB3 

Notes

Acknowledgments

This work was supported in part by grants from National Natural Science Foundation of China (No. 81171904 and No. 81001000).

Conflict of interest

We declare that we have no conflict of interest.

References

  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. doi: 10.3322/caac.20107 PubMedCrossRefGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4):225–249. doi: 10.3322/caac.20006 PubMedCrossRefGoogle Scholar
  3. 3.
    Wang D, Luo M, Kelley MR (2004) Human apurinic endonuclease 1 (APE1) expression and prognostic significance in osteosarcoma: enhanced sensitivity of osteosarcoma to DNA damaging agents using silencing RNA APE1 expression inhibition. Mol Cancer Ther 3(6):679–686PubMedGoogle Scholar
  4. 4.
    Koukourakis MI, Giatromanolaki A, Kakolyris S, Sivridis E, Georgoulias V, Funtzilas G, Hickson ID, Gatter KC, Harris AL (2001) Nuclear expression of human apurinic/apyrimidinic endonuclease (HAP1/Ref-1) in head-and-neck cancer is associated with resistance to chemoradiotherapy and poor outcome. Int J Radiat Oncol Biol Phys 50(1):27–36PubMedCrossRefGoogle Scholar
  5. 5.
    Olaussen KA, Dunant A, Fouret P, Brambilla E, Andre F, Haddad V, Taranchon E, Filipits M, Pirker R, Popper HH, Stahel R, Sabatier L, Pignon JP, Tursz T, Le Chevalier T, Soria JC, Investigators IB (2006) DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 355(10):983–991. doi: 10.1056/NEJMoa060570 PubMedCrossRefGoogle Scholar
  6. 6.
    Smith S, Su D, Rigault de la Longrais IA, Schwartz P, Puopolo M, Rutherford TJ, Mor G, Yu H, Katsaros D (2007) ERCC1 genotype and phenotype in epithelial ovarian cancer identify patients likely to benefit from paclitaxel treatment in addition to platinum-based therapy. J Clin Oncol Off J Am Soc Clin Oncol 25(33):5172–5179. doi: 10.1200/JCO.2007.11.8547 CrossRefGoogle Scholar
  7. 7.
    Kwon HC, Roh MS, Oh SY, Kim SH, Kim MC, Kim JS, Kim HJ (2007) Prognostic value of expression of ERCC1, thymidylate synthase, and glutathione S-transferase P1 for 5-fluorouracil/oxaliplatin chemotherapy in advanced gastric cancer. Ann Oncol Off J Eur Soc Med Oncol ESMO 18(3):504–509. doi: 10.1093/annonc/mdl430 CrossRefGoogle Scholar
  8. 8.
    Ruzzo A, Graziano F, Loupakis F, Rulli E, Canestrari E, Santini D, Catalano V, Ficarelli R, Maltese P, Bisonni R, Masi G, Schiavon G, Giordani P, Giustini L, Falcone A, Tonini G, Silva R, Mattioli R, Floriani I, Magnani M (2007) Pharmacogenetic profiling in patients with advanced colorectal cancer treated with first-line FOLFOX-4 chemotherapy. J Clin Oncol Off J Am Soc Clin Oncol 25(10):1247–1254. doi: 10.1200/JCO.2006.08.1844 CrossRefGoogle Scholar
  9. 9.
    Kennedy RD, Quinn JE, Johnston PG, Harkin DP (2002) BRCA1: mechanisms of inactivation and implications for management of patients. Lancet 360(9338):1007–1014. doi: 10.1016/S0140-6736(02)11087-7 PubMedCrossRefGoogle Scholar
  10. 10.
    Leng XF, Chen MW, Xian L, Dai L, Ma GY, Li MH (2012) Combined analysis of mRNA expression of ERCC1, BAG-1, BRCA1, RRM1 and TUBB3 to predict prognosis in patients with non-small cell lung cancer who received adjuvant chemotherapy. J Exp Clin Cancer Res CR 31:25. doi: 10.1186/1756-9966-31-25 CrossRefGoogle Scholar
  11. 11.
    Kim D, Jung W, Koo JS (2011) The expression of ERCC1, RRM1, and BRCA1 in breast cancer according to the immunohistochemical phenotypes. J Korean Med Sci 26(3):352–359. doi: 10.3346/jkms.2011.26.3.352 PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Booton R, Ward T, Ashcroft L, Morris J, Heighway J, Thatcher N (2007) ERCC1 mRNA expression is not associated with response and survival after platinum-based chemotherapy regimens in advanced non-small cell lung cancer. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer 2(10):902–906. doi: 10.1097/JTO.0b013e318155a637 Google Scholar
  13. 13.
    Bepler G, Williams C, Schell MJ, Chen W, Zheng Z, Simon G, Gadgeel S, Zhao X, Schreiber F, Brahmer J, Chiappori A, Tanvetyanon T, Pinder-Schenck M, Gray J, Haura E, Antonia S, Fischer JR (2013) Randomized international phase III trial of ERCC1 and RRM1 expression-based chemotherapy versus gemcitabine/carboplatin in advanced non-small-cell lung cancer. J Clin Oncol Off J Am Soc Clin Oncol 31(19):2404–2412. doi: 10.1200/JCO.2012.46.9783 CrossRefGoogle Scholar
  14. 14.
    Pierceall WE, Olaussen KA, Rousseau V, Brambilla E, Sprott KM, Andre F, Pignon JP, Le Chevalier T, Pirker R, Jiang C, Filipits M, Chen Y, Kutok JL, Weaver DT, Ward BE, Soria JC (2012) Cisplatin benefit is predicted by immunohistochemical analysis of DNA repair proteins in squamous cell carcinoma but not adenocarcinoma: theranostic modeling by NSCLC constituent histological subclasses. Ann Oncol Off J Eur Soc Med Oncol ESMO 23(9):2245–2252. doi: 10.1093/annonc/mdr624 CrossRefGoogle Scholar
  15. 15.
    Kalogeraki A, Karvela-Kalogeraki I, Tamiolakis D, Petraki P, Saridaki Z, Tzardi M (2014) ERCC1 expression correlated with EGFR and clinicopathological variables in patients with non-small cell lung cancer. An immunocytochemical study on fine-needle aspiration biopsies samples. Revista portuguesa de pneumologia 20(4):200–207. doi: 10.1016/j.rppneu.2013.11.002 PubMedCrossRefGoogle Scholar
  16. 16.
    Seve P, Dumontet C (2008) Is class III beta-tubulin a predictive factor in patients receiving tubulin-binding agents? Lancet Oncol 9(2):168–175. doi: 10.1016/S1470-2045(08)70029-9 PubMedCrossRefGoogle Scholar
  17. 17.
    Tang SC (2008) Predictive markers of tubulin-targeting agents in breast cancer. Clin Breast Cancer 8(Suppl 2):S79–S84PubMedCrossRefGoogle Scholar
  18. 18.
    Azuma K, Sasada T, Kawahara A, Takamori S, Hattori S, Ikeda J, Itoh K, Yamada A, Kage M, Kuwano M, Aizawa H (2009) Expression of ERCC1 and class III beta-tubulin in non-small cell lung cancer patients treated with carboplatin and paclitaxel. Lung Cancer 64(3):326–333. doi: 10.1016/j.lungcan.2008.09.002 PubMedCrossRefGoogle Scholar
  19. 19.
    Seve P, Isaac S, Tredan O, Souquet PJ, Pacheco Y, Perol M, Lafanechere L, Penet A, Peiller EL, Dumontet C (2005) Expression of class III {beta}-tubulin is predictive of patient outcome in patients with non-small cell lung cancer receiving vinorelbine-based chemotherapy. Clini Cancer Res Off J Am Assoc Cancer Res 11(15):5481–5486. doi: 10.1158/1078-0432.CCR-05-0285 CrossRefGoogle Scholar
  20. 20.
    Tsuchida Y, Therasse P (2001) Response evaluation criteria in solid tumors (RECIST): new guidelines. Med Pediatr Oncol 37(1):1–3. doi: 10.1002/mpo.1154 PubMedCrossRefGoogle Scholar
  21. 21.
    Vilmar A, Garcia-Foncillas J, Huarriz M, Santoni-Rugiu E, Sorensen JB (2012) RT-PCR versus immunohistochemistry for correlation and quantification of ERCC1, BRCA1, TUBB3 and RRM1 in NSCLC. Lung Cancer 75(3):306–312. doi: 10.1016/j.lungcan.2011.08.016 PubMedCrossRefGoogle Scholar
  22. 22.
    Wang D, Xiang DB, Yang XQ, Chen LS, Li MX, Zhong ZY, Zhang YS (2009) APE1 overexpression is associated with cisplatin resistance in non-small cell lung cancer and targeted inhibition of APE1 enhances the activity of cisplatin in A549 cells. Lung Cancer 66(3):298–304. doi: 10.1016/j.lungcan.2009.02.019 PubMedCrossRefGoogle Scholar
  23. 23.
    Papadaki C, Sfakianaki M, Ioannidis G, Lagoudaki E, Trypaki M, Tryfonidis K, Mavroudis D, Stathopoulos E, Georgoulias V, Souglakos J (2012) ERCC1 and BRAC1 mRNA expression levels in the primary tumor could predict the effectiveness of the second-line cisplatin-based chemotherapy in pretreated patients with metastatic non-small cell lung cancer. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer 7(4):663–671. doi: 10.1097/JTO.0b013e318244bdd4 Google Scholar
  24. 24.
    Rosell R, Perez-Roca L, Sanchez JJ, Cobo M, Moran T, Chaib I, Provencio M, Domine M, Sala MA, Jimenez U, Diz P, Barneto I, Macias JA, de Las Penas R, Catot S, Isla D, Sanchez JM, Ibeas R, Lopez-Vivanco G, Oramas J, Mendez P, Reguart N, Blanco R, Taron M (2009) Customized treatment in non-small-cell lung cancer based on EGFR mutations and BRCA1 mRNA expression. PLoS One 4(5):e5133. doi: 10.1371/journal.pone.0005133 PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Olaussen KA, Fouret P, Kroemer G (2007) ERCC1-specific immunostaining in non-small-cell lung cancer. N Engl J Med 357(15):1559–1561. doi: 10.1056/NEJMc072007 PubMedCrossRefGoogle Scholar
  26. 26.
    Cobo M, Isla D, Massuti B, Montes A, Sanchez JM, Provencio M, Vinolas N, Paz-Ares L, Lopez-Vivanco G, Munoz MA, Felip E, Alberola V, Camps C, Domine M, Sanchez JJ, Sanchez-Ronco M, Danenberg K, Taron M, Gandara D, Rosell R (2007) Customizing cisplatin based on quantitative excision repair cross-complementing 1 mRNA expression: a phase III trial in non-small-cell lung cancer. J Clin Oncol Off J Am Soc Clin Oncol 25(19):2747–2754. doi: 10.1200/JCO.2006.09.7915 CrossRefGoogle Scholar
  27. 27.
    Kavallaris M (2010) Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 10(3):194–204. doi: 10.1038/nrc2803 PubMedCrossRefGoogle Scholar
  28. 28.
    Gan PP, McCarroll JA, Po’uha ST, Kamath K, Jordan MA, Kavallaris M (2010) Microtubule dynamics, mitotic arrest, and apoptosis: drug-induced differential effects of betaIII-tubulin. Mol Cancer Ther 9(5):1339–1348. doi: 10.1158/1535-7163.MCT-09-0679 PubMedCrossRefGoogle Scholar
  29. 29.
    Kamath K, Wilson L, Cabral F, Jordan MA (2005) BetaIII-tubulin induces paclitaxel resistance in association with reduced effects on microtubule dynamic instability. J Biol Chem 280(13):12902–12907. doi: 10.1074/jbc.M414477200 PubMedCrossRefGoogle Scholar
  30. 30.
    Ando K, Hirao S, Kabe Y, Ogura Y, Sato I, Yamaguchi Y, Wada T, Handa H (2008) A new APE1/Ref-1-dependent pathway leading to reduction of NF-kappaB and AP-1, and activation of their DNA-binding activity. Nucleic Acids Res 36(13):4327–4336. doi: 10.1093/nar/gkn416 PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Fishel ML, Kelley MR (2007) The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target. Mol Aspects Med 28(3–4):375–395. doi: 10.1016/j.mam.2007.04.005 PubMedCrossRefGoogle Scholar
  32. 32.
    Tell G, Fantini D, Quadrifoglio F (2010) Understanding different functions of mammalian AP endonuclease (APE1) as a promising tool for cancer treatment. Cell Mol Life Sci CMLS 67(21):3589–3608. doi: 10.1007/s00018-010-0486-4 CrossRefGoogle Scholar
  33. 33.
    Tell G, Damante G, Caldwell D, Kelley MR (2005) The intracellular localization of APE1/Ref-1: more than a passive phenomenon? Antioxid Redox Signal 7(3–4):367–384. doi: 10.1089/ars.2005.7.367 PubMedCrossRefGoogle Scholar
  34. 34.
    Al-Attar A, Gossage L, Fareed KR, Shehata M, Mohammed M, Zaitoun AM, Soomro I, Lobo DN, Abbotts R, Chan S, Madhusudan S (2010) Human apurinic/apyrimidinic endonuclease (APE1) is a prognostic factor in ovarian, gastro-oesophageal and pancreatico-biliary cancers. Br J Cancer 102(4):704–709. doi: 10.1038/sj.bjc.6605541 PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Sheng Q, Zhang Y, Wang R, Zhang J, Chen B, Wang J, Zhang W, Xin X (2012) Prognostic significance of APE1 cytoplasmic localization in human epithelial ovarian cancer. Med Oncol 29(2):1265–1271. doi: 10.1007/s12032-011-9931-y PubMedCrossRefGoogle Scholar
  36. 36.
    Rosell R, Mendez P, Isla D, Taron M (2007) Platinum resistance related to a functional NER pathway. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer 2(12):1063–1066. doi: 10.1097/JTO.0b013e31815ba2a1 Google Scholar
  37. 37.
    Kinsella TJ (2009) Understanding DNA damage response and DNA repair pathways: applications to more targeted cancer therapeutics. Semin Oncol 36(2 Suppl 1):S42–S51. doi: 10.1053/j.seminoncol.2009.02.004 PubMedCrossRefGoogle Scholar
  38. 38.
    Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA (2008) DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 8(3):193–204. doi: 10.1038/Nrc2342 PubMedCrossRefGoogle Scholar
  39. 39.
    McNeil EM, Melton DW (2012) DNA repair endonuclease ERCC1-XPF as a novel therapeutic target to overcome chemoresistance in cancer therapy. Nucleic Acids Res 40(20):9990–10004. doi: 10.1093/nar/gks818 PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Arora S, Kothandapani A, Tillison K, Kalman-Maltese V, Patrick SM (2010) Downregulation of XPF-ERCC1 enhances cisplatin efficacy in cancer cells. DNA Repair 9(7):745–753. doi: 10.1016/j.dnarep.2010.03.010 PubMedCrossRefGoogle Scholar
  41. 41.
    Niedernhofer LJ, Bhagwat N, Wood RD (2007) ERCC1 and non-small-cell lung cancer. N Engl J Med 356(24):2538–2540. doi: 10.1056/NEJMc070742 PubMedCrossRefGoogle Scholar
  42. 42.
    Roth JA, Carlson JJ (2011) Prognostic role of ERCC1 in advanced non-small-cell lung cancer: a systematic review and meta-analysis. Clin Lung cancer 12(6):393–401. doi: 10.1016/j.cllc.2011.04.005 PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Zhou SF (2007) ERCC1 and non-small-cell lung cancer. N Engl J Med 356(24):2540PubMedGoogle Scholar
  44. 44.
    Fujii T, Toyooka S, Ichimura K, Fujiwara Y, Hotta K, Soh J, Suehisa H, Kobayashi N, Aoe M, Yoshino T, Kiura K, Date H (2008) ERCC1 protein expression predicts the response of cisplatin-based neoadjuvant chemotherapy in non-small-cell lung cancer. Lung Cancer 59(3):377–384. doi: 10.1016/j.lungcan.2007.08.025 PubMedCrossRefGoogle Scholar
  45. 45.
    Wang L, Wei J, Qian X, Yin H, Zhao Y, Yu L, Wang T, Liu B (2008) ERCC1 and BRCA1 mRNA expression levels in metastatic malignant effusions is associated with chemosensitivity to cisplatin and/or docetaxel. BMC Cancer 8:97. doi: 10.1186/1471-2407-8-97 PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Jordan MA, Kamath K (2007) How do microtubule-targeted drugs work? An overview. Curr Cancer Drug Targets 7(8):730–742PubMedCrossRefGoogle Scholar
  47. 47.
    Jordan MA (2002) Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr Med Chem Anticancer Agents 2(1):1–17PubMedCrossRefGoogle Scholar
  48. 48.
    Seve P, Lai R, Ding K, Winton T, Butts C, Mackey J, Dumontet C, Dabbagh L, Aviel-Ronen S, Seymour L, Whitehead M, Tsao MS, Shepherd FA, Reiman T (2007) Class III beta-tubulin expression and benefit from adjuvant cisplatin/vinorelbine chemotherapy in operable non-small cell lung cancer: analysis of NCIC JBR.10. Clin Cancer Res Off J Am Assoc Cancer Res 13(3):994–999. doi: 10.1158/1078-0432.CCR-06-1503 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Zheng Li
    • 1
  • Yi Qing
    • 1
  • Wei Guan
    • 1
  • Mengxia Li
    • 1
  • Yu Peng
    • 1
  • Shiheng Zhang
    • 1
  • Yanli Xiong
    • 1
  • Dong Wang
    • 1
    Email author
  1. 1.Cancer Center, Daping Hospital and Research Institute of SurgeryThe Third Military Medical UniversityChongqingChina

Personalised recommendations