Cancer Chemotherapy and Pharmacology

, Volume 74, Issue 4, pp 819–829

Population pharmacokinetic and covariate analysis of pertuzumab, a HER2-targeted monoclonal antibody, and evaluation of a fixed, non-weight-based dose in patients with a variety of solid tumors

  • Amit Garg
  • Angelica Quartino
  • Jing Li
  • Jin Jin
  • D. Russell Wada
  • Hanbin Li
  • Javier Cortés
  • Virginia McNally
  • Graham Ross
  • Jennifer Visich
  • Bert Lum
Original Article

Abstract

Purpose

To characterize the population pharmacokinetics (PK) of pertuzumab across clinical trials in a variety of solid tumors, evaluate the potential impact of patient characteristics on PK, and confirm the appropriateness of the fixed (non-weight-based) dose.

Methods

Pertuzumab concentration data collected following intravenous administration during eleven phase I/II studies and the pivotal phase III trial CLEOPATRA were analyzed using nonlinear mixed-effects modeling. The potential impact of patient and laboratory characteristics and HER2 target-related variables on pertuzumab PK were investigated in a covariate analysis. The final model was used to confirm selection of fixed, non-weight-based dosing of pertuzumab, and to compare pertuzumab PK in CLEOPATRA with the other studies.

Results

The analysis included 4,525 serum concentration measurements from 481 patients with solid tumors. Pertuzumab PK in the 2–25 mg/kg dose range was described by a two-compartment linear model with first-order elimination. The elimination clearance and central compartment volume were 0.235 L/day, and 3.11 L, respectively, and the terminal elimination half-life was 18.0 days. Baseline serum albumin and lean body weight had statistically significant effects on pertuzumab clearance; however, simulations showed that the magnitude of their effects on pertuzumab exposure was minimal compared with overall variability and was not clinically relevant. Thus, variations in these factors do not require dose adjustments.

Conclusions

The fixed, non-weight-based dosing of pertuzumab, 840 mg loading dose followed by a 420 mg maintenance dose every 3 weeks, in patients with the solid tumors in this analysis is well supported by the population pharmacokinetic modeling and simulation results.

Keywords

Fixed dose HER2 Pertuzumab Population pharmacokinetics modeling Metastatic breast cancer NONMEM 

Supplementary material

280_2014_2560_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 22 kb)
280_2014_2560_MOESM2_ESM.pdf (107 kb)
Pertuzumab two-compartment model with first-order rate elimination (k10 elimination rate constant, k12 rate constant from central to peripheral compartment, k21 rate constant from peripheral to central compartment, CL elimination clearance, Q distribution clearance, R0 drug infusion rate, Vc volume of central compartment, Vp peripheral volume) (PDF 107 kb)
280_2014_2560_MOESM3_ESM.pdf (1.9 mb)
Goodness-of-fit plots of final model showing: individual observed versus predicted concentrations plotted on a log (A) or linear scale (B); conditional weighted residuals (CWRES) versus time (C); population observed versus predicted concentrations plotted on a log (D) or linear scale (E); CWRES versus. population predicted concentrations (F) (PDF 1936 kb)
280_2014_2560_MOESM4_ESM.pdf (1.1 mb)
Observed effects of CRP (A), HER2 ECD (B), and HER2 expression level (C) on pertuzumab PK parameters. (A) Circles represent individual parameter estimates (normalized for LBW of 48 kg and ALBU of 3.9 g/dL), the solid line represents the modeled covariate relationship, and the dotted line is a smooth local regression curve (LOWESS). (B) Circles represent individual parameter estimates (normalized for LBW of 48 kg and ALBU of 3.9 g/dL), the solid line represents the modeled covariate relationship, and the dotted line is a smooth local regression curve (LOESS). (C) Circles represent the individual parameter estimates (normalized for LBW of 48 kg and ALBU of 3.9 g/dL), the solid lines are the modeled PK parameters, and the gray bars represent the median PK parameter values (PDF 1104 kb)
280_2014_2560_MOESM5_ESM.pdf (379 kb)
The impact of baseline body weight on simulated pertuzumab steady-state model-predicted trough concentrations (Cmin,SS) (PDF 378 kb)

References

  1. 1.
    Agus DB, Akita RW, Fox WD, Lewis GD, Higgins B, Pisacane PI, Lofgren JA, Tindell C, Evans DP, Maiese K, Scher HI, Sliwkowski MX (2002) Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2:127–137PubMedCrossRefGoogle Scholar
  2. 2.
    Junttila TT, Akita RW, Parsons K, Fields C, Lewis Phillips GD, Friedman LS, Sampath D, Sliwkowski MX (2009) Ligand-independent HER2/HER3/PI3 K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell 15:429–440PubMedCrossRefGoogle Scholar
  3. 3.
    Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW Jr, Leahy DJ (2003) Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 421:756–760PubMedCrossRefGoogle Scholar
  4. 4.
    Franklin MC, Carey KD, Vajdos FF, Leahy DJ, de Vos AM, Sliwkowski MX (2004) Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 5:317–328PubMedCrossRefGoogle Scholar
  5. 5.
    Scheuer W, Friess T, Burtscher H, Bossenmaier B, Endl J, Hasmann M (2009) Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Res 69:9330–9336PubMedCrossRefGoogle Scholar
  6. 6.
    Agus DB, Gordon MS, Taylor C, Natale RB, Karlan B, Mendelson DS, Press MF, Allison DE, Sliwkowski MX, Lieberman G, Kelsey SM, Fyfe G (2005) Phase I clinical study of pertuzumab, a novel HER dimerization inhibitor, in patients with advanced cancer. J Clin Oncol 23:2534–2543PubMedCrossRefGoogle Scholar
  7. 7.
    Agus DB, Sweeney CJ, Morris MJ, Mendelson DS, McNeel DG, Ahmann FR, Wang J, Derynck MK, Ng K, Lyons B, Allison DE, Kattan MW, Scher HI (2007) Efficacy and safety of single-agent pertuzumab (rhuMAb 2C4), a human epidermal growth factor receptor dimerization inhibitor, in castration-resistant prostate cancer after progression from taxane-based therapy. J Clin Oncol 25:675–681PubMedCrossRefGoogle Scholar
  8. 8.
    de Bono JS, Bellmunt J, Attard G, Droz JP, Miller K, Flechon A, Sternberg C, Parker C, Zugmaier G, Hersberger-Gimenez V, Cockey L, Mason M, Graham J (2007) Open-label phase II study evaluating the efficacy and safety of two doses of pertuzumab in castrate chemotherapy-naive patients with hormone-refractory prostate cancer. J Clin Oncol 25:257–262PubMedCrossRefGoogle Scholar
  9. 9.
    Herbst RS, Davies AM, Natale RB, Dang TP, Schiller JH, Garland LL, Miller VA, Mendelson D, Van den Abbeele AD, Melenevsky Y, de Vries DJ, Eberhard DA, Lyons B, Lutzker SG, Johnson BE (2007) Efficacy and safety of single-agent pertuzumab, a human epidermal receptor dimerization inhibitor, in patients with non small cell lung cancer. Clin Cancer Res 13:6175–6181PubMedCrossRefGoogle Scholar
  10. 10.
    Gordon MS, Matei D, Aghajanian C, Matulonis UA, Brewer M, Fleming GF, Hainsworth JD, Garcia AA, Pegram MD, Schilder RJ (2006) Clinical activity of pertuzumab (rhuMAb 2C4), a HER dimerization inhibitor, in advanced ovarian cancer: potential predictive relationship with tumor HER2 activation status. J Clin Oncol 24:4324–4332PubMedCrossRefGoogle Scholar
  11. 11.
    Gianni L, Llado A, Bianchi G, Cortes J, Kellokumpu-Lehtinen PL, Cameron DA, Miles D, Salvagni S, Wardley A, Goeminne JC, Hersberger V, Baselga J (2010) Open-label, phase II, multicenter, randomized study of the efficacy and safety of two dose levels of pertuzumab, a human epidermal growth factor receptor 2 dimerization inhibitor, in patients with human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol 28:1131–1137PubMedCrossRefGoogle Scholar
  12. 12.
    Yamamoto N, Yamada Y, Fujiwara Y, Yamada K, Fujisaka Y, Shimizu T, Tamura T (2009) Phase I and pharmacokinetic study of HER2-targeted rhuMAb 2C4 (Pertuzumab, RO4368451) in Japanese patients with solid tumors. Jpn J Clin Oncol 39(260–266):17Google Scholar
  13. 13.
    Albanell J, Montagut C, Jones ET, Pronk L, Mellado B, Beech J, Gascon P, Zugmaier G, Brewster M, Saunders MP, Valle JW (2008) A phase I study of the safety and pharmacokinetics of the combination of pertuzumab (rhuMab 2C4) and capecitabine in patients with advanced solid tumors. Clin Cancer Res 14:2726–2731PubMedCrossRefGoogle Scholar
  14. 14.
    Attard G, Kitzen J, Blagden SP, Fong PC, Pronk LC, Zhi J, Zugmaier G, Verweij J, de Bono JS, de Jonge M (2007) A phase Ib study of pertuzumab, a recombinant humanised antibody to HER2, and docetaxel in patients with advanced solid tumours. Br J Cancer 97:1338–1343PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Felip E, Ranson M, Cedrés S, Dean E, Brewster M, Martinez P, McNally V, Ross G, Galdermans D (2012) A phase Ib, dose-finding study of erlotinib in combination with a fixed dose of pertuzumab in patients with advanced non-small-cell lung cancer. Clin Lung Cancer 13:432–441PubMedCrossRefGoogle Scholar
  16. 16.
    Makhija S, Amler LC, Glenn D, Ueland FR, Gold MA, Dizon DS, Paton V, Lin CY, Januario T, Ng K, Strauss A, Kelsey S, Sliwkowski MX, Matulonis U (2010) Clinical activity of gemcitabine plus pertuzumab in platinum-resistant ovarian cancer, fallopian tube cancer, or primary peritoneal cancer. J Clin Oncol 28:1215–1223PubMedCrossRefGoogle Scholar
  17. 17.
    Kaye SB, Poole CJ, Dańska-Bidzińska A, Gianni L, Del Conte G, Gorbunova V, Novikova E, Strauss A, Moczko M, McNally VA, Ross G, Vergote I (2013) A randomized phase II study evaluating the combination of carboplatin-based chemotherapy with pertuzumab versus carboplatin-based therapy alone in patients with relapsed, platinum-sensitive ovarian cancer. Ann Oncol 24:145–152PubMedCrossRefGoogle Scholar
  18. 18.
    Portera CC, Walshe JM, Rosing DR, Denduluri N, Berman AW, Vatas U, Velarde M, Chow CK, Steinberg SM, Nguyen D, Yang SX, Swain SM (2008) Cardiac toxicity and efficacy of trastuzumab combined with pertuzumab in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. Clin Cancer Res 14:2710–2716PubMedCrossRefGoogle Scholar
  19. 19.
    Baselga J, Gelmon KA, Verma S, Wardley A, Conte P, Miles D, Bianchi G, Cortes J, McNally VA, Ross GA, Fumoleau P, Gianni L (2010) Phase II trial of pertuzumab and trastuzumab in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer that progressed during prior trastuzumab therapy. J Clin Oncol 28:1138–1144PubMedCrossRefGoogle Scholar
  20. 20.
    Cortés J, Fumoleau P, Bianchi GV, Petrella TM, Gelmon K, Pivot X, Verma S, Albanell J, Conte P, Lluch A, Salvagni S, Servent V, Gianni L, Scaltriti M, Ross GA, Dixon J, Szado T, Baselga J (2012) Pertuzumab monotherapy after trastuzumab-based treatment and subsequent reintroduction of trastuzumab: activity and tolerability in patients with advanced human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 30:1594–1600PubMedCrossRefGoogle Scholar
  21. 21.
    Baselga J, Cortes J, Kim SB, Im SA, Hegg R, Im YH, Roman L, Pedrini JL, Pienkowski T, Knott A, Clark E, Benyunes MC, Ross G, Swain SM (2012) CLEOPATRA study group pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 366:109–119PubMedCrossRefGoogle Scholar
  22. 22.
    Swain SM, Kim S, Cortés J, Ro J, Semiglazov V, Campone M, Ciruelos E, Ferrero J, Schneeweiss A, Knott A, Clark E, Ross G, Benyunes MC, Baselga J (2013) Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol 14:461–471PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Gianni L, Pienkowski T, Im YH, Roman L, Tseng LM, Liu MC, Lluch A, Staroslawska E, Haba-Rodriguez J, Im SA, Pedrini JL, Poirier B, Morandi P, Semiglazov V, Srimuninnimit V, Bianchi G, Szado T, Ratnayake J, Ross G, Valagussa P (2012) Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol 13:25–32PubMedCrossRefGoogle Scholar
  24. 24.
    Schneeweiss A, Chia S, Hickish T, Harvey V, Eniu A, Hegg R, Tausch C, Seo JH, Tsai Y-F, Ratnayake J, McNally V, Ross G, Cortés J (2013) Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: a randomized phase II cardiac safety study (TRYPHAENA). Ann Oncol 24:2278–2284PubMedCrossRefGoogle Scholar
  25. 25.
    Ng CM, Lum BL, Gimenez V, Kelsey S, Allison D (2006) Rationale for fixed dosing of pertuzumab in cancer patients based on population pharmacokinetic analysis. Pharm Res 23:1275–1284PubMedCrossRefGoogle Scholar
  26. 26.
    Keizer RJ, Huitema AD, Schellens JH, Beijnen JH (2010) Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet 49:493–507PubMedCrossRefGoogle Scholar
  27. 27.
    Mandema JW, Verotta D, Sheiner LB (1992) Building population pharmacokinetic–pharmacodynamic models. I. Models for covariate effects. J Pharmacokinet Biopharm 20:511–528PubMedCrossRefGoogle Scholar
  28. 28.
    Savic RM, Karlsson MO (2009) Importance of shrinkage in empirical Bayes estimates for diagnostics: problems and solutions. AAPS J 11:558–569PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Malik MA, Totpal K, Balter I, Sliwkowski MX, Pelletier N, Reich M, Crocker L, Friess T, Bauer S, Fiebig HH, Allison DE (2003) Dose response studies of recombinant humanized monoclonal antibody 2C4 in tumor xenograft models. Proc Am Assoc Cancer Res 44:150Google Scholar
  30. 30.
    Mould DR, Sweeney KR (2007) The pharmacokinetics and pharmacodynamics of monoclonal antibodies–mechanistic modeling applied to drug development. Curr Opin Drug Discov Devel 10:84–96PubMedGoogle Scholar
  31. 31.
    Bruno R, Washington CB, Lu JF, Lieberman G, Banken L, Klein P (2005) Population pharmacokinetics of trastuzumab in patients with HER2 + metastatic breast cancer. Cancer Chemother Pharmacol 56:361–369PubMedCrossRefGoogle Scholar
  32. 32.
    Kang Y, Rha SY, Tassone P, Barriuso J, Yu R, Szado T, Garg A, Bang Y (2013) Pertuzumab pharmacokinetics and safety in combination with trastuzumab and chemotherapy in patients with HER2-positive advanced gastric cancer (AGC). Ann Oncol 24:iv19Google Scholar
  33. 33.
    Cortes J, Swain SM, Kudaba I, Hauschild M, Patel T, Grincuka E, Masuda N, McNally V, Ross G, Brewster M, Marier JF, Trinh MM, Garg A, Nijem I, Visich J, Lum BL, Baselga J (2013) Absence of pharmacokinetic drug–drug interaction of pertuzumab with trastuzumab and docetaxel. Anticancer Drugs 24:1084–1092PubMedCrossRefGoogle Scholar
  34. 34.
    Wang DD, Zhang S, Zhao H, Men AY, Parivar K (2009) Fixed dosing versus body size-based dosing of monoclonal antibodies in adult clinical trials. J Clin Pharmacol 49:1012–1024PubMedCrossRefGoogle Scholar
  35. 35.
    Bai S, Jorga K, Xin Y, Jin D, Zheng Y, Damico-Beyer LA, Gupta M, Tang M, Allison DE, Lu D, Zhang Y, Joshi A, Dresser MJ (2012) A guide to rational dosing of monoclonal antibodies. Clin Pharmacokinet 51:119–135PubMedCrossRefGoogle Scholar
  36. 36.
    Fasanmade AA, Adedokun OJ, Olson A, Strauss R, Davis HM (2010) Serum albumin concentration: a predictive factor of infliximab pharmacokinetics and clinical response in patients with ulcerative colitis. Int J Clin Pharmacol Ther 48:297–308PubMedCrossRefGoogle Scholar
  37. 37.
    Kim J, Bronson CL, Hayton WL, Radmacher MD, Roopenian DC, Robinson JM, Anderson CL (2006) Albumin turnover: FcRn-mediated recycling saves as much albumin from degradation as the liver produces. Am J Physiol Gastrointest Liver Physiol 290:G352–G360PubMedCrossRefGoogle Scholar
  38. 38.
    Kim J, Hayton WL, Robinson JM, Anderson CL (2007) Kinetics of FcRn-mediated recycling of IgG and albumin in human: pathophysiology and therapeutic implications using a simplified mechanism-based model. Clin Immunol 122:146–155PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Allin KH, Nordestgaard BG, Flyger H, Bojesen SE (2011) Elevated pre-treatment levels of plasma C-reactive protein are associated with poor prognosis after breast cancer: a cohort study. Breast Cancer Res 13(R55):19Google Scholar
  40. 40.
    Xu Z, Vu T, Lee H, Hu C, Ling J, Yan H, Baker D, Beutler A, Pendley C, Wagner C, Davis HM, Zhou H (2009) Population pharmacokinetics of golimumab, an anti-tumor necrosis factor-alpha human monoclonal antibody, in patients with psoriatic arthritis. J Clin Pharmacol 49:1056–1070PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Amit Garg
    • 1
  • Angelica Quartino
    • 1
  • Jing Li
    • 1
    • 5
  • Jin Jin
    • 1
  • D. Russell Wada
    • 2
  • Hanbin Li
    • 2
  • Javier Cortés
    • 3
  • Virginia McNally
    • 4
  • Graham Ross
    • 4
  • Jennifer Visich
    • 1
  • Bert Lum
    • 1
  1. 1.Clinical Pharmacology, MS 463aGenentech, Inc.South San FranciscoUSA
  2. 2.Quantitative Solutions Inc.Menlo ParkUSA
  3. 3.Department of OncologyVall d’Hebron University HospitalBarcelonaSpain
  4. 4.F. Hoffmann-La Roche LtdWelwyn Garden CityUK
  5. 5.MedImmuneHaywardUSA

Personalised recommendations