Cancer Chemotherapy and Pharmacology

, Volume 74, Issue 3, pp 559–569 | Cite as

Modulatory effects of meloxicam on cardiotoxicity and antitumor activity of doxorubicin in mice

  • Memy H. Hassan
  • Hesham A. El-Beshbishy
  • Hamdy Aly
  • Sabry M. Attia
  • Saleh A. Bahashwan
  • Mohamed M. Ghobara
Original Article



This study was undertaken to assess the possible modulatory effects and mechanisms of meloxicam, a cyclooxygenase-2 inhibitor, on the antitumor activity and cardiotoxicity of doxorubicin in a mice model of mammary carcinoma.


Solid tumor mass was developed in female albino mice using Ehrlich carcinoma cells. Forty mice-bearing tumor were divided randomly into four groups for treatment: with saline, meloxicam 10 mg/kg, doxorubicin 5 mg/kg and meloxicam 1 h ahead of doxorubicin, twice weekly for 2 weeks. Tumor volume was followed up and cardiac protective utility was estimated via measuring heart and serum parameters.


Meloxicam expressed a non-significant increase in doxorubicin antitumor activity. Conversely, meloxicam significantly (p < 0.01) mitigated doxorubicin-induced elevation of serum cardiac enzymes [creatine kinase, lactate dehydrogenase and troponin-I]; cardiac lipid peroxidations marker; cardiac active caspase-3 content; and cardiac prostaglandin E2 content. Meloxicam significantly abrogated doxorubicin-induced disturbance in heart histology and relative heart weight to body weight. Meloxicam normalized doxorubicin-induced suppression in heart antioxidant enzymes activities and gene expressions [superoxide dismutase, glutathione peroxidase (GSH-Px) and catalase], and heart GSH content. In addition, meloxicam ameliorated doxorubicin-induced disturbance in phase II metabolizing enzyme, cardiac quinone reductase (QR), at activity level and mRNA expression.


Meloxicam protects heart against doxorubicin toxicity without affecting its antitumor activity against solid mammary cancer model in mice. This protective effect is attributed to antioxidant effect, antiradical effect, antiinflammatory action, antiapoptotic effect and induction of QR enzyme.


Doxorubicin Oxidative stress Quinone reductase Cyclooxygenase-2 inhibitors Meloxicam 



We are deeply thankful to the animal house technician Mr. Islam Farouk, Pharm. B.Sc., department of Pharmacology, Faculty of Pharmacy, King Abdel-Aziz University, Jeddah, K.S.A., for his kind accommodation of laboratory animals and support during animal experiment. Also we are indebted to Dr. Fares El-Tom, a lecture of histology at Taibah University, K.S.A., for his invaluable contribution in histological examination of cardiac tissue. The authors disclosed receipt the full financial support and funding from the Deanship of Scientific Research; Taibah University—Almadinah Almunawarah; Saudi Arabia (Grant Number 1091–1433) for this study.

Conflict of interest

All authors have nothing to declare.


  1. 1.
    Arcamone F, Cassinelli G, Fantini G, Grein A, Orezzi P, Pol C, Spalla C (1969) Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S. peucetius var. caesius. Biotechnol Bioeng 11:1101–1110PubMedCrossRefGoogle Scholar
  2. 2.
    Kufe DW, Holland JF, Frei E (2003) American cancer society: cancer medicine 6. BC Decker, HamiltonGoogle Scholar
  3. 3.
    Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57:727–741PubMedCrossRefGoogle Scholar
  4. 4.
    Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229PubMedCrossRefGoogle Scholar
  5. 5.
    Sinha BK, Trush MA, Kennedy KA, Mimnaugh EG (1984) Enzymatic activation and binding of adriamycin to nuclear DNA. Cancer Res 44:2892–2896PubMedGoogle Scholar
  6. 6.
    Binaschi M, Bigioni M, Cipollone A, Rossi C, Goso C, Maggi CA, Capranico G, Animati F (2001) Anthracyclines: selected new developments. Curr Med Chem Anticancer Agents 1:113–130PubMedCrossRefGoogle Scholar
  7. 7.
    Muindi JR, Sinha BK, Gianni L, Myers CE (1984) Hydroxyl radical production and DNA damage induced by anthracycline- iron complex. FEBS Lett 172:226–230PubMedCrossRefGoogle Scholar
  8. 8.
    Badary OA, Awad AS, Abdel-Maksoud S, Hamada FM (200) Cardiac DT-diaphorase contributes to the detoxification system against doxorubicin-induced positive inotropic effects in guinea-pig isolated atria. Clin Exp Pharmacol Physiol 31(12):856–861Google Scholar
  9. 9.
    Gutierrez PL (2000) The role of NAD(P)H oxidoreductase (DT-Diaphorase) in the bioactivation of quinone-containing antitumor agents: a review. Free Radic Biol Med 3–4:263–275CrossRefGoogle Scholar
  10. 10.
    Osman AM, Al-Harthi SE, Alarabi OM, Elshal MF, Ramadan WS, Alaama MN, Al-Kreathy HM, Damanhouri ZA, Osman OH (2013) Chemosensetizing and cardioprotective effects of resveratrol in doxorubicin- treated animals. Cancer Cell Int 13(1):52PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Adderley S, Fitzgerald D (1999) Oxidative damage of cardiomyocytes is limited by extracellular regulated kinases 1/2-mediated induction of cyclooxygenase 2. J Biol Chem 27:5038–5046CrossRefGoogle Scholar
  12. 12.
    Wolfesberger B, Walter I, Hoelzl C, Thalhammer JG, Egerbacher M (2006) Antineoplastic effect of the cyclooxygenase inhibitor meloxicam on canine osteosarcoma cells. Res Vet Sci 80(3):308–316PubMedCrossRefGoogle Scholar
  13. 13.
    Mizutani Y, Kamoi K, Ukimura O, Kawauchi A, Miki T (2002) Synergistic cytotoxicity and apoptosis of JTE-522, a selective cyclooxygenase-2 inhibitor, and 5-fluorouracil against bladder cancer. J Urol 168(6):2650–2654PubMedCrossRefGoogle Scholar
  14. 14.
    Zimmermann KC, Sarbia M, Weber AA, Borchard F, Gabbert HE, Schror K (1999) Cyclooxygenase-2 expression in human esophageal carcinoma. Cancer Res 59:198–204PubMedGoogle Scholar
  15. 15.
    Arun B, Goss P (2004) The role of COX-2 inhibition in breast cancer treatment and prevention. Semin Oncol 31:22–29PubMedCrossRefGoogle Scholar
  16. 16.
    Zatelli MC, Molè D, Tagliati F, Minoia M, Ambrosio MR, degli Uberti E (2009) Cyclo-oxygenase 2 modulates chemoresistance in breast cancer cells involving NF-kappaB. Cell Oncol 31(6):457–465PubMedGoogle Scholar
  17. 17.
    Han HK, Choi HK (2007) Improved absorption of meloxicam via salt formation with ethanolamines. Eur J Pharm Biopharm 65:99–103PubMedCrossRefGoogle Scholar
  18. 18.
    Gates BJ, Nguyen TT, Setter SM, Davies NM (2005) Meloxicam: a reappraisal of pharmacokinetics, efficacy and safety. Expert Opin Pharmacother 6:2117–2140PubMedCrossRefGoogle Scholar
  19. 19.
    Kalonia H, Kumar A (2011) Suppressing inflammatory cascade by cyclo-oxygenase inhibitors attenuates quinolinic acid induced Huntington’s disease-like alterations in rats. Life Sci 88:784–791PubMedCrossRefGoogle Scholar
  20. 20.
    Edfawy M, Hassan MH, Mansour A, Hamed AA, Amin HA (2012) Meloxicam modulates oxidative stress status, inhibits prostaglandin E2, and abrogates apoptosis in carbon tetrachloride-induced rat hepatic injury. Int J Toxicol 31(3):276–286PubMedCrossRefGoogle Scholar
  21. 21.
    Yamamoto D, Iwase S, Yoshida H, Kuroda Y, Yamamoto C, Kitamura K, Odagiri H, Nagumo Y (2011) Efficacy of meloxicam in combination with preoperative chemotherapy for breast cancer—Japan Breast Cancer Research Network (JBCRN) 02-1 trial. Anticancer Res 31(10):3567–3571PubMedGoogle Scholar
  22. 22.
    Naruse T, Nishida Y, Ishiguro N (2007) Synergistic effects of meloxicam and conventional cytotoxic drugs in human MG-63 osteosarcoma cells. Biomed Pharmacother 61(6):338–346PubMedCrossRefGoogle Scholar
  23. 23.
    Osman A, Sayed-Ahmed M, Khayyal M, El Merzebani M (1993) Hyperthermic potentiation of cisplatin on solid Ehrlich carcinoma. Tumouri 79:268–272Google Scholar
  24. 24.
    Azab SS, Salama SA, Hassan MH, Khalifa AE, El-Demerdash E, Fouad H, Al-Hendy A, Abdel-Naim AB (2008) 2-Methoxyestradiol reverses doxorubicin resistance in human breast tumor xenograft. Cancer Chemother Pharmacol 62(5):893–902PubMedCrossRefGoogle Scholar
  25. 25.
    Eralp Y, Wang X, Wang JP, Maughan MF, Polo JM (2004) Doxorubicin and paclitaxel enhance the antitumor efficacy of vaccines directed against HER 2/neu in a murine mammary carcinoma model. Breast Cancer Res 6(4):R275–R283PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Bancroft J, Stevens A (1996) Enzyme histochemistry: theory and practice of histological techniques. Churchill Livingstone, New YorkGoogle Scholar
  27. 27.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358PubMedCrossRefGoogle Scholar
  28. 28.
    Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582(1):67–78PubMedCrossRefGoogle Scholar
  29. 29.
    Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474PubMedCrossRefGoogle Scholar
  30. 30.
    Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70(1):158–169PubMedGoogle Scholar
  31. 31.
    Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394PubMedCrossRefGoogle Scholar
  32. 32.
    Benson AM, Hunkeler MJ, Talalay P (1980) Increase of NADPH, quinone reductase activity by dietary antioxidant: possible role in protection against carcinogenesis and toxicity. Proc Nat Aca Sci USA 77:5216–5220CrossRefGoogle Scholar
  33. 33.
    Pfaffl MW (2001) A new mathematical model for relative quantifications in real-time RT-PCR. Nucleic Acids Res 29:e45PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Al-Hendy A, Lee EJ, Wang HQ, Copland JA (2004) Gene therapy of uterine leiomyomas: adenovirus-mediated expression of dominant negative estrogen receptor inhibits tumor growth in nude mice. Am J Obstet Gynecol 191:1621–1631PubMedCrossRefGoogle Scholar
  35. 35.
    Al-Shabanah OA, Osman AM, Al-Harbi MM, Al-Gharably NM, Al-bekairi AM, El-Merzabani MM (1996) Effect of hyperthermia on the action of methotrexate against the growth of Ehrlich ascites carcinoma cells. Med Sci Res 24:275–277Google Scholar
  36. 36.
    Lefrak EA, Pitha J, Rosenheim S, Gottlieb JA (1973) Clinic opathologic analysis of adriamycin cardiotoxicity. Cancer 32:302–314PubMedCrossRefGoogle Scholar
  37. 37.
    Osman AM, Nemnem MM, Abou-Bakr AA, Nassier OA, Khayyal MT (2009) Effect of methimazole treatment on doxorubicin-induced cardiotoxicity in mice. Food Chem Toxicol 47(10):2425–2430PubMedCrossRefGoogle Scholar
  38. 38.
    Das J, Ghosh J, Manna P, Sil PC (2011) Taurine suppresses doxorubicin-triggered oxidative stress and cardiac apoptosis in rat via up-regulation of PI3-K/Akt and inhibition of p53, p38-JNK. Biochem Pharmacol 81(7):891–909PubMedCrossRefGoogle Scholar
  39. 39.
    Cummings J, Allan L, Willmott N, Riley R, Workman P, Smyth JF (1992) The enzymology of doxorubicin quinone reduction in tumour tissue. Biochem Pharmacol 44:2175–2183PubMedCrossRefGoogle Scholar
  40. 40.
    Lind C, Hoshstein P, Ernster L (1982) DT-Diaphorase as a quinone reductase: a cellular control device against semiquinone and superoxide radical formation. Arch Biochem Biophys 216:178–185PubMedCrossRefGoogle Scholar
  41. 41.
    Iqbal M, Okada S (2003) Induction of NAD(P)H:quinone reductase by probucol: a possible mechanism for protection against chemical carcinogenesis and toxicity. Pharmacol Toxicol 93(6):259–263PubMedCrossRefGoogle Scholar
  42. 42.
    Kolesar JM, Kuhn JG, Burris HA III (1995) Detection of a point mutation in NQO1 (DT-diaphorase) in a patient with colon cancer. J Natl Cancer Inst 87:1022–1024PubMedCrossRefGoogle Scholar
  43. 43.
    Powis G, Gasdaska PY, Gallegos A, Sherrill K, Goodman D (1995) Overexpression of DT-diaphorase in transfected NIH 3T3 cells does not lead to increased anticancer quinone drug sensitivity: a questionable role for the enzyme as a target for bioreductively activated anticancer drugs. Anticancer Res 15:1141–1145PubMedGoogle Scholar
  44. 44.
    Wang X, Doherty GP, Leith MK, Curphey TJ, Begleiter A (1999) Enhanced cytotoxicity of mitomycin C in human tumour cells with inducers of DT-diaphorase. Br J Cancer 80:1223–1230PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Liu TJ, Yeh YC, Ting CT, Lee WL, Wang LC, Lee HW, Wang KY, Lai HC, Lai HC (2008) Ginkgo biloba extract 761 reduces doxorubicin-induced apoptotic damage in rat hearts and neonatal cardiomyocytes. Cardiovasc Res 80:227–235PubMedCrossRefGoogle Scholar
  46. 46.
    Arantes-Rodrigues R, Pinto-Leite R, Ferreira R, Neuparth MJ, Pires MJ, Gaivão I, Palmeira C, Santos L, Colaço A, Oliveira P (2013) Meloxicam in the treatment of in vitro and in vivo models of urinary bladder cancer. Biomed Pharmacother 67(4):277–284PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Memy H. Hassan
    • 1
    • 2
  • Hesham A. El-Beshbishy
    • 3
    • 4
  • Hamdy Aly
    • 2
    • 5
  • Sabry M. Attia
    • 2
    • 6
  • Saleh A. Bahashwan
    • 1
  • Mohamed M. Ghobara
    • 3
    • 7
  1. 1.Department of Pharmacology and Toxicology, College of PharmacyTaibah UniversityEl-Madinah, El-MunaworahSaudi Arabia
  2. 2.Department of Pharmacology and Toxicology, Faculty of PharmacyAl-Azahr UniversityCairoEgypt
  3. 3.Department of Medical Laboratories Technology, Faculty of Applied Medical SciencesTaibah UniversityEl-Madinah, El-MunaworahSaudi Arabia
  4. 4.Department of Biochemistry, Faculty of PharmacyAl-Azhar UniversityCairoEgypt
  5. 5.Department of Pharmacology and Toxicology, Faculty of PharmacyKing Abdel-Aziz UniversityJeddahSaudi Arabia
  6. 6.Department of Pharmacology and Toxicology, Faculty of PharmacyKing Saud UniversityRiyadhSaudi Arabia
  7. 7.Department of Histology, Faculty of MedicineTanta UniversityTantaEgypt

Personalised recommendations