Cancer Chemotherapy and Pharmacology

, Volume 74, Issue 2, pp 379–387 | Cite as

Phase II trial of vatalanib in patients with advanced or metastatic pancreatic adenocarcinoma after first-line gemcitabine therapy (PCRT O4-001)

  • T. DragovichEmail author
  • D. Laheru
  • F. Dayyani
  • V. Bolejack
  • L. Smith
  • J. Seng
  • H. Burris
  • P. Rosen
  • M. Hidalgo
  • P. Ritch
  • A. F. Baker
  • N. Raghunand
  • J. Crowley
  • D. D. Von Hoff
Original Article



Vatalanib (PTK 787/ZK22584) is an oral poly-tyrosine kinase inhibitor with strong affinity for platelet-derived growth factor and vascular endothelial growth factor (VEGF) receptors. We conducted an open-label, phase II multicenter therapeutic trial investigating the efficacy and tolerability of vatalanib in patients with metastatic or advanced pancreatic cancer who failed first-line gemcitabine-based therapy.


Vatalanib treatment consisted of a twice daily oral dosing using a “ramp-up schedule,” beginning with 250 mg bid during week 1,500 mg bid during week 2, and 750 mg bid on week three and thereafter. The primary objective of this study was to evaluate the 6-month survival rate.


Sixty-seven patients were enrolled. The median age was 64, and 66 % (N = 43) had only one prior regimen. Common grade 3/4 adverse events included hypertension (20 %; N = 13), fatigue (17 %; N = 11), abdominal pain (17 %; N = 11), and elevated alkaline phosphatase (15 %; N = 10). Among the 65 evaluable patients, the 6-month survival rate was 29 % (95 % CI 18–41 %) and the median progression-free survival was 2 months. Fifteen patients survived 6 months or more. Two patients had objective partial responses, and 28 % of patients had stable disease. Changes in biomarkers including soluble VEGF and vascular endothelial growth factor receptor did not correlate with response to drug.


Vatalanib was well tolerated as a second-line therapy and resulted in favorable 6-month survival rate in patients with metastatic pancreatic cancer, compared with historic controls.


Vatalinib Pancreatic adenocarcinoma Tyrosine kinase inhibitor Second-line treatment 



The authors are thankful to Ms. Amy Stoll from TGEN/PCRT, Drs. Denise Roe and Haiyan Cui from Biometry Core at the University of Arizona Cancer Center, and Ms. Tamara Burkhead for the help with trial coordination and manuscript preparation. This work was supported in part by P50 CA95060 (E. Gerner), CA017094, and P30 CA023074 from the National Cancer Institute to University of Arizona Cancer Center (TD and AFB), for correlative science. Additional support for imaging studies was provided by GE Healthcare. Supported by Investigator Initiated Grant (from Novartis) to T.D.

Conflict of interest



  1. 1.
    Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63(1):11–30PubMedCrossRefGoogle Scholar
  2. 2.
    Warshaw AL, Lillemoe KD, Castillo CF (2012) Pancreatic surgery for adenocarcinoma. Curr Opin Gastroenterol 28(5):488–493PubMedCrossRefGoogle Scholar
  3. 3.
    Von Hoff DD et al (2011) Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J Clin Oncol 29(34):4548–4554CrossRefGoogle Scholar
  4. 4.
    Conroy T et al (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364(19):1817–1825PubMedCrossRefGoogle Scholar
  5. 5.
    Campen CJ, Dragovich T, Baker AF (2011) Management strategies in pancreatic cancer. Am J Health Syst Pharm 68(7):573–584PubMedCrossRefGoogle Scholar
  6. 6.
    Abdelrahim M et al (2010) Angiogenesis: an update and potential drug approaches (review). Int J Oncol 36(1):5–18PubMedGoogle Scholar
  7. 7.
    Kleeff J et al (2007) Pancreatic cancer microenvironment. Int J Cancer 121(4):699–705PubMedCrossRefGoogle Scholar
  8. 8.
    Whipple C, Korc M (2008) Targeting angiogenesis in pancreatic cancer: rationale and pitfalls. Langenbecks Arch Surg 393(6):901–910PubMedCrossRefGoogle Scholar
  9. 9.
    Garcea G et al (2006) Hypoxia and angiogenesis in pancreatic cancer. ANZ J Surg 76(9):830–842PubMedCrossRefGoogle Scholar
  10. 10.
    Bold G et al (2000) New anilinophthalazines as potent and orally well absorbed inhibitors of the VEGF receptor tyrosine kinases useful as antagonists of tumor-driven angiogenesis. J Med Chem 43(12):2310–2323PubMedCrossRefGoogle Scholar
  11. 11.
    Baker CH, Solorzano CC, Fidler IJ (2002) Blockade of vascular endothelial growth factor receptor and epidermal growth factor receptor signaling for therapy of metastatic human pancreatic cancer. Cancer Res 62(7):1996–2003PubMedGoogle Scholar
  12. 12.
    Solorzano CC et al (2001) Inhibition of growth and metastasis of human pancreatic cancer growing in nude mice by PTK 787/ZK222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases. Cancer Biother Radiopharm 16(5):359–370PubMedCrossRefGoogle Scholar
  13. 13.
    Thomas AL et al (2005) Phase I study of the safety, tolerability, pharmacokinetics, and pharmacodynamics of PTK787/ZK 222584 administered twice daily in patients with advanced cancer. J Clin Oncol 23(18):4162–4171PubMedCrossRefGoogle Scholar
  14. 14.
    Drevs J et al (2005) Soluble markers for the assessment of biological activity with PTK787/ZK 222584 (PTK/ZK), a vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor in patients with advanced colorectal cancer from two phase I trials. Ann Oncol 16(4):558–565PubMedCrossRefGoogle Scholar
  15. 15.
    Drevs J et al (2010) A phase IA, open-label, dose-escalating study of PTK787/ZK 222584 administered orally on a continuous dosing schedule in patients with advanced cancer. Anticancer Res 30(6):2335–2339PubMedGoogle Scholar
  16. 16.
    Hecht JR et al (2011) Randomized, placebo-controlled, phase III study of first-line oxaliplatin-based chemotherapy plus PTK787/ZK 222584, an oral vascular endothelial growth factor receptor inhibitor, in patients with metastatic colorectal adenocarcinoma. J Clin Oncol 29(15):1997–2003. doi: 10.1200/JCO.2010.29.4496 PubMedCrossRefGoogle Scholar
  17. 17.
    Morgan B et al (2003) Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol 21(21):3955–3964PubMedCrossRefGoogle Scholar
  18. 18.
    Schwartz LH et al (2009) Evaluation of lymph nodes with RECIST 1.1. Eur J Cancer 45(2):261–267PubMedCrossRefGoogle Scholar
  19. 19.
    Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7(1):91–101PubMedCrossRefGoogle Scholar
  20. 20.
    Rajaraman S et al (2011) Automated registration of sequential breath-hold dynamic contrast-enhanced MR images: a comparison of three techniques. Magn Reson Imaging 29(5):668–682PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Moore MJ et al (2007) Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25(15):1960–1966PubMedCrossRefGoogle Scholar
  22. 22.
    Rahma OE et al (2013) Second-line treatment in advanced pancreatic cancer: a comprehensive analysis of published clinical trials. Ann Oncol 24(8):1972–1979PubMedCrossRefGoogle Scholar
  23. 23.
    Hoos WA et al (2013) Pancreatic cancer clinical trials and accrual in the United States. J Clin Oncol 31(27):3432–3438PubMedCrossRefGoogle Scholar
  24. 24.
    Pelzer U et al (2011) Best supportive care (BSC) versus oxaliplatin, folinic acid and 5-fluorouracil (OFF) plus BSC in patients for second-line advanced pancreatic cancer: a phase III-study from the German CONKO-study group. Eur J Cancer 47(11):1676–1681PubMedCrossRefGoogle Scholar
  25. 25.
    Saif MW (2008) New developments in the treatment of pancreatic cancer. Highlights from the “44th ASCO Annual Meeting”. Chicago, IL, USA. May 30–June 3, 2008. JOP 9(4):391–397PubMedGoogle Scholar
  26. 26.
    Bafeta A et al (2012) Impact of single centre status on estimates of intervention effects in trials with continuous outcomes: meta-epidemiological study. BMJ 344:e813PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Morabito A et al (2006) Tyrosine kinase inhibitors of vascular endothelial growth factor receptors in clinical trials: current status and future directions. Oncologist 11(7):753–764PubMedCrossRefGoogle Scholar
  28. 28.
    Armstrong AJ, George DJ, Halabi S (2012) Serum lactate dehydrogenase predicts for overall survival benefit in patients with metastatic renal cell carcinoma treated with inhibition of mammalian target of rapamycin. J Clin Oncol 30(27):3402–3407PubMedCrossRefGoogle Scholar
  29. 29.
    Weide B et al (2012) Serum markers lactate dehydrogenase and S100B predict independently disease outcome in melanoma patients with distant metastasis. Br J Cancer 107(3):422–428PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Ebrahimi B et al (2004) Cytokines in pancreatic carcinoma: correlation with phenotypic characteristics and prognosis. Cancer 101(12):2727–2736PubMedCrossRefGoogle Scholar
  31. 31.
    Jain RK et al (2009) Biomarkers of response and resistance to antiangiogenic therapy. Nat Rev Clin Oncol 6(6):327–338PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Jones S et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321(5897):1801–1806PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Kindler HL et al (2010) Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J Clin Oncol 28(22):3617–3622PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Van Cutsem E et al (2009) Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. J Clin Oncol 27(13):2231–2237PubMedCrossRefGoogle Scholar
  35. 35.
    Iyer G et al (2012) Genome sequencing identifies a basis for everolimus sensitivity. Science 338(6104):221PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Reni M et al (2013) Maintenance sunitinib or observation in metastatic pancreatic adenocarcinoma: a phase II randomised trial. Eur J Cancer 49(17):3609–3615PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • T. Dragovich
    • 1
    • 2
    Email author
  • D. Laheru
    • 3
  • F. Dayyani
    • 1
  • V. Bolejack
    • 4
  • L. Smith
    • 5
  • J. Seng
    • 6
  • H. Burris
    • 7
  • P. Rosen
    • 8
  • M. Hidalgo
    • 9
  • P. Ritch
    • 10
  • A. F. Baker
    • 2
  • N. Raghunand
    • 2
  • J. Crowley
    • 4
  • D. D. Von Hoff
    • 11
  1. 1.Banner MD Anderson Cancer CenterGilbertUSA
  2. 2.The University of Arizona Cancer CenterTucsonUSA
  3. 3.Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins UniversityBaltimoreUSA
  4. 4.Cancer Research and BiostatisticsSeattleUSA
  5. 5.South Texas Oncology HematologySan AntonioUSA
  6. 6.Virginia Piper Cancer InstituteMinneapolisUSA
  7. 7.Sarah Cannon Cancer CenterNashvilleUSA
  8. 8.Tower Cancer Research FoundationBeverly HillsUSA
  9. 9.Spanish National Cancer Research Centre (CNIO)MadridSpain
  10. 10.Medical College of WisconsinMilwaukeeUSA
  11. 11.Virginia G. Piper Cancer Center at Scottsdale HealthcareScottsdaleUSA

Personalised recommendations