Cancer Chemotherapy and Pharmacology

, Volume 74, Issue 2, pp 309–322 | Cite as

Supplementation of fish oil augments efficacy and attenuates toxicity of 5-fluorouracil in 1,2-dimethylhydrazine dihydrochloride/dextran sulfate sodium-induced colon carcinogenesis

  • Isha Rani
  • Kim Vaiphei
  • Navneet AgnihotriEmail author
Original Article



5-Fluorouracil (5-FU) is used for the treatment of colorectal cancer, but has low therapeutic response rate and severe side effects. Recently, fish oil (FO) rich in n-3 polyunsaturated fatty acids has been preferred to chemosensitize tumor cells to anticancer drugs. Therefore, the current study is designed to evaluate chemotherapeutic efficacy and toxicity profile of 5-FU in combination with FO in 1,2-dimethylhydrazine dihydrochloride/dextran sulfate sodium (DMH/DSS)-induced colon cancer model.


The therapeutic efficacy of 5-FU along with FO was analyzed through assessment of survival rate, tumor burden, volume, serum sialic acid levels, cytokeratin 19 (CK19) expression and index of cell proliferation such as cell cycle progression. Toxicological aspects were evaluated by standard functional and structural parameters related to spleen, gastrointestinal, liver and kidney.


In the present study, 5-FU in combination with FO increased the survival rate in carcinogen-treated animals. Synergism of 5-FU and FO was also reflected in significant inhibition in tumor growth and serum sialic acid levels in DMH/DSS model. Moreover, the combination dosage significantly augmented the inhibition of cell cycle progression, as shown by CK19 expression. Additionally, FO ameliorated hematologic depression, gastrointestinal, hepatic and renal toxicity caused by 5-FU as substantiated by a marked improvement in structural and functional alterations of these organs.


The supplementation of FO is potentially a promising option for increasing the therapeutic potential and mitigating the side effects of 5-FU.


5-Fluorouracil (5-FU) Fish oil (FO) n-3 Polyunsaturated fatty acids (PUFAs) Colorectal cancer (CRC) Biomarkers of carcinogenesis Chemotherapeutic toxicity 





Fish oil


Colorectal cancer


1,2-Dimethylhydrazine dihydrochloride/dextran sulfate sodium


n-3 Polyunsaturated fatty acids


Eicosapentaenoic acid


Docosahexaenoic acid


Total sialic acid


Lipid-associated sialic acid


Ethylenediaminetetraacetic acid


Hank’s balanced salt solution


Cytokeratin 19




Propidium iodide


Body weight






Statistical package for social sciences



This work was supported by a grant from Department of Science and Technology (DST), Government of India (Ref. No. SR/SO/BB-0138/2012), India. The authors would like to acknowledge DST-Innovation in Science Pursuit for Inspired Research as Ms. Isha Rani is SRF-DST INSPIRE (IF10173). The authors also acknowledge the assistance from University Grants Commission as the department is supported under UGC SAP programme. The authors would also like to acknowledge Mrs. Sandhya, Senior Technician, CSIC Department, Postgraduate Institute of Medical Education and Research, Chandigarh, for her assistance in flow cytometric estimations.

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

280_2014_2497_MOESM1_ESM.docx (16.5 mb)
Supplementary material 1 (DOCX 537 kb)


  1. 1.
    Noordhuis P, Holwerda U, Van der Wilt LC, Van GJC, Smid K, Meijer S, Pinedo HM, Peters GJ (2004) 5-Fluorouracil incorporation into RNA and DNA in relation to thymidylate synthase inhibition of human colorectal cancers. Ann Oncol 15:1025–1032PubMedCrossRefGoogle Scholar
  2. 2.
    Saif MW, Syrigos KN, Katirtzoglou NA (2009) S-1: a promising new oral fluoropyrimidine derivative. Expert Opin Invest Drugs 18:335–348CrossRefGoogle Scholar
  3. 3.
    Sastre J, Garcia-Saenz JA, Diaz-Rubio E (2006) Chemotherapy for gastric cancer. World J Gastroenterol 12:204–213PubMedCentralPubMedGoogle Scholar
  4. 4.
    Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A (2004) Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am J Clin Nutr 79:935–945PubMedGoogle Scholar
  5. 5.
    Hardman WE, Moyerb MP, Camerona IL (2000) Dietary fish oil sensitizes A549 lung xenografts to doxorubicin chemotherapy. Cancer Lett 151:145–151. doi: 10.1016/S0304-3835(99)00396-1 PubMedCrossRefGoogle Scholar
  6. 6.
    Calviello G, Di Nicuolo F, Serini S, Piccioni E, Boninsegna A, Maggiano N, Ranelletti FO, Palozza P (2005) Docosahexaenoic acid enhances the susceptibility of human colorectal cancer cells to 5-fluorouracil. Cancer Chemother Pharmacol 55:12–20. doi: 10.1007/s00280-004-0846-6 PubMedCrossRefGoogle Scholar
  7. 7.
    Pardini RS (2006) Nutritional intervention with omega-3 fatty acids enhances tumor response to anti-neoplastic agents. Chem Biol Interact 162:89–105. doi: 10.1016/j.cbi.2006.05.012 PubMedCrossRefGoogle Scholar
  8. 8.
    Biondo PD, Brindley DN, Sawyer MB, Field CJ (2008) The potential for treatment with dietary long-chain polyunsaturated n-3 fatty acids during chemotherapy. J Nutr Biochem 19:787–796. doi: 10.1016/j.jnutbio.2008.02.003 PubMedCrossRefGoogle Scholar
  9. 9.
    Kimura Y, Takaku T, Nakajima S, Okuda H (2001) Effect of carp and tuna oils on 5-fluorouracil-induced antitumor activity and side effects in sarcoma 180-bearing mice. Lipids 36:353–359. doi: 10.1007/s11745-001-0727-3 PubMedCrossRefGoogle Scholar
  10. 10.
    Jordan A, Stein J (2003) Effect of an omega-3 fatty acid containing lipid emulsion alone and in combination with 5-fluorouracil (5-FU) on growth of the colon cancer cell line caco-2. Eur J Nutr 42:324–331. doi: 10.1007/s00394-003-0427-1 PubMedCrossRefGoogle Scholar
  11. 11.
    Zhuo Z, Zhang L, Mu Q, Lou Y, Gong Z, Shi Y, Ouyang G, Zhang Y (2009) The effect of combination treatment with docosahexaenoic acid and 5-fluorouracil on the mRNA expression of apoptosis-related genes, including the novel gene BCL2L12, in gastric cancer cells. In Vitro Cell Dev Biol Anim 45:69–74. doi: 10.1007/s11626-008-9154-5 PubMedCrossRefGoogle Scholar
  12. 12.
    Granci V, Cai F, Lecumberri E, Clerc A, Dupertuis YM, Pichard C (2013) Colon cancer cell chemosensitisation by fish oil emulsion involves apoptotic mitochondria pathway. Br J Nutr 109:1188–1195. doi: 10.1017/S000711451200308X PubMedCrossRefGoogle Scholar
  13. 13.
    Goldsmith MA, Slavik M, Carter SK (1975) Quantitative prediction of drug toxicity in humans from toxicology in small and large animals. Cancer Res 35:1354–1364PubMedGoogle Scholar
  14. 14.
    Penta JS, Rozencweig M, Guarino AM, Muggia FM (1979) Mouse and large-animal toxicology studies of twelve antitumor agents: relevance to starting dose for phase I clinical trials. Cancer Chemother Pharmacol 3:97–101PubMedCrossRefGoogle Scholar
  15. 15.
    Newell DR, Burtles SS, Fox BW, Jodrell DI, Connors TA (1999) Evaluation of rodent-only toxicology for early clinical trials with novel cancer therapeutics. Br J Cancer 81:760–768. doi: 10.1038/sj.bjc.6690761 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Tanaka T, Kohno H, Suzuki R, Yamada Y, Sugie S, Mori H (2003) A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulphate. Cancer Sci 94:965–973. doi: 10.1111/j.1349-7006.2003.tb01386.x PubMedCrossRefGoogle Scholar
  17. 17.
    Wang JG, Wang DF, Lv BJ, Si JM (2004) A novel mouse model for colitis-associated colon carcinogenesis induced by 1,2-dimethylhydrazine and dextran sulfate sodium. World J Gastroenterol 10:2958–2962PubMedGoogle Scholar
  18. 18.
    Feijoo C, Páez de la Cadena M, Rodríguez-Berrocal FJ, Martínez-Zorzano VS (1997) Sialic acid levels in serum and tissue from colorectal cancer patients. Cancer Lett 112:155–160. doi: 10.1016/S0304-3835(96)04564-8 PubMedCrossRefGoogle Scholar
  19. 19.
    Yang XR, Xu Y, Shi GM, Fan J, Zhou J, Ji Y, Sun HC, Qiu SJ, Yu B, Gao Q, He YZ, Qin WZ, Chen RX, Yang GH, Wu B, Lu Q, Wu ZQ, Tang ZY (2008) Cytokeratin 10 and cytokeratin 19: predictive markers for poor prognosis in hepatocellular carcinoma patients after curative resection. Clin Cancer Res 14:3850–3859. doi: 10.1158/1078-0432.CCR-07-4338 PubMedCrossRefGoogle Scholar
  20. 20.
    Jain R, Fischer S, Serra S, Chetty R (2010) The use of cytokeratin 19 (CK19) immunohistochemistry in lesions of the pancreas, gastrointestinal tract, and liver. Appl Immunohistochem Mol Morphol 18:9–15. doi: 10.1097/PAI.0b013e3181ad36ea PubMedCrossRefGoogle Scholar
  21. 21.
    Stewart ZA, Westfall MD, Pietenpol JA (2003) Cell-cycle dysregulation and anticancer therapy. Trends Pharmacol Sci 24:139–145. doi: 10.1016/S0165-6147(03)00026-9 PubMedCrossRefGoogle Scholar
  22. 22.
    Plucinsky MC, Riley WM, Prorok JJ, Alhadeff JA (1986) Total and lipid-associated serum sialic acid levels in cancer patients with different primary sites and differing degrees of metastatic involvement. Cancer 58:2680–2685PubMedCrossRefGoogle Scholar
  23. 23.
    Katopodis N, Hirshaut Y, Geller NL, Stock CC (1982) Lipid-associated sialic acid test for the detection of human cancer. Cancer Res 42:5270–5275PubMedGoogle Scholar
  24. 24.
    Sanders LM, Henderson CE, Hong MY, Barhoumi R, Burghardt RC, Wang N, Spinka CM, Carroll RJ, Turner ND, Chapkin RS, Lupton JR (2004) An increase in reactive oxygen species by dietary fish oil coupled with the attenuation of antioxidant defenses by dietary pectin enhances rat colonocytes apoptosis. J Nutr 134:3233–3238PubMedGoogle Scholar
  25. 25.
    Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. I: evidence for its hemoprotein nature. J Biol Chem 239:2370–2378PubMedGoogle Scholar
  26. 26.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  27. 27.
    Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139PubMedGoogle Scholar
  28. 28.
    Bock KW, Burchell B, Dutton GJ, Hänninen O, Mulder GJ, Owens IS, Siest G, Tephly TR (1983) UDP-glucuronosyltransferase activities–guidelines for consistent interim terminology and assay conditions. Biochem Pharmacol 32:953–955PubMedCrossRefGoogle Scholar
  29. 29.
    Geelen A, Schouten JM, Kamphuis C, Stam BE, Burema J, Renkema JM, Bakker EJ, van’t Veer F, Kampman E (2007) Fish consumption, n-3 fatty acids, and colorectal cancer: a meta-analysis of prospective cohort studies. Am J Epidemiol 166:1116–1125. doi: 10.1093/aje/kwm197 PubMedCrossRefGoogle Scholar
  30. 30.
    Sarotra P, Kansal S, Sandhir R, Agnihotri N (2012) Chemopreventive effect of different ratios of fish oil and corn oil on prognostic markers, DNA damage and cell cycle in colon carcinogenesis. Eur J Cancer Prev 2:147–154. doi: 10.1097/CEJ.0b013e32834c9bfb CrossRefGoogle Scholar
  31. 31.
    Muscaritoli M, Molfino A, Gioia G, Laviano A, Rossi Fanelli F (2011) The “parallel pathway”: a novel nutritional and metabolic approach to cancer patients. Intern Emerg Med 6:105–112. doi: 10.1007/s11739-010-0426-1 PubMedCrossRefGoogle Scholar
  32. 32.
    Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, MacDonald N, Mantovani G, Davis M, Muscaritoli M, Ottery F, Radbruch L, Ravasco P, Walsh D, Wilcock A, Kaasa S, Baracos VE (2011) Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 12:489–495. doi: 10.1016/S1470-2045(10)70218-7 PubMedCrossRefGoogle Scholar
  33. 33.
    Barber MD, Ross JA, Voss AC, Tisdale MJ, Fearon KC (1999) The effect of an oral nutritional supplement enriched with fish oil on weight-loss in patients with pancreatic cancer. Br J Cancer 81:80–86. doi: 10.1038/sj.bjc.6690654 PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Ogilvie GK, Fettman MJ, Mallinckrodt CH, Walton JA, Hansen RA, Davenport DJ, Gross KL, Richardson KL, Rogers Q, Hand MS (2000) Effect of fish oil, arginine and doxorubicin chemotherapy on remission and survival time for dogs with lymphoma: a double-blind, randomized placebo-controlled study. Cancer 88:1916–1928PubMedCrossRefGoogle Scholar
  35. 35.
    Cha MC, Meckling KA, Stewart C (2002) Dietary docosahexaenoic acid levels influence the outcome of arabinosylcytosine chemotherapy in L1210 leukemic mice. Nutr Cancer 44:176–181. doi: 10.1207/S15327914NC4402_09 PubMedCrossRefGoogle Scholar
  36. 36.
    El-Aziz MA, Hassan HA, Mohamed MH, Meki AR, Abdel-Ghaffar SK, Hussein MR (2005) The biochemical and morphological alterations following administration of melatonin, retinoic acid and Nigella sativa in mammary carcinoma: an animal model. Int J Exp Pathol 86:383–396. doi: 10.1111/j.0959-9673.2005.00448.x PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Lu CQ, Lu J, Wang BL, Cui YZ (2000) Changes in ganglioside contents, plasma sialic acid and cAMP levels in experimental hepatoma in mice. Mol Cell Biochem 207:29–33PubMedCrossRefGoogle Scholar
  38. 38.
    Clandinin MT, Cheema S, Pehowich D, Field CJ (1996) Effect of polyunsaturated fatty acids in obese mice. Lipids 31:13–22. doi: 10.1007/BF02637045 CrossRefGoogle Scholar
  39. 39.
    Shah MA, Schwartz GK (2001) Cell cycle-mediated drug resistance: an emerging concept in cancer therapy. Clin Cancer Res 7:2168–2181PubMedGoogle Scholar
  40. 40.
    Kansal S, Negi AK, Bhatnagar A, Agnihotri N (2012) Ras signaling pathway in the chemopreventive action of different ratios of fish oil and corn oil in experimentally induced colon carcinogenesis. Nutr Cancer 64:559–568. doi: 10.1080/01635581.2012.675619 PubMedCrossRefGoogle Scholar
  41. 41.
    King PD, Perry MC (2001) Hepatotoxicity of chemotherapy. Oncologist 6:162–176. doi: 10.1634/theoncologist.6-2-162 PubMedCrossRefGoogle Scholar
  42. 42.
    Meta-Analysis Group in Cancer (1998) Toxicity of fluorouracil in patients with advanced colorectal cancer: effect of administration schedule and prognostic factors. J Clin Oncol 16:3537–3541Google Scholar
  43. 43.
    Gibson RJ, Keefe DM (2006) Cancer chemotherapy-induced diarrhoea and constipation: mechanisms of damage and prevention strategies. Supportive Care Cancer 14:890–900. doi: 10.1007/s00520-006-0040-y CrossRefGoogle Scholar
  44. 44.
    Leblond J, Le Pessot F, Hubert-Buron A, Duclos C, Vuichoud J, Faure M, Breuille D, Dechelotte P, Coeffier M (2008) Chemotherapy-induced mucositis is associated with changes in proteolytic pathways. Exp Biol Med (Maywood) 233:219–228. doi: 10.3181/0702-RM-49 CrossRefGoogle Scholar
  45. 45.
    Rask C, Albertioni F, Bentzen SM, Schroeder H, Peterson C (1998) Clinical and pharmacokinetic risk factors for high-dose methotrexate-induced toxicity in children with acute lymphoblastic leukemia—a logistic regression analysis. Acta Oncol 37:277–284PubMedCrossRefGoogle Scholar
  46. 46.
    Konsman JP, Dantzer R (2001) How the immune and nervous systems interact during disease-associated anorexia. Nutrition 17:664–668. doi: 10.1016/S0899-9007(01)00602-5 PubMedCrossRefGoogle Scholar
  47. 47.
    Bouteloup-Demange C, Claeyssens S, Maillot C, Lavoinne A, Lerebours E, Dechelotte P (2000) Effects of enteral glutamine on gut mucosal protein synthesis in healthy humans receiving glucocorticoids. Am J Physiol Gastrointest Liver Physiol 278:677–681Google Scholar
  48. 48.
    Soares PMG, Mota JMSC, Gomes AS, Oliveira RB, Assreuy AMS, Brito GA, Santos AA, Ribeiro RA, Souza MH (2008) Gastrointestinal dysmotility in 5-fluorouracil-induced intestinal mucositis outlasts inflammatory process resolution. Cancer Chemother Pharmacol 63:91–98. doi: 10.1007/s00280-008-0715-9 PubMedCrossRefGoogle Scholar
  49. 49.
    Stringer AM, Gibson RJ, Logan RM, Bowen JM, Yeoh AS, Hamilton J, Keefe DM (2009) Gastrointestinal microflora and mucins may play a critical role in the development of 5-fluorouracil-induced gastrointestinal mucositis. Exp Biol Med 234:430–441. doi: 10.3181/0810-RM-301 CrossRefGoogle Scholar
  50. 50.
    Mizuno M, Tamura M, Hashida M, Sezaki H (1987) Effects of mitomycin C, 5-fluorouracil and cyclophosphamide on drug absorption, enzyme activities and mucosal lipid composition of intestine. J Pharmacobiodyn 10:321–329PubMedCrossRefGoogle Scholar
  51. 51.
    Keefe DM (2007) Intestinal mucositis: mechanisms and management. Curr Opin Oncol 19:323–327PubMedCrossRefGoogle Scholar
  52. 52.
    Gibson RJ, Stringer AM (2009) Chemotherapy-induced diarrhoea. Curr Opin Support Palliat Care 3:31–35. doi: 10.1097/SPC.0b013e32832531bb PubMedCrossRefGoogle Scholar
  53. 53.
    Sonis ST (1998) Mucositis as a biological process: a new hypothesis for the development of chemotherapy-induced stomatotoxicity. Oral Oncol 34:39–43. doi: 10.1016/S1368-8375(97)00053-5 PubMedCrossRefGoogle Scholar
  54. 54.
    Torres DM, Tooley KL, Butler RN, Smith CL, Geier MS, Howarth GS (2008) Lyprinol™ only partially improves indicators of small intestinal integrity in a rat model of 5-fluorouracil-induced mucositis. Cancer Biol Ther 7:295–302. doi: 10.4161/cbt.7.2.5332 PubMedCrossRefGoogle Scholar
  55. 55.
    Camuesco D, Comalada M, Concha A, Nieto A, Sierra S, Xaus J, Zarzuelo A, Gálvez J (2006) Intestinal anti-inflammatory activity of combined quercitrin and dietary olive oil supplemented with fish oil, rich in EPA and DHA (n-3) polyunsaturated fatty acids, in rats with DSS-induced colitis. Clin Nutr 25:466–476. doi: 10.1016/j.clnu.2005.12.009 PubMedCrossRefGoogle Scholar
  56. 56.
    Calder PC (2009) Polyunsaturated fatty acids and inflammatory processes: new twists in an old tale. Biochimie 91:791–795. doi: 10.1016/j.biochi.2009.01.008 PubMedCrossRefGoogle Scholar
  57. 57.
    Gawish S, Nosseir D, Omar N, Sarhan N (2013) Protective effect of omega-3 fatty acids on 5-fluorouracil-induced small Intestinal damage in rats: histological and histomorphometric study. Trends in Medical Research 8:36–62. doi: 10.3923/tmr.2013.36.62 CrossRefGoogle Scholar
  58. 58.
    Berenbaum MC (1979) The immunosuppressive effects of 5-fluorocytosine and 5-fluorouracil. Chemotherapy 25:54–59PubMedCrossRefGoogle Scholar
  59. 59.
    Bezerra DP, de Castro FO, Alves AP, Pessoa C, de Moraes MO, Silveira ER, Lima MA, Elmiro FJ, de Alencar NM, Mesquita RO, Lima MW, Costa-Lotufo LV (2008) In vitro and in vivo antitumor effect of 5-FU combined with piplartine and piperine. J Appl Toxicol 28:156–163. doi: 10.1002/jat.1261 PubMedCrossRefGoogle Scholar
  60. 60.
    Mehra MR, Lavie CJ, Ventura HO, Milani RV (2006) Fish oils produce anti-inflammatory effects and improve body weight in severe heart failure. J Heart Lung Transplant 25:834–838. doi: 10.1016/j.healun.2006.03.005 PubMedCrossRefGoogle Scholar
  61. 61.
    El-Sayyad HI, Ismail MF, Shalaby FM, Abou-El-Magd RF, Gaur RL, Fernando A, Raj MH, Ouhtit A (2009) Histopathological effects of cisplatin, doxorubicin and 5-flurouracil (5-FU) on the liver of male albino rats. Int J Biol Sci 5:466–473PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Sturgill MG, Lambert GH (1997) Xenobiotic-induced hepatotoxicity: mechanisms of liver injury and methods of monitoring hepatic function. Clin Chem 43:1512–1526PubMedGoogle Scholar
  63. 63.
    Jancova P, Anzenbacher P, Anzenbacherova E (2010) Phase II drug metabolizing enzymes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 154(2):103–116PubMedCrossRefGoogle Scholar
  64. 64.
    Erkurt MA, Aydogdu I, Kuku I, Kaya E, Ozhan O (2008) Anticancer drug induced glomerular dysfunction. World J Med Sci 3:5–9Google Scholar
  65. 65.
    Singh BN, Malhotra BK (2004) Effects of food on the clinical pharmacokinetics of anticancer agents: underlying mechanisms and implications for oral chemotherapy. Clin Pharmacokinet 43:1127–1156PubMedCrossRefGoogle Scholar
  66. 66.
    Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661. doi: 10.1096/fj.07-9574LSF PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of BiochemistryPanjab UniversityChandigarhIndia
  2. 2.Department of HistopathologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia

Personalised recommendations