Advertisement

Cancer Chemotherapy and Pharmacology

, Volume 74, Issue 3, pp 487–495 | Cite as

KPT-330 inhibitor of XPO1-mediated nuclear export has anti-proliferative activity in hepatocellular carcinoma

  • Yun Zheng
  • Sigal GeryEmail author
  • Haibo Sun
  • Sharon Shacham
  • Michael Kauffman
  • H. Phillip Koeffler
Original Article

Abstract

Purpose

Exportin-1 (XPO1, CRM1) mediates the nuclear export of several key growth regulatory and tumor suppressor proteins. Cancer cells often overexpress XPO1 resulting in cytoplasmic mislocalization and aberrant activity of its target proteins. Orally bioavailable selective inhibitors of nuclear export (SINE) that irreversibly bind to and inhibit the function of XPO1 have been recently developed. The aim of this study was to investigate the efficacy of the clinical staged, orally available, SINE compound, KPT-330 in hepatocellular carcinoma (HCC).

Methods

In silico, meta-analysis showed that XPO1 is overexpressed in HCC. Six HCC cell lines were treated with KPT-330, and cell proliferation and expression of cell growth regulators were examined by cell proliferation assays and Western blot analysis, respectively. The in vivo anti-cancer activity of KPT-330 was examined in a HCC xenograft murine model.

Results

KPT-330 reduced the viability of HCC cell lines in vitro and this anti-proliferative effect was associated with cell cycle arrest and induction of apoptosis. The expression of the pro-apoptotic protein PUMA was markedly up-regulated by KPT-330. In addition, SINE treatment increased the expression of the tumor suppressor proteins p53 and p27, while it reduced the expression of HCC promoting proteins, c-Myc and c-Met. XPO1 levels itself were also down-regulated following KPT-330 treatment. Finally, a HCC xenograft murine model showed that treatment of mice with oral KPT-330 significantly inhibited tumor growth with little evidence of toxicity.

Conclusion

Our results suggest that SINE compounds, such as KPT-330, are promising novel drugs for the targeted therapy of HCC.

Keywords

Hepatocellular carcinoma XPO1 inhibitor Apoptosis Xenograft 

Notes

Acknowledgments

H. P. K. is the holder of the Mark Goodson endowed Chair in Oncology Research and is a member of the Jonsson Cancer Center and the Molecular Biology Institute, UCLA. In addition, we thank Blanche and Steven Koegler for their generous support. This work was supported by NIH Grants (2R01 CA026038-35, 5R01AI65604-6), SWLF, the Tom Collier Memorial Regatta Foundation, East Meets West Cedars-Sinai Fund, as well as, A*STAR of Singapore.

Conflict of interest

S.S. and M.K. are employees of Karyopharm Therapeutics, a clinical stage biopharmaceutical company that develops selective inhibitors of nuclear export-targeted therapeutics. The remaining authors declare no competing financial interests.

Supplementary material

280_2014_2495_MOESM1_ESM.pptx (2 mb)
Supplementary material 1 (PPTX 2,058 kb)
280_2014_2495_MOESM2_ESM.docx (20 kb)
Supplementary material 2 (DOCX 20 kb)

References

  1. 1.
    Villanueva A, Minguez B, Forner A, Reig M, Llovet JM (2010) Hepatocellular carcinoma: novel molecular approaches for diagnosis, prognosis, and therapy. Annu Rev Med 61:317–328PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    El-Serag HB (2011) Hepatocellular carcinoma. N Engl J Med 365:1118–1127PubMedCrossRefGoogle Scholar
  3. 3.
    Forner A, Llovet JM, Bruix J (2012) Hepatocellular carcinoma. Lancet 379:1245–1255PubMedCrossRefGoogle Scholar
  4. 4.
    Gauthier A, Ho M (2013) Role of sorafenib in the treatment of advanced hepatocellular carcinoma: an update. Hepatol Res 43:147–154PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Hutten S, Kehlenbach RH (2007) CRM1-mediated nuclear export: to the pore and beyond. Trends Cell Biol 17:193–201PubMedCrossRefGoogle Scholar
  6. 6.
    Xu D, Farmer A, Chook YM (2010) Recognition of nuclear targeting signals by Karyopherin-β proteins. Curr Opin Struct Biol 20:782–790PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Turner JG, Dawson J, Sullivan DM (2012) Nuclear export of proteins and drug resistance in cancer. Biochem Pharmacol 83:1021–1032PubMedCrossRefGoogle Scholar
  8. 8.
    Nguyen KT, Holloway MP, Altura RA (2012) The CRM1 nuclear export protein in normal development and disease. Int J Biochem Mol Biol 3:137–151PubMedCentralPubMedGoogle Scholar
  9. 9.
    Noske A, Weichert W, Niesporek S, Röske A, Buckendahl AC, Koch I, Sehouli J, Dietel M, Denkert C (2008) Expression of the nuclear export protein chromosomal region maintenance/exportin 1/Xpo1 is a prognostic factor in human ovarian cancer. Cancer 112:1733–1743PubMedCrossRefGoogle Scholar
  10. 10.
    Van der Watt PJ, Maske CP, Hendricks DT, Parker MI, Denny L, Govender D, Birrer MJ, Leaner VD (2009) The Karyopherin proteins, Crm1 and Karyopherin beta1, are overexpressed in cervical cancer and are critical for cancer cell survival and proliferation. Int J Cancer 124:1829–1840PubMedCrossRefGoogle Scholar
  11. 11.
    Shen A, Wang Y, Zhao Y, Zou L, Sun L, Cheng C (2009) Expression of CRM1 in human gliomas and its significance in p27 expression and clinical prognosis. Neurosurgery 65:153–159PubMedCrossRefGoogle Scholar
  12. 12.
    Huang WY, Yue L, Qiu WS, Wang LW, Zhou XH, Sun YJ (2009) Prognostic value of CRM1 in pancreas cancer. Clin Invest Med 32:E315PubMedGoogle Scholar
  13. 13.
    Lapalombella R, Sun Q, Williams K, Tangeman L, Jha S, Zhong Y, Goettl V, Mahoney E, Berglund C, Gupta S, Farmer A, Mani R, Johnson AJ, Lucas D, Daelemans D, Sandanayake V, Shechter S, McCauley D, Shacham S, Kauffman M, Chook YM, Byrd JC (2012) Selective inhibitors of nuclear export show that CRM1/XPO1 is a target in chronic lymphocytic leukemia. Blood 120:4621–4634PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Tai YT, Landesman Y, Acharya C, Calle Y, Zhong MY, Cea M, Tannenbaum D, Cagnetta A, Reagan M, Munshi AA, Senapedis W, Saint-Martin JR, Kashyap T, Shacham S, Kauffman M, Gu Y, Wu L, Ghobrial I, Zhan F, Kung AL, Schey SA, Richardson P, Munshi NC, Anderson KC (2014) CRM1 inhibition induces tumor cell cytotoxicity and impairs osteoclastogenesis in multiple myeloma: molecular mechanisms and therapeutic implications. Leukemia 28(1):155–165 Google Scholar
  15. 15.
    Kojima K, Kornblau SM, Ruvolo V, Dilip A, Duvvuri S, Davis RE, Zhang M, Wang Z, Coombes KR, Zhang N, Qiu YH, Burks JK, Kantarjian H, Shacham S, Kauffman M, Andreeff M (2013) Prognostic impact and targeting of CRM1 in acute myeloid leukemia. Blood 121:4166–4174PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Schmidt J, Braggio E, Kortuem KM, Egan JB, Zhu YX, Xin CS, Tiedemann RE, Palmer SE, Garbitt VM, McCauley D, Kauffman M, Shacham S, Chesi M, Bergsagel PL, Stewart AK (2013) Genome-wide studies in multiple myeloma identify XPO1/CRM1 as a critical target validated using the selective nuclear export inhibitor KPT-276. Leukemia 27(12):2357–2365Google Scholar
  17. 17.
    Azmi AS, Al-Katib A, Aboukameel A, McCauley D, Kauffman M, Shacham S, Mohammad RM (2013) Selective inhibitors of nuclear export for the treatment of non-Hodgkin’s lymphomas. Haematologica 98:1098–1106PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Walker CJ, Oaks JJ, Santhanam R, Neviani P, Harb JG, Ferenchak G, Ellis JJ, Landesman Y, Eisfeld AK, Gabrail NY, Smith CL, Caligiuri MA, Hokland P, Roy DC, Reid A, Milojkovic D, Goldman JM, Apperley J, Garzon R, Marcucci G, Shacham S, Kauffman MG, Perrotti D (2013) Preclinical and clinical efficacy of XPO1/CRM1 inhibition by the karyopherin inhibitor KPT-330 in Ph+ leukemias. Blood 122(17):3034–3044Google Scholar
  19. 19.
    Kudo N, Matsumori N, Taoka H, Fujiwara D, Schreiner EP, Wolff B, Yoshida M, Horionouchi S (1999) Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc Natl Acad Sci USA 96:9112–9117PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Newlands ES, Rustin GJ, Brampton MH (1996) Phase I trial of elactocin. Br J Cancer 74:648–649PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Dong X, Biswas A, Süel KE, Jackson LK, Martinez R, Gu H, Chook YM (2009) Structural basis for leucine-rich nuclear export signal recognition by CRM1. Nature 458:1136–1141PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Monecke T, Güttler T, Neumann P, Dickmanns A, Görlich D, Ficner R (2009) Crystal structure of the nuclear export receptor CRM1 in complex with Snurportin1 and RanGTP. Science 324:1087–1091PubMedCrossRefGoogle Scholar
  23. 23.
    Etchin J, Sun Q, Kentsis A, Farmer A, Zhang ZC, Sanda T, Mansour MR, Barcelo C, McCauley D, Kauffman M, Shacham S, Christie AL, Kung AL, Rodiq SJ, Chook YM, Look AT (2013) Antileukemic activity of nuclear export inhibitors that spare normal hematopoietic cells. Leukemia 27:66–74PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Azmi AS, Aboukameel A, Bao B, Sarkar FH, Philip PA, Kauffman M, Shacham S, Mohammad RM (2013) Selective inhibitors of nuclear export block pancreatic cancer cell proliferation and reduce tumor growth in mice. Gastroenterology 144:447–456PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Hsieh JL, Wu CL, Lee CH, Shiau AL (2003) Hepatitis B virus X protein sensitizes hepatocellular carcinoma cells to cytolysis induced by E1B-deleted adenovirus through the disruption of p53 function. Clin Cancer Res 9:338–345PubMedGoogle Scholar
  26. 26.
    Xu D, Chook YM, Grishin NV (2012) NESdb: a database of NES-containing CRM1 cargoes. Mol Biol Cell 23:3673–3676PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Huang HC, Fu SC, Horton P, Juan HF (2013) ValidNESs: a database of validated leucine-rich nuclear export signals. Nucleic Acids Res 41:D338–D343PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Etchin J, Sanda T, Mansour MR, Kentsis A, Montero J, Le BT, Christie AL, McCauley D, Rodiq SJ, Kauffman M, Shacham S, Stone R, Letai A, Kung AL, Thomas Look A (2013) KPT-330 inhibitor of CRM1 (XPO1)-mediated nuclear export has selective anti-leukaemic activity in preclinical models of T-cell acute lymphoblastic leukaemia and acute myeloid leukaemia. Br J Haematol 161:117–127PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Senapedis W, Landesman Y, St-Martin J, Kashyap T, Plamondon L, Sandanayaka V, Shechter S, Froim D, McCauley D, Nir Williams JL, Kauffman M, Sharon S (2012) Abstract 2943: KPT-SINE (selective inhibitors of nuclear export) induce apoptosis in colon cancer cells in vitro and in vivo through nuclear localization of tumor suppressor proteins (TSPs). Cancer Res 72:2943CrossRefGoogle Scholar
  30. 30.
    Vaseva AV, Moll UM (2009) The mitochondrial p53 pathway. Biochim Biophys Acta 1787:414–420PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Fernando J, Sancho P, Fernández-Rodriguez CM, Lledó JL, Caja L, Campbell JS, Fausto N, Fabregat I (2012) Sorafenib sensitizes hepatocellular carcinoma cells to physiological apoptotic stimuli. J Cell Physiol 227:1319–1325PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Dudgeon C, Peng R, Wang P, Sebastiani A, Yu J, Zhang L (2012) Inhibiting oncogenic signaling by sorafenib activates PUMA via GSK3β and NF-κB to suppress tumor cell growth. Oncogene 31:4848–4858PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Ranganathan P, Yu X, Na C, Santhanam R, Shacham S, Kauffman M, Walker A, Kilsovic R, Blum W, Caligiuri M, Croce CM, Marcucci G, Garzon R (2012) Preclinical activity of a novel CRM1 inhibitor in acute myeloid leukemia. Blood 120:1765–1773PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Sakakibara K, Saito N, Sato T, Suzuki A, Hasegawa Y, Friedman JM, Kufe DW, Iwami T, Kawabe T (2011) CBS9106 is a novel reversible oral CRM1 inhibitor with CRM1 degrading activity. Blood 118:3922–3931PubMedCrossRefGoogle Scholar
  35. 35.
    Wurmbach E, Chen YB, Khitrov G, Zhang W, Roayaie S, Schwartz M, Fiel I, Thung S, Mazzaferro V, Bruix J, Bottinger E, Friedman S, Waxman S, Llovet JM (2007) Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hematology 45:938–947Google Scholar
  36. 36.
    Roessler S, Jia HL, Budhu A, Forgues M, Ye QH, Lee JS, Thorgeirsson SS, Sun Z, Tang ZY, Qin LX, Wang XW (2010) A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. Cancer Res 70:10202–10212PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Chen X, Cheung ST, So S, Fan ST, Barry C, Higgins J, Lai KM, Ji J, Dudoit S, Nq IO, Van De Rijn M, Botstein D, Brown PO (2002) Gene expression patterns in human liver cancers. Mol Biol Cell 13:1929–1939PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Mas VR, Maluf DG, Archer KJ, Yanek K, Kong X, Kulik L, Freise CE, Olthoff KM, Ghobrial RM, McIver P, Fisher R (2009) Genes involved in viral carcinogenesis and tumor initiation in hepatitis C virus-induced hepatocellular carcinoma. Mol Med 15:85–94PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yun Zheng
    • 1
    • 2
  • Sigal Gery
    • 2
    Email author
  • Haibo Sun
    • 2
  • Sharon Shacham
    • 3
  • Michael Kauffman
    • 3
  • H. Phillip Koeffler
    • 2
    • 4
  1. 1.State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat-sen University Cancer CenterGuangzhouChina
  2. 2.Hematology/Oncology, Cedars-Sinai Medical CenterUCLA School of MedicineLos AngelesUSA
  3. 3.Karyopharm TherapeuticsNatickUSA
  4. 4.Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore

Personalised recommendations